• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RotatS:temporal knowledge graph completion based on rotation and scaling in 3D space①

    2023-12-15 10:43:52YUYongCHENShudongTONGDaQIDonglinPENGFeiZHAOHua
    High Technology Letters 2023年4期

    YU Yong (余 泳),CHEN Shudong②,TONG Da,QI Donglin,PENG Fei,ZHAO Hua

    (?Institute of Microelectronics, Chinese Academy of Sciences,Beijing 100191,P.R.China)

    (??University of Chinese Academy of Sciences,Beijing 100191,P.R.China)

    (???Beijing Institute of Tracking and Telecommunications Technology,Beijing 100191,P.R.China)

    Abstract

    Key words:knowledge graph(KG),temporal knowledge graph(TKG),knowledge graph completion(KGC),rotation and scaling (RotatS)

    0 Introduction

    With the increasing application of knowledge graphs(KGs),a large number of knowledge graphs have been constructed.KG consists of entities,relationships,attributes,and attribute values.Generally speaking,KG can be represented by a set of triples.The representation of triples is (H,R,T),whereH(Head)andT(Tail) are a group of head entities and tail entities,respectively,andR( Relation) is a set of relationships between them.Existing KGs include YAGO[1],Freebase[2],Wikidata[3],and WordNet[4],etc.,which are used for intelligent search,social networks,deep question answering,etc.However,many KGs usually suffer from incompletion,and the purpose of knowledge graph completion (KGC) is to add new triples in KGs,such as obtaining a new triple (COVID-19,belongs to,Class B infectious diseases) from existing knowledge graphs related to contagious diseases.The task makes KG more complete.Therefore,KGC has drawn widespread attention.

    At present,many KGC models do not take temporal information into account.However,in many KGs,the occurrence of many events is related to time.This type of knowledge graph is called temporal knowledge graph (TKG).Typically,TKGs are represented by a quadruple (H,R,T,Γ),whereHandTare a set of head entities and tail entities respectively,Ris a set of relationships between them,andΓis a set of time when the event occurs.For instance,There are many answers to the question (Obama,visit,?),if the time factor is not taken into account.But if the time factor is considered, the answer to this question is specific, as(Obama,visit,China) took place on November 15,2009,and (Obama,visit,Thailand) took place on November 18,2012.Ignoring temporal information can create significant uncertainty to KGC and negatively affect downstream tasks.

    Traditional KGC models,such as TransE[5],Dist-Mult[6],RotatE[7], ComplEx[8],etc.,learn the low-dimensional embedding of entities and relations, and model the relationships between entities to perform KG completion.None of these models has a way to model temporal information,thereby ignoring the time when the fact occurs.To address this problem,several researchers have proposed related models, including TTransE[9],HyTE[10],TA-TransE[11],ATiSE[12],Te-Ro[13],TempCaps[14],TKGC[15], HTKE[16],etc.These models obtain the time factor by encoding temporal information and integrating this information with entities and relationships respectively,so that the event is timedependent.

    However,the above mentioned models are merely extensions of traditional KGC methods,and lack the ability to extract the semantic information of time.As an example,the TeRo model defines the temporal evolution of entity embedding as the rotation of the entity in two-dimensional space from the initial time to the current time[13],and then uses the TransE method to obtain the relationship between the head entity and the tail entity after the rotation.Like other TKG completion methods,this model only considers the evolution of the entity itself in two-dimensional space with respect to time,and the semantic association between entities,relations and time is not better obtained.

    This paper proposes a new method based on rotation and scaling (RotatS) for temporal knowledge graph completion.The model maps entities,relations,and time into three-dimensional space,and defines the evolution of head entities through a combination of time and relations to obtain tail entities.

    Through the mapping of three-dimensional space,entities,relations and time can obtain richer semantic information.Furthermore,this paper defines the temporal and relational evolution of entity embedding as the rotation and scaling of head entity to the tail entity in the 3D space,and the model defines the relationship between head entity and tail entity in 3D space relative to relations and time,and obtains rich semantic association among entities,relations and time.

    The advantages of the proposed model includes:

    (1)It solves the problem that entity cannot be well combined with relations and time in traditional methods.A general approach to solving TKG completion is proposed in this paper.For events of either timestamps or time intervals,different rotation axes are used respectively,and the relationship between head entities and tail entities in different types of events are defined.

    (2)The model considers the roles of time and relation in evolution at the same time.The rotation can help to make the direction between the head entity and the tail entity closer.Similarly,the scaling can help to make the size between the head entity and the tail entity closer.Through this method,entities,relations,and time are hopefully better associated.

    (3)The performance of the proposed method is evaluated on four public datasets.Experimental results show that this paper's approach has certain advantages compared with several existing methods.

    (4)The paper also conducts a comparison experiment between rotation and scaling in 3D space and 4D space.The experimental results show that the RotatS model performs better in these cases.

    1 Related work

    1.1 Static graph completion

    Static KGC models can be divided into translationbased models,tensor decomposition-based models and neural network-based models.

    1.1.1 Translation based models

    KGC is performed by learning low-dimensional embedding representations of entities and relations in the knowledge graph.These models are mainly based on TransE for transformations of spatial mappings.TransE[5]defines relations as the transformation from head entity to tail entity,but can only handle one-toone relationships.For relations such as one-to-many,TransH[17]establishes a plane and projects entities and relationships onto the plane.TransR[18]uses the projection matrix of a particular relation to project entities into the relation space.sTransE[19]operates different transformations for head entity and tail entity,and projects head entity and tail entity into separate spaces.TransD[20]sparses the relational mapping matrix,therefore reducing the amount of parameters.TranSparse[21]solves the problem of unbalanced distribution of relations in triples.The relations that occur infrequently only need to train the matrix with low sparsity, and the relations that occur infrequently need to train the matrix with dense sparsity.TransM[22]focuses on the structure of the knowledge graph and constructs the model by pre-counting the weights of each relation in the training set.RotatE[7]introduces the complex domain on top of TransE,which maps entities and relations into a complex space,and defines each relation as a rotation from head entity to tail entity.

