• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of Shell and Tube Heat Exchanger Performance by Using ZnO/Water Nanofluids

    2023-12-10 13:25:52HusseinHayderMohammedAliAdnanHusseinKadumMohammedHussainAllamiandBarhmMohamad

    Hussein Hayder Mohammed Ali, Adnan M Hussein, Kadum Mohammed Hussain Allami and Barhm Mohamad

    (1.Technical Engineering College/ Kirkuk, Northern Technical University, Kirkuk 36001, Iraq;2. Computer Engineering Techniques Department, Al-Kitab University, Kirkuk 36001, Iraq;3.Department of Petroleum Technology, Koya Technical Institute, Erbil Polytechnic University, Erbil 44001, Iraq)

    Abstract: To examine and investigate the impact of nanofluid on heat exchanger performance, including the total heat transfer, the effect of friction factor, the average Nusselt number, and the thermal efficiency, the output heat transfers of a shell and tube heat exchanger using ZnO nanoparticles suspended in water has been conducted numerically. The governing equations were solved using finite volume techniques and CFD simulations with ANSYS/FLUENT Solver 2021. The nanoparticles volume fractions adopted are 0.2% and 0.35% that used in numerical computations under 200 to 1400 Reynolds numbers range. The increasing of temperature is approximately 13% from the bottom to the top of heat exchanger, while the maximum enhancement of Nusselt number is about 10%, 19% for volume fractions 0.2% and 0.35% respectively. The elevated values of the friction factor at the volumetric ratios of 0.2% and 0.35% are 0.25% and 0.47% respectively. The findings demonstrate that the performance efficiency of shell and tube heat exchanger is enhanced due to the increase in Nusselt number.

    Keywords: CFD; Reynold number; thermal efficiency; Nusselt number; nanofluid; heat exchanger

    0 Introduction

    Researchers have been concentrating on the use of nanofluids to improve convective heat transfer performance recently. Heat exchangers are used to transmit heat while preventing the mixing of fluids with different surface temperatures[1-2]. Heat exchangers (heat pipes, shell tubes, dual pipes, etc.) and vehicular ventilation systems are two examples of the many applications for thermofluidic systems (radiator in a vehicle).

    Large volumes of heat can be transferred efficiently, affordably, and effectively with shell and tube heat exchangers. Shell and tube heat exchangers exist in several sizes and designs, and they can accept a wide range of flow rates while minimizing pressure loss, as opposed to other types of exchangers like flat plate and pressured heat exchangers. Metallic and non-metallic particles that disperse in a liquid, such as glycerol, ethylene glycol, water, or oil, and have a diameter of 1 to 100 nanometers are defined nanofluids[3-5]. The characteristics of nanocomposites have been studied by several authors in recent years, and it is believed that the next generation of heat transfer technology will be the best because of these studies.

    The features of nanocomposites have been studied by several authors in recent years, and it is believed that the next generation of heat transfer technology will be the best because of its higher thermal efficiency than traditional heat transfer fluids[6-9]. One of the factors contributing to the widespread use of nanoscale materials is that they have different thermophysical and mechanical properties from basic materials[10-12].

    Numerous numerical studies have been conducted on improving the performance of the shell-and-tube heat exchanger by using nanofluids. One of these studies was done by the researcher Hussein et al.[13]conducted a numerical study using the simulation program to improve the heat transfer in the shell and tube exchanger by using Al2O3/water nanofluids as a cooling medium instead of distilled water and by volume ratios (0.3%, 0.5%, 0.75%, 1%, 2%). Where this research study was conducted to study the effect of Pecklet number and the type of particles and volumetric ratios on heat transfer. The results showed that adding nanoparticles to distilled water leads to an improvement in heat transfer properties. The results also showed that the Nusselt number increases as the nanoparticles concentration and Peclet number increase. The results also showed that the pressure drop increases more than when using distilled water. Saberi et al.[14]used single-phase and batter models to compare the effects of three nanofluids exposed to forced thermal transfer in a horizontal tube under constant wall temperature circumstances. According to the findings, the two-stage mixture model matched better, and as particle concentration rises, so does the heat transmission coefficient, and heat transmission is increased by increasing the Peclets number.

    Kalteh et al.[15]performed a computational study of forced convection to transfer heat of copper-aqueous nanofluid inside a thermally heated nanotube under a laminar flow condition. By using a bimodal Eulerian fluid, the heat transmission property of the nanofluid was simulated. According to the results, as the Reynolds number and particle concentration increase, the heat transfer efficiency increases. Heat transmission on the other hand upsurges as the diameter of the nanoparticle’s reduction and the decrease in pressure of nanofluids was also marginally greater than that of basic liquids. Banka et al.[16]conducted a theoretical study on the laminar flow system, through the thermal transfer of nanofluid flow via a straight round when the boundary conditions are constant of the heat flow. The findings showed that the concentration of nanoparticles and Brownian motion are significant sources for improving heat transmission performance, while the diameter of the nanoparticles has an adverse effect on the thermal transfer efficiency.

