摘 要:通過將矩陣之和轉(zhuǎn)化為矩陣之積的思想,利用矩陣Drazin逆的定義、性質(zhì),將和矩陣Drazin逆問題轉(zhuǎn)化為三角分塊矩陣的Drazin逆問題, 給出了在一定條件下和矩陣Drazin逆新的表示,進(jìn)而給出分塊矩陣在更弱條件下Drazin逆的表示,最后通過算例來驗證結(jié)果的科學(xué)性。
關(guān)鍵詞:矩陣和;Drazin逆;三角矩陣;分塊矩陣
中圖分類號:O151.21
文獻(xiàn)標(biāo)志碼:A
經(jīng)濟管理類中的數(shù)據(jù)處理和最優(yōu)化、網(wǎng)絡(luò)安全最終都轉(zhuǎn)化成線性方程組的求解問題,那么如何求解線性方程組的解成為解決很多現(xiàn)實問題的關(guān)鍵。而線性方程組的系數(shù)矩陣是方陣還是長方陣,如果是方陣,是否可逆常常是我們關(guān)注的問題。為了解決這一問題,1920年, Moore[1]在美國數(shù)學(xué)會上首先提出了廣義逆矩陣的概念;1955年, Penrose[2]發(fā)表了和文[1]等價的廣義逆矩陣?yán)碚撐恼?;同年,Rao[3]提出了更一般的廣義逆矩陣的概念;1958年,Drazin[4]在結(jié)合環(huán)和半群中引入了偽逆的概念,后來人們稱之為Drazin逆。當(dāng)一個方程組的系數(shù)矩陣不是方陣或者不可逆的時候,矩陣的Drazin逆為求解線性方程組的問題提供了更廣闊的思路。本文將討論兩個矩陣之和的Drazin逆問題,為解決以上問題提供理論依據(jù)。
關(guān)于矩陣之和及分塊矩陣Drazin逆的表示,自2003年以來,學(xué)者們應(yīng)用多種方法給出了在特定條件下Drazin逆的不同表示,參見文獻(xiàn)[5-17]。其中, 鄧春元[14]討論了反三角塊矩陣的Drazin逆表示;劉喜富等[12]給出兩個矩陣差的Drazin逆表示;白淑艷[16]給出了體上兩個矩陣之和Drazin逆的表示。本文利用與以上文獻(xiàn)不同的矩陣分解方法和三角矩陣的Drazin逆給出在新的條件P2Q+PQ2=0, P3Q=0和PQ3=0下兩矩陣之和Drazin逆的表示,再由所得定理結(jié)果給出一個更簡單的推論,并通過不同的分解方法給出和已有文獻(xiàn)[16]在相同條件P2QP=0,P3Q=0,Q2=0下的矩陣之和Drazin逆的表示,進(jìn)而應(yīng)用這個結(jié)論給出分塊矩陣Drazin逆新的表示,所得條件比已有文獻(xiàn)條件更弱,最后通過一個數(shù)值例子來驗證結(jié)論的正確性。
參考文獻(xiàn):
MOORE E H. On the reciprocal of the general algebraic matrix[J]. Bulletin of the American Mathematical Society, 1920, 26: 394-395.
[2] PENROSE R. A generalized inverse for matrices[J]. Proceedings of the Cambridge Philosophical Society, 1955, 51: 406-413.
[3] RAO C R. Analysis of dispersion for multiply classified data with unequal numbers in cells[J].Sankhyd, 1955, 15: 253-280.
[4] DRAZIN M P. Pseudo inverses in associative rings and semigroups[J].The American Mathemat-ical Monthly, 1958, 65: 506-514.
[5] BEB-ISRAEL A, GREVILLE T N E.Generalized inverses: theory and applications[M]. 2nd ed.New York: Springer, 2003.
[6] HARTWIG R E, WANG G R, WEI Y M. Some additive results on Drazin inverse[J]. Linear Algebra and its Applications, 2001, 322: 207-217.
[7] MARTLNEZ-SERRANO M F, CASTRO-GONZALEZ N. On the Drazin inverse of block matrices and generalized Schur complement[J]. Applied Mathematics and Computation, 2009, 215(7): 2733-2740.
[8] BU C J, FENG C C, BAI S Y. Representations for the Drazin inverse of the sum of two matrices and some block matrices[J]. Applied Mathematics and Computation, 2012, 218(7): 10226-10237.
[9] MIAO J. Results of the Drazin inverse of block matrices[J]. Shanghai Normal University, 1989, 18: 25-31.
[10]DENG C Y, WEI Y M. Characterizations and representations of the Drazin inverse involving idempotents[J].Linear Algebra and its Applications, 2009, 431(9): 1526-1538.
[11]CASTRO-GONZALEZ N, MARTLNEZ-SERRANO M F. Expressions for the g-Drazin inverse of additive perturbed elements in a banach algebra[J].Linear Algebra and its Applications, 2010, 432(8): 1885-1895.
[12]LIU X F, XU L, YU Y M. The representations of the Drazin inverse of differences of two matrices[J]. Applied Mathematics and Computation, 2010, 216: 3652-3661.
[13]WEI Y M. Expressions for the Drazin inverse of a 2×2 block matrix[J]. Linear & Multilinear Algebra, 1998, 45: 131-146.
[14]DENG C Y. Generalized Drazin inverse of anti-triangular block matrices[J]. Journal of Mathematical Analysis and Applications, 2010, 368: 1-8.
[15]MEYER C D, ROSE N J. The index and the Drazin inverse of block triangular matrices[J]. SIAM Journal on Applied Mathematics,1977, 33: 1-7.
[16]白淑艷. 體上兩個矩陣和的Drazin逆表達(dá)式及其應(yīng)用[D]. 哈爾濱:哈爾濱工程大學(xué), 2012.
[17]楊曉英. 分塊矩陣Drazin逆的新表示[J]. 貴州師范大學(xué)學(xué)報(自然科學(xué)版), 2021,6:20-22,44.
(責(zé)任編輯:曾 晶)
The Representations for the Drazin Inverse of the
Sum of Matrices and Its Application
YANG Xiaoying*
(College of Humanities, Sichuan Information Technology College, Guangyuan 628017, China)
Abstract:
Through the idea of transforming the sum of matrices into the product of matrices, and using the definition and properties of the Drazin inverse of matrix, the problem of the Drazin inverse of the sum of matrices is transformed into the problem of the Drazin inverse of triangular block matrix, and a new representation for the Drazin inverse of the sum of two matrices under certain conditions is given. Then an expression for the Drazin inverse of the block matrix under weaker conditions is given, and finally the scientificity of the result is verified by an example.
Key words:
sum of matrices; Drazin inverse; triangular matrices; block matrix
貴州大學(xué)學(xué)報(自然科學(xué)版)2023年6期