    1.1.2 Tensor decomposition based models

    These models decompose the score of the triples into a tensor product.RESCAL[23]expresses the relations with a full-ranking matrix,calculating the product between entity embeddings and relation matrices.This model is simple and effective,but the parameters are increased.Relations in DistMult[6]use diagonal matrices to reduce the number of parameters but cannot model the directionality of relationships.Complex[8]introduces the complex domain and considers that head entity embedding of the given entity and tail entity embedding are conjugate relationships.Among them,RESCAL and DistMult cannot obtain asymmetric relationships, for instance,triples(h,r,t)and(t,r,h)always have equal scores.

    1.1.3 Neural network based models

    Neural network-based models perform KGC variously: ProjE[24]model uses the feed-forward network to model the KG.ConvE[25]first splices the embedding of head entities and the embedding of relations,then performs a multi-layer convolution operation,and finally scores all candidate sets.ConvKB[26]modifies the form of the input data of ConvE,then obtains the feature layer by convolution,and finally splices and scores it.ConvR[27]performs the convolution operation by using relations directly as convolution kernels.

    1.2 Temporal graph completion

    Recently,some researchers have found that adding temporal information to the knowledge graph can further improve the performance of KGC.Some models are derived from TransE,such as TTransE[9],embedding time information into the score function.TA-TransE and TA-DistMult[11]obtained the temporal evolution of relations by stitching the embedding of predicates and the temporal embedding using long short term memory(LSTM).HyTE[10]treats timestamps as hyperplanes and projects entity and relation embeddings onto the hyperplane to obtain new representations.This model is the expansion of TransH with respect to time by adding temporal information to head entity,relation and tail entity respectively.TempCaps[14]proposes a capsule network-based model to construct entity embeddings by dynamically routing the retrieved temporal relations and neighbor information.TKGC[15]models global trends and local fluctuations by mapping entities and relations in TKG to approximations of multivariate Gaussian processes (MGPs).HTKE[16]proposes a new hyperplane-based temporal-aware KG embedding model that incorporates temporal information into the entity-relation space to more effectively predict missing elements in KGs.

    2 Methods

    In this section,the TKG completion problem is defined and the method RotatS is introduced in detail.This method integrates entities,relationships,and temporal information to solve the TKG completion problem better.

    TKG completion is also called link prediction task.The goal of this task is to predict hidden quaternions using observable quaternions[28].This task can be divided into two parts: given a quaternion representation of the TKG as (h,r,?,Γ),predicts the tail entity,and predicts the head entity given a quaternion representation of the TKG as (?,r,t,Γ).

    Quaternions have been used for static knowledge graph embeddings[29].The definition and basic mathematical properties of quaternions are presented for a better introduction to the method proposed in this paper.

    2.1 Quaternions

    Quaternion[30]is the result of the expansion of the imaginary part of a complex number.Usually the quaternionqis represented by (w,x,y,z),wherewis the real part;x,yandzare the imaginary parts,or it can also be expressed asq= [w,v] =w+xi+yj+zk(i,j, andkare imaginary units).Some of the rules and operations for quaternions are as follows.

    Basic rules and derivatives are

    The inner product of quaternions: the inner product betweenq1=w1+x1i+y1j+z1kandq2=w2+x2i+y2j+z2kis the sum of the products of the corresponding real and imaginary parts.

    Quaternion Hamilton product:

    Quaternion conjugates:

    The conjugate ofqis

    Quaternion inverse:

    The inverse ofqis

    Unit quaternion:

    The norm of a quaternionqis

    Rotation of quaternions[29]:

    In 3D spatial rotation,the rotation axis is assumed to be the unit vector.

    whereu=xi+yj+zkis the unit quaternion.

    The vectorv(the real part is 0) is rotated by 2θaround the axis of rotationuto obtainv?as

    2.2 RotatS

    When the real part of the quaternion is 0,the quaternion can be expressed asv=xi+yj+zk.Such quaternion can be represented as a 3D vectorv= (x,y,z).

    Similar to the rotation of TeRo[13]in 2D space,this paper uses the rotation and scaling of the quaternion with real part 0 in 3D space which are used to complete the TKG completion task.This paper proposes a general model RotatS for TKG completion,which learns the embedding representation of entities,relations,and time in TKG and continuously optimizes the score function,so that correct quaternions receive a higher score and erroneous quaternions have a lower score.In 3D space,the model uses a rotation and scaling based approach where the head entity is rotated and scaled to obtain the tail entity using a combination of time and relations.The general form of the model is as follows.

    RotSR,Γ(H) =T(11)whereHandTrepresent the embedding of head entity and tail entity in 3D space respectively,RandΓrepresent the embedding of relation and time in 3D space respectively,and RotS represents the rotation and scaling from head entityHto tail entityTin 3D space.All embeddings are represented in 3D space,that is

    Through the embedding of entities,relations,and time in 3D space,vector representations of different dimensions can be obtained,thereby obtaining richer semantic information than TeRo.The evolution of head entity to tail entity is performed based on both the representation of relation and time to obtain the semantic association between entity,relation,and time.

    It is possible for an event to occur at a timestamp or continuously over a time interval.Rotation axis should be varied to better model different kind of events.Subsections 2.3 and 2.4 present model details for rotating and scaling around the time axis and relational axis,respectively,to address the problem of link prediction for timestamp and time interval events,respectively.