    Raja et al.[17]studied thermal analysis in a shell and tube heat exchanger by using Titanium Carbide, Titanium Nitride, and Zink-Oxide Nanofluids. When compared to other fluids in CFD simulation, Titanium Nitride nanofluids with copper tubes produce a greater heat flux. Experimental approaches were used to analyze the convective transport coefficient for nanoparticles of aluminum oxide and transformer oil flowing through a dual pipe heat exchanger in a laminar flow state (Chun et al.[18]). The results revealed that as the concentration of nanofluid upsurges, the convection coefficient upsurges. Furthermore, Nanoparticle surface properties, particle loading, and particle shape all play a role in improving nanofluid heat transport properties. Esfahani[19]investigated the impact of various factors on the thermal efficiency of grapheme oxide nanofluids in a shell and tube heat exchanger using exergy analysis. The findings revealed that graphene oxide nanofluids improve heat transmission in both laminar and turbulent flow regimes. Azeez et al.[20]investigated the heat transfer properties of Al2O3/water nanofluids in a shell and tube, as well as in a twin pipe heat exchanger by using experimental and CFD analysis. At a volume concentration of 0.5 %, they discovered a substantial increase in heat transfer coefficient of up to 23.9%.

    Sajjad et al.[21]conducted numerical calculations using Al2O3/water nanofluids to optimize the heat exchange of the shell and tube heat exchanger at 1%, 2%, 3%, 4% as volume ratios. The results showed that there is a good agreement between the numerical data for water and the results obtained from the Gnielinski correlation with a maximum deviation of about 3%. The calculation also showed that at Re = 7500 and 4% concentration, there was an increase in Nusselt number and convective heat transfer coefficient by 9.5% and 13.5%, respectively.

    Previous works treated the improvement of performance of the shell-and-tube heat exchanger by using various nanofluids, but little has been done by researchers in the field of using nanofluids in improving the heat transfer properties. In this research work, the effectiveness of this material and how to improve the performance of the shell and tube heat exchanger will be demonstrated. In the present work, consideration was given to the effect of nanofluids on the rate of heat transfer, the coefficient of friction and the Nusselt number in the condition of laminar flow, the Reynolds number and nanoparticle concentration ranged from 200-1400, 0.2% and 0.35%, respectively. Constant entry temperature, entry velocity, and exit pressure are part of the simulation's boundary conditions. For the heat exchanger applications in this analysis, potential convection stimulated heat transfer while increasing the thermal properties and thermal energy efficiency of the nanofluid.

    1 Nanofluid's Physical Properties

    Physical properties of distilled water and ZnO nanofluid (viscosity (μnf), density (ρnf), thermal conductivity (knf), specific heat (Cpnf) are shown in Table 1. To extract the theoretical values for the properties of the nanofluids, the forms below are used[22].

    μnf=μbf(1+2.5?)

    (1)

    ρnf=(1-?)ρf+?ρp

    (2)

    (3)

    (4)

    wherekpandkware the thermal conductivity of solid and water respectively;ρis the density;Cp, the specific heat capacity;ρf, the density of the base fluid;ρp, the nanomaterial density.

    Based on the density of the base fluid (ρf) and nanomaterial density (ρp) at 293.15 K, Eq. (5) was used to calculate the concentration,φ, of the nanofluid[23].

    (5)

    wherempis the mass of solid nanoparticles;mfis the mass of base fluid.

    In this study, ZnO nanoparticles of (20-30) nm are used and mixed at a concentration of (0.2%, 0.35%) with pure water as a basic liquid. Table 1 demonstrates the characteristics of pure water and nanoparticles.

    Table 1 Characteristics of water and nanomaterial at temperature of 293.15 K

    1.1 CFD Analysis

    Computational fluid dynamics (CFD) is a technique for predicting fluid movement, heat and mass transfer, chemical reactions, and a variety of other engineering problems involving fluid flow. The specific problem is expressed in the form of a mathematical model that controls the physical equation. This is accomplished using numerical techniques. In this paper, we seek to optimize the heat exchanger of shell and tube performance by reaching the optimum design by means of computer modeling[24]. Computational fluid dynamics (CFD) technique, which contains different numerical methods and several computer algorithms, has been used to solve and analyze problems that concern fluid flow.

    This technique allows the researcher to know the enthalpy distribution, the entropy distribution, kinetic energy, turbulence intensity, density, and other parameters, but in our study, we will be satisfied with the distribution of pressure, temperature, and velocity. The calculations required to simulate fluid-flow with surfaces defined by boundary conditions, and the initial conditions were done by ANSYS/FLUENT 2020R1 Solver. The Navier-Stokes equations form the primary basis for solving fluid dynamics problems. The Continuity equation, Energy equation and the Navier-Stokes equation govern the fluid flow within the exchanger[25].

