陳先龍, 張 華, 馬毅林, 宋 程
(1.廣州市交通規(guī)劃研究院有限公司, 廣州 510030; 2.同濟大學(xué)磁浮交通工程技術(shù)研究中心, 上海 201804;3.北京交通發(fā)展研究院, 北京 100073)
OD估計(OD matrix estimation,ODME),又稱OD反推,是指利用調(diào)查和時空位置挖掘等方法得到的初始OD矩陣基于觀測交通流量推斷更可信出行OD矩陣的技術(shù),是交通需求建模過程中最基礎(chǔ)的技術(shù)方法,被廣泛應(yīng)用于交通規(guī)劃、交通運行評估等工程實踐. 在數(shù)據(jù)庫Taylor &Francis Online中檢索摘要中包含“OD matrix estimation”關(guān)鍵詞,文章超過5 900篇. 在數(shù)據(jù)庫CNKI中檢索摘要中包含“OD估計”或“OD反推”的學(xué)位論文及期刊論文約有900篇,由此可見該項技術(shù)方法的廣泛影響. OD矩陣估計也是各類交通工程學(xué)科教科書的交通需求推算方法, Ortuzar和Willumsen編著的經(jīng)典交通模型教材《Modelling Transport》[1]第12章第4節(jié)是關(guān)于OD矩陣估計數(shù)學(xué)模型的專門介紹. 此外,主流交通模型商業(yè)軟件TransCAD、EMME、CUBE、VISUM、AIMSUM和SIAS Paramics等均提供了通用的OD估計功能. 從求解方法來看,商業(yè)軟件主要采用了數(shù)學(xué)優(yōu)化方法,VISUM的TFlowFuzzy模塊算法源自Van[2]提出的最大似然估計,EMME軟件采用Spiess[3-4]所提出的梯度法和最大似然估計,TransCAD軟件采用的是Nilsen[5]提出的雙層優(yōu)化模型,Cube 軟件采用的是最大似然估計[6]. 從求解輸入條件來看,主要包括初始矩陣、核查線觀測點交通量及允許誤差范圍、交通小區(qū)產(chǎn)生吸引量的允許誤差范圍等指標(biāo). 從檢驗方法來看,主要是觀測值和模擬值的相關(guān)性分析及擬合優(yōu)度(R2)以及觀測點/核查線的誤差. 從檢驗標(biāo)準(zhǔn)來看,通常參考英國路橋設(shè)計手冊[7]第12卷所采用的檢驗標(biāo)準(zhǔn),該標(biāo)準(zhǔn)根據(jù)觀測點交通量大小設(shè)置了不同交通流量范圍對應(yīng)的容許誤差,并規(guī)定了核查線的誤差范圍5%. 此外,為了降低交通量絕對值差異帶來的影響,該標(biāo)準(zhǔn)中還采用了GEH[8]指標(biāo)及其檢驗標(biāo)準(zhǔn),并從觀測點、核查線等方面給出了建議值. 本文的研究問題是:在校核流量模擬值和觀測值能很好地滿足相關(guān)檢驗標(biāo)準(zhǔn)的條件下,估計結(jié)果能否代表真實OD矩陣? 本文將嘗試通過模擬實驗的方法對該問題予以解答.
考慮實踐應(yīng)用中不同規(guī)模的交通模型結(jié)果校核方法差異和初始矩陣獲取途徑不同等因素,模擬實驗分為2種情形:大型網(wǎng)絡(luò)模型和小型網(wǎng)絡(luò)模型. 大型網(wǎng)絡(luò)模型主要面對城市級交通模型,校核檢驗對象是核查線;小型網(wǎng)絡(luò)主要面向小區(qū)域的詳細路網(wǎng)模型,除校核線之外還將考慮主要交叉口轉(zhuǎn)向交通流量作為約束,可理解為強約束條件的OD矩陣估計. 此外,考慮獲取真實的OD矩陣極為困難,本文采用基于卡口數(shù)據(jù)推斷的初始OD矩陣并利用OD估計技術(shù),建立能較好適配實際交通運行狀況的OD矩陣作為目標(biāo)矩陣,并用此矩陣分配所得路段/轉(zhuǎn)向交通流量作為虛擬觀測值,以此為基礎(chǔ)開展模擬實驗. 截止2021年9月,廣州市常態(tài)卡口數(shù)量7 901個,其中能進行有效數(shù)據(jù)采集的5 653個,并對車牌脫敏后的卡口數(shù)據(jù)形成了固定采集和分析機制,按月度進行數(shù)據(jù)清洗和分析,能獲得相對較高質(zhì)量的車輛初始OD矩陣.