    2.3 Rotation and scaling around the time axis

    The proposed model uses time as the axis of rotation when solving the timestamp problems.The score function of the model is

    whereHandTare the embedding of the head entity and tail entity in 3D space respectively; ☉represents the rotation in 3D space.This paper definesQΓ=,whereuΓ=Γxi+Γyj+Γzk(Γx,Γy,Γzare the three representations of time in 3D space, and) is the time axis of the rotation ofHin 3D space;2θΓis the rotation angle associated with the time embedding.

    Because the number of events occurring at a timestamp is limited,this paper uses time as the rotation axis,which can fix the timestamp for inference to narrow the target range of tail entities and thus improve the accuracy of inference.The role of the scoring function is to evolve the head entityHto get the tail entityTusingQΓ,which defines a new type of entity relationship and obtains richer semantic association between entities.The goal of this model is that through training,the evolvedHandTof the correct quadruple are getting closer and closer,i.e.,the value ofFis getting closer to 0.

    However,in the above approach,the effect of relations is not considered.Relations are important and can provide a wealth of information.In static knowledge graphs,the knowledge graph can be complemented by relations alone.Therefore,the paper introduces relation to improve the performance of the model.R?is the unitization of relational embedding,which can be represented in 3D space as

    whereα,βare the angles of the relational embedding and are uniformly initialized between - π and π[29].This paper uses°to define Hadmard product between head entities and relations:H°R?= (Hx,Hy,Hz)°(R′x,R′y,R′z)= (Hx R′x,Hy R′y,Hz R′z).With Hadmard product,this paper incorporates relational information into head entity,thus enriching semantic information.The improved score function abtained in this paper is as follows.

    Using the above model,the head entity incorporating relational information is rotated in 3D space to obtain tail entity,and the direction of the entity vector changes after the rotation.In order to make the entity vector obtained after evolutions more approximate to the tail entity,this paper performs both the rotation and scaling evolution of the entity,so that the size and direction of the evolved vector are closer to the tail entity vector,and defineu′Γ=WH WR(Γxi+Γyj+Γzk)=WH WR uΓ,whereWHandWRare head entity-specific and relation-specific weights respectively.At this time,the value ofQΓis as follows.

    The multiplication with relation-specificity biasWRin Ref.[29] is also used to improve performance.At this point,the score function is

    Therefore,the rotation axis of the model isuΓ;the rotation angle is 2φ; and the scaling factor is

    2.4 Rotation and scaling around relational axes

    In subsection 2.3,this paper discusses the score function when solving the time interval problem.When solving the time interval problem,the relation is used as the rotation axis.The score function is as follows.

    whereQR= cosθΓ+uRsinθΓ;uR=WH WR(Rxi+Ryj

    An event occurs within a time interval.Here time is a range.It is not reasonable to take a random timestamp from the time interval.Relation is used as the axis of rotation and the head entity incorporating relational information is evolved around the relation axis to obtain the tail entity.The model has the same rotation angle and scaling as the model dealing with timestamp events,and the rotation axis is(Rxi,Ryj,Rzk).

    2.5 Loss function

    This paper uses the same loss function as in Te-Ro[13]to optimize the RotatS model,with self-adversarial negative sampling in the loss function:

    whereσis the sigmoid function,yis the score of the correct quadruple (H,R,T,Γ),yˊis the score of the negative sample (Hˊ,Rˊ,Tˊ,Γˊ),gammais a fixed margin,pis the ratio of negative training samples to positive training samples.The overall training algorithm is shown in Algorithm 1.

    Algorithm 1 Training of RotatS}; the number of epoch n;the negative sample rate p.{Input:The train set TKG = H,R,T,Γ Output:The minimum loss on the train set.1: s,r,o,t ←Xavier_uniform(),lossmin = 0 //Initialize the embedding vector in 3D space 2: For each i ∈[1,n] do 3: for(s,r,o,t) ∈TKG do 4: Constructing negative samples D-5: If t is time point then calculate score function F by((H·R?)☉QΓ)·WR - T 6: end if If t is time period then discretize t as t2,t1,…,tm;calculate score function F by((H·R?)☉QR)·WR - T 8: end if 9: Loss= lossD+ + lossD-10: end for 11: lossmin = min(lossmin,loss)12: Update parameters s,r,o,t with Adagrad optimizer 13: end for 14: Return lossmin 7:

    3 Experiments

    In experiments,this paper evaluates the performance of the model RotatS on four standard datasets and compared it with some baselines.

    3.1 Datasets

    Frequently used TKGs include ICEWS14,ICEWS05-15, YAGO11k and Wikidata12k.Among them, ICEWS14 and ICEWS05-15 are event-based datasets,both derived from ICEWS[31],corresponding to events in 2014 and events from 2005 to 2015,respectively,both of which record are the timestamps when each event occurs; YAGO11k and Wikidata12k are derived from YAGO[1]and Wikidata[3],respectively,and these two datasets record the the time interval in which each event occurs.

    3.2 Baselines

    This paper compares the RotatS model with baselines,including static KGC models and temporal KGC models.

    The static KGC models compared in this paper are translation based models and tensor decomposition based models,including TransE[5],DistMult[6],ComplEX[8],RotatE[7]and QuatE[32].These models ignore temporal information when performing KGC.

    The temporal KGC models compared in this paper include TTransE[9], TA-TransE[11], TA-DistMult[11],HyTE[10],DE-SimplE[33],ATiSE[12],TeRo[13],Temp-Caps[14],TKGC[15]and HTKE[16].These models incorporate temporal information to improve the accuracy of KGC.