    1.2 Numerical Procedure

    The numerical procedures of the program are divided into four main parts, namely: First, drawing the geometric shape of the laboratory space that is shown in Fig. 1 with real dimensions and determining the direction of flow. Secondly, the distribution of the network of points on all parts of the space is decreed, as the optimal distribution of points must be chosen, and at this stage, the optimal network is tested (Grid Independent Test). Third, controlling and choosing the governing equations, as the program contains equations covering most types of heat transfer and flow, determining the type of fluid used and the mineral, establishing the studied space’s boundary conditions (wall, velocity inlet, axis, pressure outlet) and choosing the solution method. Fourth, the final step is to check the results of this solution, with the experimental data or the correlation equations.

    The results should be close to the theoretical or experimental values. The grid independence test of the network was conducted, which increased the size of the divisions in the arithmetic field, and then repeated the loop until convergence.

    In the simulation of the search model, the model was divided into seven values represented by the number of elements according to the following (2000000, 4000000, 6000000) and dependent on the Reynolds number with the range between Re=200 and Re=650. Fig.2 shows the grid of the heat exchanger test bench at the tetrahedral element. In the test, a maximum Nusselt number of 6000000 has been recorded and the test results show that all elements are proper for employing in this study. Last values obtained as shown in Fig.3. The dimensions and details of the physical geometry are summarized in Table 2.

    Fig. 1 Heat exchanger geometry

    Fig. 2 Grid of heat exchanger test bench at tetrahedral element

    Fig. 3 Grid independent test

    Table 2 Geometric dimensions of the heat exchanger

    1.3 Data Collection

    In this work, ZnO nanoparticles are dispersed in pure water to examine the efficiency of nanofluids as well as the coefficient of thermal convection and Nusselt number. Therefore, the equations below can be used in the calculation. The base fluid's and nanofluid's heat transport rates can be computed using the formula below:

    (6)

    whereQis rate of heat transfer, W;mis mass flowrate, kg/s;Tis temperature, K.

    The Nusselt number (Nu) equation and thermal convection coefficient of the base fluid and nanofluids can be determined using the expression below:

    Nu=hD/k

    (7)

    (8)

    (9)

    whereNurepresents the Nusselt number;his convective heat transfer coefficient, W/m2·K;Dis diameter, m;kis thermal conductivity, W/m·K;Ais area of heat transfer, m2;Twis wall temperature, K;Tfis fluid temperature, K;Tinis inlet temperature, K;Toutis outlet temperature, K;Tbis the bulk temperature (oC).

    To compute the nanofluids' total heat transmission coefficient within the tube, the following formula is used[25].

    (10)

    whereUirepresente the inlet velocity;hiandhorepresente the heat transfer coefficient at the inner and outer tubes;kwis the thermal conductivity of water;DiandDoare represented the inner and outer diameter.

    According to the nanofluids and base fluid used, the percentage of efficiency is calculated using the following equation for laminar flow[26].

    (11)

    whereηis the effeciency;NunfandNufare the Nusselt number of nanofluid and basefluid respectively;fnfandffare the friction factor of nanofluid and basefluid respectively.

    To calculate the Nusselt number theoretically using different correlation, we used the definition of Shah London[27], Sieder-Tate[28], and the new correlation developed in Ref. [29], respectively, and compared with CFD results:

    for ( Re·Pr·Dh/L)<33.33

    (12a)

    Dh/L)≥33.33

    (12b)

    Nu=0.4381Re0.36Pr0.42

    (13)

    (14)

    where Re represents Reynold number; ReDhis the hydraulic diameter; Pr is Prandtl number;Dhis Hydraulic diameter, m;Lis length, m;Pis density, kg/m3.

    2 Results and Discussion

    The heat transfer augmentation, when using nanofluids, was investigated in a counter flow of shell and tube heat exchanger using nanopowder ZnO with a base fluid of deionized the water with two volume fractions of (0.2% and 0.35%) and four Reynolds numbers of (200, 600, 1000, 1400). The convergence of governing equations is conducted to allow recording all results.

    2.1 Validation of Current Data

    To validate the results of the current study, corrected equations from Nusselt number are used to find out the extent of the matching between the extracted results and the corrected equations. The numerical results were compared with those obtained from the theoretical equation, Eq. (14). As shown in Fig.4, it was found that there is a good agreement between the current study and those of the theoretical equations used.

    Fig.4 Validation with base fluid

    Fig.5 depicts a standard example of water and nanofluid temperature distribution with (Re =200) 0.2%, 0.35% vol, respectively. The temperature distribution through the heat exchanger is depicted on the color diagram. It can be seen that the color of the temperature contour is changing from blue at the bottom to red at the top. This means the liquid temperature is increasing from the bottom to the top of heat exchanger. The increasing of temperature is approximately 13% due to loss of large quantities of liquid temperature[26].