初始矩陣質(zhì)量對校核結(jié)果有較大的影響. 實踐中,初始矩陣的獲取方法通常包括常數(shù)矩陣法和重力模型法,可看作是構(gòu)造矩陣. 常量矩陣法是指將具備通行條件的所有OD對之間的出行量置為常數(shù),例如取值為10;重力模型法是根據(jù)交通小區(qū)的產(chǎn)生和吸引量,結(jié)合多源數(shù)據(jù)獲取的廣義出行距離分布作為約束,進行出行分布參數(shù)標(biāo)定,并計算得到初始OD矩陣. 為進一步驗證初始矩陣質(zhì)量對校核結(jié)果的影響,以目標(biāo)矩陣分別乘以誤差范圍在±25%和±50%范圍內(nèi)的均勻分布隨機誤差作為高質(zhì)量、低質(zhì)量初始矩陣開展后續(xù)檢驗.
實證檢驗包含觀測值檢驗和目標(biāo)矩陣檢驗. 觀測值檢驗主要是估計矩陣分配后的觀測點流量模擬值與實際觀測值的相關(guān)性檢驗及GEH指標(biāo)檢驗. 目標(biāo)矩陣檢驗是OD估計結(jié)果矩陣和先驗的目標(biāo)矩陣之間的對比,包括相關(guān)性、誤差、出行距離分布變化等. 本文實驗采用PTV VISUM 2022版作為軟件實驗平臺. 為增加不同OD矩陣分配結(jié)果的可比性,交通分配中的道路速度-流量函數(shù)采用標(biāo)準(zhǔn)BPR函數(shù)(式(1)),即不考慮轉(zhuǎn)向交通延誤等分配計算過程中的新變量影響. 考慮流量觀測點的位置和數(shù)量對校核結(jié)果也會有較大的影響,本研究重點研究的是方法的有效性,基于合理的觀測點位置及合適數(shù)量規(guī)模開展. 實驗流程方案見圖1所示.
圖1 實驗總體流程
(1)
式中,t0,tcur為路段自由流通行時間和當(dāng)前狀態(tài)通行時間;v為路段流量;c為路段通行能力;α,β為模型參數(shù),本文中取值α=0.15,β=4.
本次實驗采用的大型網(wǎng)絡(luò)模型為廣州市中心區(qū)范圍約340 km2范圍(見圖2),共包含1 411個交通小區(qū),6 797個節(jié)點和13 413個可通行路段. 結(jié)合道路網(wǎng)絡(luò)結(jié)構(gòu),共設(shè)置核查線60條,覆蓋了826個單向道路斷面,目標(biāo)矩陣出行總量為420 243 pcu/h.
圖2 大型網(wǎng)絡(luò)交通模型交通分區(qū)、路網(wǎng)和核查線示意圖
按照實驗設(shè)計,分別構(gòu)造常數(shù)矩陣、重力模型、高誤差和低誤差4個初始矩陣作為輸入,路段觀測點和交通小區(qū)產(chǎn)生吸引量的允許誤差條件見表1. 同時考慮實踐應(yīng)用中有時會添加OD矩陣的出行距離分布作為約束條件,本文也設(shè)置了重力模型初始矩陣疊加出行距離分布的情形,總計5種實驗情形進行對比分析(見表2).
表1 路段觀測點和交通小區(qū)產(chǎn)生吸引量允許誤差條件
表2 大型網(wǎng)絡(luò)交通模型OD估計實驗情形
2.2.1 總體指標(biāo)
運用VISUM 2022版的TFlowFuzzy模塊進行5種實驗情形的OD矩陣估計,總體情況見表3. 從模型迭代次數(shù)和耗時指標(biāo)看,整體呈現(xiàn)初始矩陣質(zhì)量越高,迭代次數(shù)和耗時越少的趨勢,且出行距離分布約束條件的引入會顯著增加迭代計算次數(shù)和運行耗時. 從結(jié)果誤差來看,情形1需求總量變化最大,誤差約達8.9%,其次為情形2,約0.68%,其他3種情形誤差均小于0.03%,能較好匹配目標(biāo)矩陣的總需求量約束. 需要說明,本次實驗中由于情形1的出行需求總量偏差較大,實驗中嘗試將該情形的OD矩陣估計結(jié)果作為輸入,代替常數(shù)矩陣進行分析,能得到與重力模型相似精度的結(jié)果,但為了對比的公正性,這里仍然使用常數(shù)矩陣直接OD估計結(jié)果作為方案比較.