    3.3 Evaluation methodology

    This paper evaluates the RotatS model by testing the task on link prediction.The goal of the task is to reason about missing values in (?,R,T,Γ) and (H,R,?,Γ),where ?represents the missing element.For a test quadruple,by substituting eitherHorT,this paper generates candidate quadruplets, calculates scores for all possible quadruplets,and finally ranks these quadruplets in ascending order.

    In this experiment,two common evaluation metrics are used: mean reciprocal rank (MRR) and Hits@k.MRR refers to the average reciprocal rank of all correctly predicted entities.Hits@krefers to the proportion of correctly predicted entities among the topkentities.

    3.4 Experimental setup

    This paper evaluates the RotatS model on TITAN Xp,and refers to the experimental setup described in TeRo[13].The model is implemented using Pytorch,and the best model is selected by early stopping on the validation set according to MRR.The experiment chooses embedding sizekas 500,batch sizebas 512,and uses Adagrad as the optimizer.Both real part and imaginary parts of the entity embedding are initialized using uniform initialization.

    The time granularity parametersuandthreare assigned different values in different datasets.This paper lists the parameters in different datasets[13]:lr= 0.1,gamma= 60,thre= 10 on YAGO11k;lr= 0.3,gamma= 20,thre= 200 on Wikidata12k;lr= 0.1,gamma= 110,u= 1 on ICEWS14;lr= 0.1,gamma= 120,u= 2 on ICEWS05-15.

    3.5 Complexity

    As shown in Table 1,the space complexity and scoring functions between the porposed model and several baselines are compared.In scoring function[13],Proj(·) represents the temporal projection of the embedding[11]; LSTM(long short-term memory) is a neural network model[10]that deals with time series problems;→and ←represent a time-specific temporal and non-temporal parts of diachronic entity embedding,r-1 represents the inverse relationship ofr[11];DKL()represents theKLdivergence between two Gaussian distributions[33];Ps,t,Po,tandPr,trepresent the Gaussian embeddings ofs,r, andoat timet[12];standotrepresent entity embedding at a specific time.In Space Complexity[13],me,mr,mτandmtokenrepresent the number of entities,relations,timestamps,and temporal tokens,respectively;dis the dimension of the embedding.

    Table 1 Comparison of space complexity

    4 Results

    4.1 Main results

    As shown in Table 2 and Table 3,KGC experiments on the facts at a timestamp are conducted.The prediction accuracy of the performance of RotatS model is listed in table 2 and the benchmark model on the two datasets ICEWS14 and ICEWS05-15 are listed in the table.The results of HTKE,TempCaps,and TKGC are derived from Refs[16],[14] and [15],respectively; the results of other models in the table are derived from Te-Ro[13].In the experimental results,the RotatS model outperforms all baseline models.It can be seen that the effectiveness of the RotatS model in handling timestamp events.Compared with TeRo,the performance of RotatS model is improves by 2.3% and 4.5% on ICEWS14 and ICEWS05-15,respectively.

    Table 2 Performance on the ICEWS14 dataset

    Table 3 Performance on the ICEWS05-15 dataset

    As shown in Table 4 and Table 5,KGC experiments on the facts in a certain time interval are conducted,and the results of all models on both the YAGO11k and Wikidata12k datasets are listed in the table.In the experiments,the dataset used for validation has few kinds of relations,which affects the identification of different quadruplets.To increase the variety of relations,this paper extends the relation set to a pair-dual relation set[13].In YAGO11k dataset, tail entity embedding with relation embedding is integrated,the model outperforms the TeRo model in MRR,Hit@1 and Hit@3; on the Wikidata12k dataset, the performance of RotatS model also improves over the TERO model on Hit@3 and Hit@10.

    Table 4 Performance on the YAGO11K dataset

    Table 5 Performance on the Wikidata12k dataset

    In terms of efficiency,RotatS has the same space complexity as TeRo,TTransE and HyTE.Regarding the consumption of video memory,this paper conducts comparative experiments on the ICEWS14 dataset for several recent models.RotatS with an embedding dimensionality of 500 has a storage size of 1886MiB,whereas TeRo and ATiSE with the same embedding dimensionlity have storage sizes of 1026MiB and 1350MiB.Meanwhile,on TITAN Xp device,RotatS with an embedding dimensionality of 500 is trained on ICEWS14, ICEWS05-15, YAGO11k and Wikidata12k,and each epoch takes 9.1, 49.7 s, 4.2 s and 8.1 s,respectively,however,ATiSE with the same embedding dimensionlity takes 7.8 s, 43.0 s, 29.1 s,and 33.7 s on the four datasets,respectively.

    4.2 Parameter analysis and model analysis

    In this work,the effects of scaling and embedding size on the RotatS model are analyzed.

    Fig.1 shows the link prediction performance on ICEWS14 for different embedding dimensions.As the embedding dimension increases,the prediction performance gradually improves.When the embedding dimension is set to 500,the performance is better and the embedding dimension is not high.A lower embedding dimension can reduce storage space and improve training speed; at the same time,it can also enable the model to be applied on large-scale knowledge graphs.

    To analyze the effect of scaling in the RotatS model,this paper compares the link prediction performance of RotatS and RotatS without scaling on ICEWS14.

    Fig.1 Effect of dimensionality of embeddings

    Fig.2 shows that scaling can significantly improve the link prediction performance of RotatS.Because scaling can make the size of the head entity vector and the tail entity vector more similar,enhancing the training effect.

    4.3 Comparative study

    To further test the performance of the proposed TKG completion model in different dimensional spaces,this paper also conducts a series of experiments on rotation and scaling in four dimensional space,and compares this method with the rotation method RotatS in 3D spaces.The model in 4D space is as follows.