    As shown in Fig. 6, it indicates the velocity flow line along the heat exchanger, and the velocity is gradually distributed from entry to and during entry into the pipes.

    Fig. 5 Contours of temperatures distribution

    2.2 Nusselt Number

    Fig. 7 shows the variation in Nusselt number with different Reynolds number for tube side in the case of counter flow, and with different volume fractions of nanofluids (ZnO/water), (0.2%, 0.35%). Based on the results obtained, it can be noticed that the Nusselt number increases as the particle concentration and the Reynolds number increase. The maximum enhancement of the nanofluids Nusselt number was determined to be about 10% and 19% at 0.2% and 0.35%, respectively. The reason for these increases is due to the different thermal characteristics of the nanofluids from the distilled water. The findings of this research are similar in terms of the principle of the increase in Nusselt number with the researchers of Ref. [26-30].

    Fig.7 Various Reynolds numbers with Nusselt number

    2.3 Friction Factor

    Fig. 8 shows the variation in the friction factor value with different Reynolds number at the volume fractions (0.2%, 0.35%) for the nanofluid. It was observed that the coefficient of friction decreases with increasing Reynolds number, while it increases with increasing concentration of nanoparticles in the base-fluid, and this is consistent with most researchers. The decrease in the coefficient of friction was attributed to the increase in the density and viscosity of the nanofluid when nanoparticles were added to the base fluid (pure water). The increase in the friction coefficient at the volumetric ratios of 0.2% and 0.35% was 0.25% and 0.47%, respectively. The study’s friction factor results agreed with those in Refs. [28-30].

    Fig. 8 Friction factor at different Reynolds numbers

    3 Conclusions

    Convective heat transfers and flow properties through nanofluid in STHE have been investigated numerically. ZnO nanoparticles of about 30 nm diameter were used under conditions of laminar-flow in counter-flow heat exchanger of shell and tube. The following conclusions were made based on the findings.

    1)When a nanofluid was used, a higher Nusselt number and total heat transmission coefficient were observed, with the reinforcement of the Reynolds number. It was also found that at certain Reynolds numbers, the two factors above increased when using nanofluid at a higher concentration.

    2)Adding ZnO nanoparticles to the base liquid augmented its thermal conductivity. The heat transmission can be influenced by friction between fluid and nanoparticles, Brownian Nano particulate movement, and decreasing border layer thickness.

    3)As for the coefficient of friction, it was observed that there was a slight increase when using the nanofluid.

    4)It was noticed through the results that a high improvement was obtained in the performance of heat transfer when using the nanofluid, and the maximum improvement factor was at a concentration of 0.35%, reaching approximately 12%.

    5)The recommended future work is to use different nanofluid by changing type, concentration and diameter.

    日本五十路高清| 97人妻天天添夜夜摸| 国产人伦9x9x在线观看| 精品国产一区二区久久| 午夜免费激情av| 亚洲国产精品成人综合色| 免费搜索国产男女视频| 久久中文字幕人妻熟女| 大陆偷拍与自拍| 欧美成人性av电影在线观看| 亚洲av第一区精品v没综合| 一夜夜www| 视频区欧美日本亚洲| 90打野战视频偷拍视频| 一二三四社区在线视频社区8| 久久精品国产亚洲av香蕉五月| 一级a爱片免费观看的视频| 久久婷婷成人综合色麻豆| 亚洲全国av大片| 久久久久久免费高清国产稀缺| 日韩精品中文字幕看吧| 手机成人av网站| 久久国产精品影院| 成年版毛片免费区| 亚洲国产精品合色在线| 两性午夜刺激爽爽歪歪视频在线观看 | 桃红色精品国产亚洲av| 这个男人来自地球电影免费观看| 日韩高清综合在线| av福利片在线| x7x7x7水蜜桃| 大香蕉久久成人网| 午夜精品久久久久久毛片777| 99riav亚洲国产免费| 十八禁人妻一区二区| 亚洲国产精品成人综合色| 亚洲国产精品成人综合色| 最近最新免费中文字幕在线| 老鸭窝网址在线观看| 亚洲aⅴ乱码一区二区在线播放 | 国产熟女xx| 午夜福利影视在线免费观看| 老司机在亚洲福利影院| 曰老女人黄片| 麻豆成人av在线观看| 国产一区二区三区视频了| 国产一级毛片七仙女欲春2 | 中文亚洲av片在线观看爽| 国产精品99久久99久久久不卡| 国产亚洲欧美在线一区二区| 久久狼人影院| 久久精品aⅴ一区二区三区四区| 国产欧美日韩一区二区三| 国产精品一区二区三区四区久久 | av中文乱码字幕在线| 亚洲伊人色综图| 久久人人精品亚洲av| 日本欧美视频一区| 亚洲国产看品久久| 午夜福利18| 日本欧美视频一区| 日韩欧美一区视频在线观看| 黄色女人牲交| 亚洲精品国产精品久久久不卡| 亚洲性夜色夜夜综合| 日日干狠狠操夜夜爽| 久久久久九九精品影院| 欧美色视频一区免费| 十分钟在线观看高清视频www| 精品日产1卡2卡| 多毛熟女@视频| 免费在线观看日本一区| 老熟妇乱子伦视频在线观看| 女同久久另类99精品国产91| 日韩精品青青久久久久久| 在线观看一区二区三区| 精品一品国产午夜福利视频| 亚洲人成77777在线视频| 亚洲片人在线观看| 99国产极品粉嫩在线观看| 久久久国产欧美日韩av| 日韩欧美一区视频在线观看| 淫秽高清视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| a级毛片在线看网站| 如日韩欧美国产精品一区二区三区| av福利片在线| 中文字幕色久视频| 50天的宝宝边吃奶边哭怎么回事| 国产伦一二天堂av在线观看| 激情视频va一区二区三区| 午夜免费成人在线视频| 午夜影院日韩av| 日韩欧美一区视频在线观看| 久久精品影院6| 搡老妇女老女人老熟妇| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久精品国产亚洲av高清涩受| 国产精品亚洲av一区麻豆| 国产精品一区二区在线不卡| 成人精品一区二区免费| 在线十欧美十亚洲十日本专区| 午夜两性在线视频| 国产三级在线视频| 久久天堂一区二区三区四区| 国产精品爽爽va在线观看网站 | 日韩 欧美 亚洲 中文字幕| 他把我摸到了高潮在线观看| АⅤ资源中文在线天堂| 高清黄色对白视频在线免费看| www.www免费av| 欧美黄色淫秽网站| 国产aⅴ精品一区二区三区波| 午夜免费鲁丝| 久久精品亚洲精品国产色婷小说| 国产精品免费视频内射| 久久久久亚洲av毛片大全| 亚洲久久久国产精品| 淫秽高清视频在线观看| 亚洲精华国产精华精| 波多野结衣一区麻豆| 性欧美人与动物交配| av天堂久久9| netflix在线观看网站| 一二三四在线观看免费中文在| 日韩精品青青久久久久久| 日韩欧美一区二区三区在线观看| 久久久久久久午夜电影| 最近最新中文字幕大全免费视频| 18禁黄网站禁片午夜丰满| 女人被狂操c到高潮| 成人18禁高潮啪啪吃奶动态图| 窝窝影院91人妻| 亚洲精品一卡2卡三卡4卡5卡| 黑人巨大精品欧美一区二区蜜桃| 国产野战对白在线观看| 亚洲男人天堂网一区| 高清黄色对白视频在线免费看| 欧美人与性动交α欧美精品济南到| 中出人妻视频一区二区| 日日摸夜夜添夜夜添小说| 在线观看66精品国产| 女人高潮潮喷娇喘18禁视频| 欧美老熟妇乱子伦牲交| 91av网站免费观看| 中文字幕另类日韩欧美亚洲嫩草| 99香蕉大伊视频| 亚洲精品国产一区二区精华液| 成人欧美大片| 一级黄色大片毛片| 日韩精品青青久久久久久| 亚洲欧美日韩无卡精品| 欧美午夜高清在线| 久久中文字幕人妻熟女| 久久久久久久久久久久大奶| 