    Fig.2 Effect of scaling

    whereHandTrepresent the embedding of head entity and tail entity in the 4D space,respectively;Rrepresents the embedding of relation in 4D space;R?andΓ?are the unitization of relation embedding and temporal embedding,respectively.The head entityHcan be represented as (H1,H2,H3,H4) in 4D space; the tail entityTcan be represented as (T1,T2,T3,T4) in 4D space; the relationRcan be represented as (R1,R2,R3,R4) in the 4D space; and timeΓcan be represented as(Γ1,Γ2,Γ3,Γ4) in 4D space.

    The ?denotes the Hamilton product.4D rotation can be modeled by the Hamilton product[32].WhenR?is used,modulus length ofR?is 1,and only rotation is performed in 4D space and no scaling is done;whenRis used,the modulus length ofRis not 1, and not only rotation but also scaling is performed in 4D space.In the paper,the time information is incorporated into the head entity and the tail entity by unitizing the Hadmard product between the temporal embeddingΓand the entity embedding.Then the entity quaternions after incorporating the time information are rotated.There are scaled rotations and unscaled rotations.The following are the experimental results of the two methods.

    Experiments are performed on two datasets,YAGO11k and ICEWS14,respectively,using the rotation model in 4D space.Under the same experimental conditions as the RotatS model,this paper obtained the results in Table 6.By comparing the experimental results,it can be seen that the rotation model RotatS of quaternion in three-dimensional space performs better in all test cases than that in the 4D space.

    5 Conclusion

    This paper has presented a new TKG completion model named RotatS,which can integrate the semantic relationship between entities,relations,and time.In the experiments,the rotation and scaling of the head entity to the tail entity is modeled.Compared with previous approaches,the RotatS model has a significant improvement over the baseline model in solving the TKG completion task in sense of prediction accuracy including MRR,Hit@1,Hit@3 and Hit@10,under similar experimental conditions and space complexity.In the near future,the following research directions will continue to be explored: improving the model by combining different rotation and stretching methods.