欧美日韩一级在线毛片| 丝袜人妻中文字幕| 真人一进一出gif抽搐免费| 日本一区二区免费在线视频| 国产av一区在线观看免费| 久久人人爽av亚洲精品天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成+人综合+亚洲专区| 麻豆成人av在线观看| 99国产极品粉嫩在线观看| 男女床上黄色一级片免费看| av超薄肉色丝袜交足视频| aaaaa片日本免费| 日韩欧美国产在线观看| 99国产精品99久久久久| 亚洲人成网站在线播放欧美日韩| 亚洲成人精品中文字幕电影| 久久精品国产清高在天天线| 91av网站免费观看| 很黄的视频免费| 久久久久久久久免费视频了| 国产精品国产高清国产av| 国产精品影院久久| 亚洲精品美女久久av网站| 久久中文字幕一级| 午夜精品在线福利| 日韩欧美在线二视频| 色综合婷婷激情| 女同久久另类99精品国产91| 最好的美女福利视频网| 宅男免费午夜| 久久精品国产亚洲av高清一级| 国产av又大| 欧美一级毛片孕妇| 高潮久久久久久久久久久不卡| 欧美精品亚洲一区二区| 91成人精品电影| 午夜福利免费观看在线| 给我免费播放毛片高清在线观看| 婷婷丁香在线五月| 精品国产乱子伦一区二区三区| 午夜激情av网站| 亚洲全国av大片| 欧美黑人精品巨大| 国产一区二区在线av高清观看| 免费看十八禁软件| 亚洲人成伊人成综合网2020| 精品国产乱子伦一区二区三区| 色老头精品视频在线观看| 美女免费视频网站| 国产亚洲欧美在线一区二区| 嫁个100分男人电影在线观看| 国产亚洲欧美精品永久| 咕卡用的链子| 每晚都被弄得嗷嗷叫到高潮| 亚洲第一青青草原| 男女下面插进去视频免费观看| 免费在线观看亚洲国产| 久久人妻av系列| 不卡av一区二区三区| 国产欧美日韩一区二区三区在线| 亚洲国产看品久久| 午夜亚洲福利在线播放| 18禁黄网站禁片午夜丰满| 一级毛片女人18水好多| 亚洲欧美精品综合一区二区三区| 午夜影院日韩av| 琪琪午夜伦伦电影理论片6080| 一级片免费观看大全| 欧美丝袜亚洲另类 | 男女床上黄色一级片免费看| 美女高潮到喷水免费观看| 午夜免费激情av| 亚洲精品国产色婷婷电影| 亚洲一区中文字幕在线| 亚洲国产精品sss在线观看| av有码第一页| 给我免费播放毛片高清在线观看| 伦理电影免费视频| 少妇熟女aⅴ在线视频| 久久欧美精品欧美久久欧美| 午夜福利免费观看在线| 无人区码免费观看不卡| 久久人人爽av亚洲精品天堂| 国产精品99久久99久久久不卡| 美女免费视频网站| 露出奶头的视频| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人欧美特级aaaaaa片| 亚洲国产高清在线一区二区三 | 韩国av一区二区三区四区| 悠悠久久av| 国产欧美日韩一区二区三| 亚洲性夜色夜夜综合| 女警被强在线播放| 欧美最黄视频在线播放免费| 免费在线观看视频国产中文字幕亚洲| 好男人电影高清在线观看| 99精品欧美一区二区三区四区| 桃红色精品国产亚洲av| 日韩欧美在线二视频| 超碰成人久久| 日韩 欧美 亚洲 中文字幕| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 精品国产国语对白av| 亚洲中文字幕一区二区三区有码在线看 | 色播在线永久视频| 男人舔女人的私密视频| 欧美激情极品国产一区二区三区| 久久香蕉激情| 最新在线观看一区二区三区| 国产97色在线日韩免费| 午夜免费鲁丝| 精品久久久精品久久久| 亚洲成人久久性| 国产欧美日韩精品亚洲av| 国产极品粉嫩免费观看在线| 久99久视频精品免费| 黄片播放在线免费| 成人特级黄色片久久久久久久| 中文字幕人成人乱码亚洲影| 精品国产乱码久久久久久男人| 在线av久久热| 日韩国内少妇激情av| 国产xxxxx性猛交| av在线天堂中文字幕| 后天国语完整版免费观看| 欧美久久黑人一区二区| 亚洲熟女毛片儿| 亚洲视频免费观看视频| 久久久久国内视频| 最新美女视频免费是黄的| 久久香蕉精品热| АⅤ资源中文在线天堂| bbb黄色大片| 亚洲精品av麻豆狂野| 国产欧美日韩一区二区三区在线| 日韩三级视频一区二区三区| 国产成人影院久久av| 一卡2卡三卡四卡精品乱码亚洲| 久久精品亚洲熟妇少妇任你| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 狂野欧美激情性xxxx| 香蕉久久夜色| 亚洲全国av大片| 日本a在线网址| 丰满人妻熟妇乱又伦精品不卡| 热re99久久国产66热| 激情在线观看视频在线高清| 国产主播在线观看一区二区| 一个人观看的视频www高清免费观看 | 涩涩av久久男人的天堂| 叶爱在线成人免费视频播放| 国产成人一区二区三区免费视频网站| 成人永久免费在线观看视频| 国产又色又爽无遮挡免费看| 国产精品久久视频播放| 日韩欧美国产在线观看| 一区二区三区高清视频在线| 色综合站精品国产| 久久久国产成人精品二区| 亚洲专区字幕在线| 巨乳人妻的诱惑在线观看| 大型av网站在线播放| 午夜久久久在线观看| 欧美精品啪啪一区二区三区| 国产主播在线观看一区二区| 久久天躁狠狠躁夜夜2o2o| 久久午夜综合久久蜜桃| 欧美日韩黄片免| 免费在线观看完整版高清| 制服诱惑二区| 国产精品电影一区二区三区| 久久人人97超碰香蕉20202| 免费看美女性在线毛片视频| 人妻久久中文字幕网| 一二三四在线观看免费中文在| 深夜精品福利| 性少妇av在线| 亚洲色图av天堂| 国产精品久久久人人做人人爽| 如日韩欧美国产精品一区二区三区| 精品久久久久久久久久免费视频| 变态另类成人亚洲欧美熟女 | 一a级毛片在线观看| 窝窝影院91人妻| 亚洲av电影不卡..在线观看| 中亚洲国语对白在线视频| АⅤ资源中文在线天堂| 亚洲国产欧美日韩在线播放| 动漫黄色视频在线观看| 国产一区在线观看成人免费| 日本免费a在线| 亚洲第一欧美日韩一区二区三区| 亚洲国产精品合色在线| 久久精品国产清高在天天线| 99香蕉大伊视频| 99久久99久久久精品蜜桃| 亚洲国产看品久久| 高清毛片免费观看视频网站| 91老司机精品| 此物有八面人人有两片| 免费看美女性在线毛片视频| 亚洲男人的天堂狠狠| 亚洲三区欧美一区| 久久久水蜜桃国产精品网| 日本vs欧美在线观看视频| 欧美 亚洲 国产 日韩一| 亚洲国产毛片av蜜桃av| 麻豆av在线久日| 9色porny在线观看| 韩国精品一区二区三区| 黄频高清免费视频| 国产精品久久电影中文字幕| 夜夜看夜夜爽夜夜摸| 国产亚洲欧美在线一区二区| www国产在线视频色| 麻豆成人av在线观看| www.999成人在线观看| 国产精品美女特级片免费视频播放器 | 国产成人精品无人区| av片东京热男人的天堂| www日本在线高清视频| 巨乳人妻的诱惑在线观看| 欧美成人一区二区免费高清观看 | 亚洲免费av在线视频| 欧美性长视频在线观看| 色综合亚洲欧美另类图片| 成年人黄色毛片网站| 男男h啪啪无遮挡| 精品久久久久久,| 午夜激情av网站| 日本 av在线| 欧美乱妇无乱码| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 十八禁人妻一区二区| 99国产精品99久久久久| 啦啦啦免费观看视频1| 亚洲成av人片免费观看| 国产精品野战在线观看| 久久久国产欧美日韩av| 一级片免费观看大全| 夜夜躁狠狠躁天天躁| 亚洲专区中文字幕在线| 夜夜爽天天搞| 男男h啪啪无遮挡| 国产蜜桃级精品一区二区三区| 99riav亚洲国产免费| 91在线观看av| 91麻豆精品激情在线观看国产| 一区在线观看完整版| 女人爽到高潮嗷嗷叫在线视频| av视频免费观看在线观看| 青草久久国产| 亚洲一区二区三区不卡视频| 一区二区日韩欧美中文字幕| 99riav亚洲国产免费| 国产日韩一区二区三区精品不卡| 纯流量卡能插随身wifi吗| 久久久精品欧美日韩精品| 色尼玛亚洲综合影院| 黄色 视频免费看| 51午夜福利影视在线观看| 多毛熟女@视频| 日本免费一区二区三区高清不卡 | 久久国产亚洲av麻豆专区| 村上凉子中文字幕在线| 国产精品久久久久久人妻精品电影| 脱女人内裤的视频| 午夜福利欧美成人| 国产精华一区二区三区| 91在线观看av| 久久 成人 亚洲| 国产高清激情床上av| 这个男人来自地球电影免费观看| 中文字幕av电影在线播放| 在线观看一区二区三区| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 久久精品影院6| 夜夜夜夜夜久久久久| 久久国产精品影院| 叶爱在线成人免费视频播放| 啦啦啦观看免费观看视频高清 | 日本vs欧美在线观看视频| 999久久久精品免费观看国产| 日本a在线网址| 可以在线观看毛片的网站| 国产精品香港三级国产av潘金莲| 国产欧美日韩综合在线一区二区| 又紧又爽又黄一区二区| 国产精品日韩av在线免费观看 | 日本五十路高清| 亚洲人成电影观看| 日日爽夜夜爽网站| 男人舔女人下体高潮全视频| 女警被强在线播放| 少妇 在线观看| 精品免费久久久久久久清纯| 可以在线观看毛片的网站| 亚洲,欧美精品.| 精品欧美一区二区三区在线| 亚洲专区中文字幕在线| 国产精品久久视频播放| 国产精品乱码一区二三区的特点 | www.