    Table 6 Rotation in 4D

    六月丁香七月| 91av网一区二区| 一区福利在线观看| 久久综合国产亚洲精品| 国产人妻一区二区三区在| 欧美成人免费av一区二区三区| 亚洲第一电影网av| 老熟妇乱子伦视频在线观看| 91av网一区二区| 国产精品爽爽va在线观看网站| 国模一区二区三区四区视频| 国产精品久久久久久久久免| 亚洲,欧美,日韩| 亚洲激情五月婷婷啪啪| 国产精品人妻久久久影院| 美女内射精品一级片tv| 99久国产av精品| 国产精品电影一区二区三区| .国产精品久久| 精品久久久久久久久亚洲| 久久久精品欧美日韩精品| 亚洲国产色片| 成人一区二区视频在线观看| 国产女主播在线喷水免费视频网站 | 色噜噜av男人的天堂激情| 最近视频中文字幕2019在线8| 在现免费观看毛片| 日韩视频在线欧美| 我的老师免费观看完整版| av免费在线看不卡| 男插女下体视频免费在线播放| 晚上一个人看的免费电影| 国产伦理片在线播放av一区 | 岛国在线免费视频观看| 国产单亲对白刺激| 人妻制服诱惑在线中文字幕| 亚洲精品日韩av片在线观看| 在线观看美女被高潮喷水网站| 国产麻豆成人av免费视频| 国产探花在线观看一区二区| 91久久精品电影网| 国国产精品蜜臀av免费| 少妇人妻精品综合一区二区 | av国产免费在线观看| 国产一区二区在线av高清观看| 亚洲av免费高清在线观看| 亚洲国产精品久久男人天堂| 国产高清不卡午夜福利| 久久久久久久久久黄片| 亚洲欧美日韩高清专用| 日韩大尺度精品在线看网址| 国产精品一区二区性色av| 国产高清视频在线观看网站| 在线免费十八禁| 精品久久久噜噜| 成人特级黄色片久久久久久久| 免费av毛片视频| av卡一久久| 中文字幕免费在线视频6| 久久久久国产网址| 亚洲美女视频黄频| 18禁裸乳无遮挡免费网站照片| 国产久久久一区二区三区| 婷婷亚洲欧美| 国产精品一及| 日韩亚洲欧美综合| 日韩欧美在线乱码| 国产一区二区三区av在线 | 日本三级黄在线观看| 天天一区二区日本电影三级| 午夜a级毛片| 免费人成视频x8x8入口观看| 国产乱人偷精品视频| 在线观看66精品国产| 婷婷六月久久综合丁香| videossex国产| 亚洲国产精品久久男人天堂| 夜夜看夜夜爽夜夜摸| 国产一区亚洲一区在线观看| 久久九九热精品免费| 日本一本二区三区精品| 1000部很黄的大片| 亚洲av成人av| 99热全是精品| 熟妇人妻久久中文字幕3abv| 国产一区二区在线观看日韩| 99riav亚洲国产免费| 老师上课跳d突然被开到最大视频| 日本成人三级电影网站| 国产男人的电影天堂91| 国产淫片久久久久久久久| 成人一区二区视频在线观看| 2021天堂中文幕一二区在线观| 听说在线观看完整版免费高清| 久久99热6这里只有精品| 亚洲国产日韩欧美精品在线观看| 国产一区二区三区av在线 | 欧美日韩综合久久久久久| 九九久久精品国产亚洲av麻豆| 免费人成视频x8x8入口观看| 国产综合懂色| 99久久久亚洲精品蜜臀av| 亚洲av成人av| 美女高潮的动态| 看免费成人av毛片| 色噜噜av男人的天堂激情| 亚洲精品影视一区二区三区av| 国产精品久久电影中文字幕| 亚洲经典国产精华液单| 亚洲av男天堂| 国产成人aa在线观看| 麻豆一二三区av精品| av在线蜜桃| 久久久久久伊人网av| 久久九九热精品免费| 国产av麻豆久久久久久久| 亚洲激情五月婷婷啪啪| 亚洲av一区综合| 久久久国产成人精品二区| 国产探花极品一区二区| 久久久久久久久大av| 久久久色成人| 91狼人影院| 婷婷色综合大香蕉| 久久久久九九精品影院| 国产激情偷乱视频一区二区| 国产午夜精品久久久久久一区二区三区| 一夜夜www| 国产91av在线免费观看| 国产精品一区二区性色av| 97在线视频观看| 欧美色欧美亚洲另类二区| 少妇熟女aⅴ在线视频| 九九久久精品国产亚洲av麻豆| 春色校园在线视频观看| 国产欧美日韩精品一区二区| 深夜a级毛片| 欧美成人a在线观看| av在线老鸭窝| 成人毛片a级毛片在线播放| 狂野欧美激情性xxxx在线观看| 久久精品久久久久久久性| 国产免费男女视频| 日韩制服骚丝袜av| 亚洲国产精品成人久久小说 | 免费人成视频x8x8入口观看| 天堂网av新在线| 久久精品人妻少妇| 99国产精品一区二区蜜桃av| 成人美女网站在线观看视频| 久久人人精品亚洲av| 卡戴珊不雅视频在线播放| 老女人水多毛片| 婷婷精品国产亚洲av| 国产一区二区三区av在线 | 高清在线视频一区二区三区 | 日韩亚洲欧美综合| 麻豆国产av国片精品| 嘟嘟电影网在线观看| 高清在线视频一区二区三区 | 中文字幕免费在线视频6| 高清在线视频一区二区三区 | 久久久久网色| 日本一二三区视频观看| 成人漫画全彩无遮挡| 99九九线精品视频在线观看视频| 青青草视频在线视频观看| 综合色av麻豆| 欧美性感艳星| 久久午夜福利片| 亚洲七黄色美女视频| 最近手机中文字幕大全| 美女内射精品一级片tv| 欧美丝袜亚洲另类| 国产又黄又爽又无遮挡在线| 国产欧美日韩精品一区二区| 免费看光身美女| 国产成人精品久久久久久| 亚洲精品亚洲一区二区| 99热只有精品国产| 天美传媒精品一区二区| 乱系列少妇在线播放| 国产精品麻豆人妻色哟哟久久 | 亚洲四区av| 日本三级黄在线观看| 亚洲无线观看免费| 日本黄色视频三级网站网址| 国产一区二区在线观看日韩| or卡值多少钱| 国产高清有码在线观看视频| 国产一区亚洲一区在线观看| 噜噜噜噜噜久久久久久91| 亚洲精品久久国产高清桃花| 中文在线观看免费www的网站| 亚洲中文字幕日韩| 18禁在线播放成人免费| 国产成人精品一,二区 | 国产乱人偷精品视频| 一进一出抽搐gif免费好疼| 少妇裸体淫交视频免费看高清| 亚洲天堂国产精品一区在线| 日本五十路高清| 好男人视频免费观看在线| 国产av麻豆久久久久久久| 看非洲黑人一级黄片| 久久九九热精品免费| 成人永久免费在线观看视频| 亚洲国产欧洲综合997久久,| 校园春色视频在线观看| ponron亚洲| 嫩草影院新地址| 又黄又爽又刺激的免费视频.