熟女人妻精品国产| av中文乱码字幕在线| 高清毛片免费观看视频网站| 又黄又爽又免费观看的视频| 国产午夜精品久久久久久| 两个人看的免费小视频| 午夜福利18| 久久这里只有精品19| 亚洲国产高清在线一区二区三 | 亚洲国产精品999在线| 一区在线观看完整版| 搞女人的毛片| 久久香蕉国产精品| 国产在线精品亚洲第一网站| 亚洲自拍偷在线| 久99久视频精品免费| 久久香蕉精品热| 国产成人精品无人区| 在线观看舔阴道视频| 91精品三级在线观看| 日本在线视频免费播放| 日韩成人在线观看一区二区三区| 欧美日韩一级在线毛片| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩亚洲综合一区二区三区_| 亚洲 欧美一区二区三区| 久久亚洲精品不卡| 久久草成人影院| 久久欧美精品欧美久久欧美| 亚洲五月婷婷丁香| 成年版毛片免费区| 国产伦人伦偷精品视频| 国产aⅴ精品一区二区三区波| 国产精品香港三级国产av潘金莲| 很黄的视频免费| 国产一区二区三区视频了| 久久亚洲真实| 99国产精品一区二区三区| 色综合站精品国产| 亚洲色图综合在线观看| 久热这里只有精品99| 在线av久久热| 波多野结衣高清无吗| 亚洲人成电影免费在线| 日本黄色视频三级网站网址| 男女下面插进去视频免费观看| 精品久久久精品久久久| 黄色视频不卡| 精品国产乱子伦一区二区三区| 国产免费av片在线观看野外av| 国产精品亚洲av一区麻豆| 午夜精品国产一区二区电影| 亚洲精品久久国产高清桃花| 亚洲av片天天在线观看| 黄片小视频在线播放| 亚洲第一欧美日韩一区二区三区| 亚洲成国产人片在线观看| 欧美一区二区精品小视频在线| 一个人观看的视频www高清免费观看 | 久久亚洲精品不卡| 老司机午夜十八禁免费视频| 每晚都被弄得嗷嗷叫到高潮| 久久性视频一级片| 亚洲av五月六月丁香网| 精品国产乱码久久久久久男人| 亚洲中文日韩欧美视频| 一进一出好大好爽视频| 欧美丝袜亚洲另类 | 久久精品国产99精品国产亚洲性色 | 亚洲三区欧美一区| 69av精品久久久久久| 天天一区二区日本电影三级 | 亚洲国产欧美网| 日韩三级视频一区二区三区| 精品第一国产精品| 在线永久观看黄色视频| 午夜久久久在线观看| 波多野结衣av一区二区av| 日本vs欧美在线观看视频| 亚洲av成人不卡在线观看播放网| 久久香蕉激情| 欧美一区二区精品小视频在线| 如日韩欧美国产精品一区二区三区| 日韩中文字幕欧美一区二区| 久久久久国内视频| 日韩精品中文字幕看吧| 日本a在线网址| 免费在线观看视频国产中文字幕亚洲| 国产亚洲欧美在线一区二区| 国产精品一区二区在线不卡| 国产蜜桃级精品一区二区三区| 免费久久久久久久精品成人欧美视频| 久久久久亚洲av毛片大全| 人人妻人人澡人人看| 激情视频va一区二区三区| 久久久久九九精品影院| 亚洲精品一卡2卡三卡4卡5卡| 亚洲精品中文字幕一二三四区| 国产成+人综合+亚洲专区| 女性生殖器流出的白浆| 黄色毛片三级朝国网站| 长腿黑丝高跟| 久久影院123| 午夜福利,免费看| 伦理电影免费视频| 黄色女人牲交| 黄色丝袜av网址大全| 精品乱码久久久久久99久播| 九色国产91popny在线| 1024香蕉在线观看| 最新美女视频免费是黄的| 欧美黑人欧美精品刺激| 精品一区二区三区av网在线观看| 在线免费观看的www视频| 黄色丝袜av网址大全| 国产91精品成人一区二区三区| 最近最新中文字幕大全电影3 | 又黄又爽又免费观看的视频| 欧美成人性av电影在线观看| 国产精品乱码一区二三区的特点 | 香蕉久久夜色| 男女之事视频高清在线观看| 亚洲自偷自拍图片 自拍| 亚洲一码二码三码区别大吗| 在线十欧美十亚洲十日本专区| 满18在线观看网站| 不卡av一区二区三区| 色播亚洲综合网| 国产精品亚洲一级av第二区| 久久九九热精品免费| 纯流量卡能插随身wifi吗| 99久久国产精品久久久| 亚洲精品在线观看二区| 久久精品国产99精品国产亚洲性色 | 老司机靠b影院| 国产极品粉嫩免费观看在线| 婷婷精品国产亚洲av在线| 久久久国产成人精品二区| 99re在线观看精品视频| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久人人做人人爽| 国产日韩一区二区三区精品不卡| 18禁国产床啪视频网站| 免费观看精品视频网站| 琪琪午夜伦伦电影理论片6080| 又黄又粗又硬又大视频| 一夜夜www| av免费在线观看网站| 禁无遮挡网站| 欧美一区二区精品小视频在线| bbb黄色大片| 久久国产乱子伦精品免费另类|