| 国产av在哪里看| 午夜老司机福利剧场| 亚洲精华国产精华液的使用体验 | 啦啦啦韩国在线观看视频| 亚洲欧美精品专区久久| 久久久久网色| 亚洲国产精品合色在线| 成人特级av手机在线观看| 亚洲人成网站在线播| 亚洲一区二区三区色噜噜| 嫩草影院精品99| 久久精品国产鲁丝片午夜精品| 91午夜精品亚洲一区二区三区| av卡一久久| 在线国产一区二区在线| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一及| 日本黄色片子视频| 22中文网久久字幕| 国产精华一区二区三区| www.av在线官网国产| 变态另类丝袜制服| 老师上课跳d突然被开到最大视频| 自拍偷自拍亚洲精品老妇| 春色校园在线视频观看| h日本视频在线播放| 有码 亚洲区| 亚洲图色成人| 深夜a级毛片| 国模一区二区三区四区视频| 亚洲在线观看片| 国产极品天堂在线| 亚洲欧美清纯卡通| 99精品在免费线老司机午夜| 97人妻精品一区二区三区麻豆| 国产片特级美女逼逼视频| 久久久久国产网址| www.色视频.com| 午夜免费激情av| 又黄又爽又刺激的免费视频.| 日韩国内少妇激情av| 欧美三级亚洲精品| 亚洲av成人精品一区久久| 精品久久久久久久久久久久久| 三级经典国产精品| 精品一区二区免费观看| 亚洲欧美日韩高清专用| 免费人成在线观看视频色| 国产精品久久久久久亚洲av鲁大| 国产精品日韩av在线免费观看| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩东京热| 99久久精品热视频| 国产成人影院久久av| 国内久久婷婷六月综合欲色啪| 联通29元200g的流量卡| 男的添女的下面高潮视频| 18禁黄网站禁片免费观看直播| 偷拍熟女少妇极品色| 51国产日韩欧美| 青春草视频在线免费观看| 国产免费一级a男人的天堂| 欧美成人精品欧美一级黄| 欧美激情久久久久久爽电影| 最好的美女福利视频网| 色吧在线观看| 麻豆成人午夜福利视频| 免费一级毛片在线播放高清视频| 一个人看的www免费观看视频| 国内精品一区二区在线观看| 国产精品av视频在线免费观看| 欧美日韩乱码在线| 美女高潮的动态| 日本熟妇午夜| 精品国产三级普通话版| 国产高清有码在线观看视频| 国产乱人偷精品视频| 不卡一级毛片| a级毛片免费高清观看在线播放| 日本一二三区视频观看| 成人欧美大片| 久久99精品国语久久久| 两个人视频免费观看高清| 级片在线观看| 国内精品美女久久久久久| 深爱激情五月婷婷| 中出人妻视频一区二区| 亚洲成av人片在线播放无| 日日撸夜夜添| 又爽又黄a免费视频| 亚洲国产精品sss在线观看| 国产人妻一区二区三区在| 日本黄色视频三级网站网址| 嫩草影院入口| 伦理电影大哥的女人| 免费观看人在逋| 免费一级毛片在线播放高清视频| 亚洲自偷自拍三级| 久久久精品大字幕| www.色视频.com| 嘟嘟电影网在线观看| av天堂在线播放| 国产真实乱freesex| 亚洲电影在线观看av| 国产精品久久久久久av不卡| 国产黄片美女视频| 色播亚洲综合网| 特级一级黄色大片| 免费大片18禁| 国产精品99久久久久久久久| av在线天堂中文字幕| 国产av麻豆久久久久久久| 日韩中字成人| 能在线免费看毛片的网站| 黄色欧美视频在线观看| 日韩欧美 国产精品| 国产一区亚洲一区在线观看| 国产精品久久久久久精品电影小说 | 国产免费一级a男人的天堂| 人人妻人人看人人澡| 人人妻人人澡欧美一区二区| 国产精品久久久久久精品电影| 99国产极品粉嫩在线观看| 国模一区二区三区四区视频| 天堂网av新在线| 国产精品久久久久久亚洲av鲁大| 亚洲av熟女| 中文字幕免费在线视频6| 国产免费一级a男人的天堂| 超碰av人人做人人爽久久| 中文字幕制服av| 国产伦一二天堂av在线观看| 三级国产精品欧美在线观看| 亚洲熟妇中文字幕五十中出| 99在线视频只有这里精品首页| 精品日产1卡2卡| 色哟哟哟哟哟哟| 国产av不卡久久| 最近手机中文字幕大全| 又黄又爽又刺激的免费视频.| 亚洲第一区二区三区不卡| 色综合站精品国产| 亚洲国产精品成人久久小说 | 国产真实伦视频高清在线观看| 久久综合国产亚洲精品| 99在线视频只有这里精品首页| 日韩在线高清观看一区二区三区| 国产精品无大码| 69人妻影院| 国产精品久久久久久久久免| 中国美白少妇内射xxxbb| 国产精品一及| 最近手机中文字幕大全| 国产午夜精品一二区理论片| 亚洲成人中文字幕在线播放| 日本欧美国产在线视频| 成人高潮视频无遮挡免费网站| 亚洲国产欧美在线一区| 蜜桃亚洲精品一区二区三区| 亚洲人成网站在线播放欧美日韩| 国产高清视频在线观看网站| 校园春色视频在线观看| 天堂中文最新版在线下载 | 亚洲av中文av极速乱| 爱豆传媒免费全集在线观看| 99热这里只有是精品在线观看| 午夜精品国产一区二区电影 | 亚洲国产高清在线一区二区三| 日韩欧美三级三区| 亚洲人与动物交配视频| 久久精品国产亚洲av涩爱 | 一级av片app| 高清午夜精品一区二区三区 | 久久亚洲国产成人精品v| 日本与韩国留学比较| 狠狠狠狠99中文字幕| 亚洲国产精品国产精品| 在线a可以看的网站| 亚洲精品色激情综合| 国产视频内射| 免费观看在线日韩| 日韩成人av中文字幕在线观看| 日韩视频在线欧美| 亚洲欧美精品专区久久| 男女做爰动态图高潮gif福利片| 99在线视频只有这里精品首页| 伦精品一区二区三区| 国产激情偷乱视频一区二区| 日日啪夜夜撸| 国产成人影院久久av| 成人高潮视频无遮挡免费网站| av又黄又爽大尺度在线免费看 | 国产高清激情床上av| 亚洲国产色片| 九草在线视频观看| 99在线人妻在线中文字幕| 亚洲av不卡在线观看| 悠悠久久av| 免费搜索国产男女视频| 成人一区二区视频在线观看| 哪个播放器可以免费观看大片| 日本欧美国产在线视频| 日韩,欧美,国产一区二区三区 | 亚洲精品国产成人久久av| 中文在线观看免费www的网站| 亚洲欧美精品专区久久| 久久九九热精品免费| 国内精品一区二区在线观看| 国产精品三级大全| 亚洲国产精品国产精品| 亚洲国产精品sss在线观看| 好男人在线观看高清免费视频| 老熟妇乱子伦视频在线观看| 久久久久久国产a免费观看| 国产精品久久久久久久久免| 亚洲中文字幕日韩| 国产成人福利小说| 中文字幕免费在线视频6| 久久热精品热| 久久6这里有精品| 欧美极品一区二区三区四区| 日日啪夜夜撸| 插阴视频在线观看视频| 一个人看视频在线观看www免费| 长腿黑丝高跟| 九九爱精品视频在线观看| 人人妻人人澡欧美一区二区| 午夜福利在线观看吧| 亚洲欧美成人精品一区二区| 国产伦精品一区二区三区视频9| 亚洲国产色片| 在线a可以看的网站| av在线天堂中文字幕| 中文字幕久久专区| 国产精品电影一区二区三区| av天堂中文字幕网| 欧美精品国产亚洲| 欧美高清性xxxxhd video| 人人妻人人澡欧美一区二区| 久久久色成人| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 赤兔流量卡办理| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美在线乱码| 一边亲一边摸免费视频| 国产色爽女视频免费观看| 最新中文字幕久久久久| 嘟嘟电影网在线观看| 日本与韩国留学比较| 一进一出抽搐动态| 国产精品一区二区性色av| 亚洲欧美清纯卡通| 国产老妇女一区| 欧美在线一区亚洲| 内射极品少妇av片p| 一级二级三级毛片免费看| 天堂av国产一区二区熟女人妻| 国产一区二区在线av高清观看| 精品久久久久久久久久免费视频| 九色成人免费人妻av| kizo精华| 少妇猛男粗大的猛烈进出视频 | 麻豆乱淫一区二区| eeuss影院久久| 国产在视频线在精品| 久久人人爽人人爽人人片va| 伦精品一区二区三区| 好男人视频免费观看在线| 两个人的视频大全免费| 色视频www国产| 日韩制服骚丝袜av| 免费一级毛片在线播放高清视频| а√天堂www在线а√下载| 99视频精品全部免费 在线| 久99久视频精品免费| 久久99蜜桃精品久久| 久久久久久久久久久丰满| 国产精品国产三级国产av玫瑰| 国产av麻豆久久久久久久| 国产黄片视频在线免费观看| 国产午夜福利久久久久久| 韩国av在线不卡| 色噜噜av男人的天堂激情| 久久久精品大字幕| 日本免费a在线| 熟女电影av网| 麻豆精品久久久久久蜜桃| 男女做爰动态图高潮gif福利片| 精品国内亚洲2022精品成人| 最近中文字幕高清免费大全6| 亚洲人成网站在线播放欧美日韩| 秋霞在线观看毛片| 日韩欧美一区二区三区在线观看| 99久久精品一区二区三区| 日韩成人av中文字幕在线观看| 国产亚洲精品久久久久久毛片| 狂野欧美白嫩少妇大欣赏| 在线观看一区二区三区| 啦啦啦韩国在线观看视频| 日本爱情动作片www.在线观看| 欧美日韩一区二区视频在线观看视频在线 | 男女那种视频在线观看| 丰满乱子伦码专区| 日韩在线高清观看一区二区三区| 国产精品女同一区二区软件| 在线观看66精品国产| 最近的中文字幕免费完整| 3wmmmm亚洲av在线观看| 国内精品久久久久精免费| 日本av手机在线免费观看| 永久网站在线| 国产v大片淫在线免费观看| av又黄又爽大尺度在线免费看 | 小说图片视频综合网站| 麻豆乱淫一区二区| av免费在线看不卡| 亚洲无线观看免费| 99久久精品国产国产毛片| 亚洲成人精品中文字幕电影| 观看免费一级毛片| 观看美女的网站| 欧美区成人在线视频| 一级黄片播放器| 久久久久久久久大av| 欧美日本视频| 99riav亚洲国产免费| 人人妻人人澡欧美一区二区| 国产高清三级在线| 精品免费久久久久久久清纯| 永久网站在线| 老司机福利观看| 国产一区二区在线av高清观看| 99久久九九国产精品国产免费| 能在线免费观看的黄片| 少妇丰满av| 精品久久久久久久人妻蜜臀av| 亚洲精品影视一区二区三区av| 日本免费一区二区三区高清不卡| 亚洲国产精品久久男人天堂| 亚洲最大成人av| 欧美日韩综合久久久久久| 国产精品一二三区在线看| 在线免费观看的www视频| 色5月婷婷丁香| 国内精品宾馆在线| 欧美bdsm另类| 看黄色毛片网站| 日韩欧美精品免费久久| 91aial.com中文字幕在线观看| 成人美女网站在线观看视频| 亚洲欧美日韩卡通动漫| 日韩av不卡免费在线播放| 99久久成人亚洲精品观看| 99九九线精品视频在线观看视频| 国产午夜福利久久久久久| 特大巨黑吊av在线直播| 国产一区二区激情短视频| 一个人看的www免费观看视频| 一级黄片播放器| 久久久久久久久久黄片| 26uuu在线亚洲综合色| 波多野结衣巨乳人妻| 国产精品伦人一区二区| 成人高潮视频无遮挡免费网站| 日本-黄色视频高清免费观看| 日韩成人av中文字幕在线观看| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利高清视频| 99久久无色码亚洲精品果冻| 联通29元200g的流量卡| 精华霜和精华液先用哪个| 国产成人aa在线观看| 欧美一区二区精品小视频在线| 国产真实乱freesex| 亚洲成人久久性| 国产老妇伦熟女老妇高清| 精品熟女少妇av免费看| 能在线免费看毛片的网站| 亚洲色图av天堂| av视频在线观看入口| 99精品在免费线老司机午夜| 中文字幕熟女人妻在线| 亚洲人成网站在线播放欧美日韩| 免费看av在线观看网站| 中文精品一卡2卡3卡4更新| 免费一级毛片在线播放高清视频| 国产高清有码在线观看视频| 人人妻人人澡人人爽人人夜夜 | 最近2019中文字幕mv第一页| 午夜a级毛片| 国产成人午夜福利电影在线观看| 好男人视频免费观看在线| 国产精品久久久久久亚洲av鲁大| 色尼玛亚洲综合影院| 九九热线精品视视频播放| 国产亚洲精品久久久久久毛片| 欧美3d第一页| 国产国拍精品亚洲av在线观看| 网址你懂的国产日韩在线| 少妇人妻精品综合一区二区 | 亚洲久久久久久中文字幕| 亚洲无线在线观看|