表3 總體測試效率效果指標(biāo)表
表4 不同情形下的觀測點流量模擬值與觀測值的檢驗
2.2.2 核查線觀測值點檢驗
將OD矩陣估計結(jié)果進行交通分配,5種情形下路段流量的模擬值與觀測值均呈現(xiàn)很強的線性關(guān)系,擬合優(yōu)度(R2)均達到0.99以上;但從GEH檢驗標(biāo)準(zhǔn)來看,5種情形的實驗結(jié)果呈現(xiàn)一定差異性(見表5). 常數(shù)初始矩陣情形下GEH值小于5的點位數(shù)僅為434個,占比約52.5%. 以重力模型初始矩陣的2種情形GEH值小于5的點位數(shù)占比均超過85%,能滿足檢驗要求. 情形4和情形5模擬值能近乎完美復(fù)現(xiàn)流量觀測值,且所有觀測點流量的GEH值均小于2. 分析結(jié)果表明,即便模擬值和觀測值的線性擬合優(yōu)度達到0.99,也存在GEH值檢驗不滿足要求的情況,提醒實踐應(yīng)用中有必要采取更為完備的檢驗方法.
表5 不同情形估計OD矩陣和目標(biāo)OD矩陣OD對擬合優(yōu)度R2表
前一節(jié)對路段觀測點流量數(shù)據(jù)的擬合精度進行
2.3.1 OD對之間出行需求檢驗
各情形OD矩陣估計結(jié)果的出行需求與目標(biāo)矩陣的比較結(jié)果呈2級分化態(tài)勢(見表5). 基于純構(gòu)造初始矩陣的實驗情形1、2和3結(jié)果較為接近,OD對之間的出行需求與目標(biāo)矩陣擬合優(yōu)度較差(見圖3),最高僅為0.376;而通過目標(biāo)矩陣設(shè)置隨機均勻誤差生成初始矩陣的情形4和情形5呈現(xiàn)較高質(zhì)量的估計效果,估計結(jié)果能較為顯著的減少誤差,這表明初始矩陣的質(zhì)量是影響OD估計結(jié)果的關(guān)鍵變量.
圖3 情形1、2、3 OD估計矩陣和目標(biāo)矩陣比較
圖4 情形4和情形5初始矩陣及OD估計矩陣 與目標(biāo)矩陣比較
2.3.2 出行距離分布檢驗
如圖5所示,在不增加出行距離分布約束的條件下OD估計結(jié)果會產(chǎn)生出行距離分布的變化. 情形1和情形2出行距離分布顯著偏離目標(biāo)OD矩陣,而情形3通過設(shè)置出行距離分布約束條件能復(fù)現(xiàn)目標(biāo)出行OD矩陣的出行距離分布形態(tài),但未發(fā)現(xiàn)出行距離分布的約束對提升OD估計結(jié)果精度的積極作用.
圖5 出行距離分布比較
大型交通模型的OD矩陣估計實驗表明,現(xiàn)有成熟應(yīng)用的OD矩陣估計方法能實現(xiàn)模擬值對觀測值高質(zhì)量的擬合,但不能僅依靠觀測點流量結(jié)果的擬合優(yōu)度作為檢驗標(biāo)準(zhǔn),需要進一步開展GEH值計算以確保模型校核精度和提升估計結(jié)果質(zhì)量. 路段模擬值和觀測值的匹配并不一定意味著OD矩陣估計結(jié)果能真實反映實際出行OD. 初始矩陣的質(zhì)量是OD估計模型的關(guān)鍵,通過構(gòu)造矩陣法生成的OD矩陣作為初始矩陣并不能保證獲得高質(zhì)量的估計結(jié)果. 脫離原始數(shù)據(jù)和多源的實際檢驗數(shù)據(jù),完全依賴構(gòu)造矩陣來推斷OD矩陣即便與觀測值存在良好檢驗關(guān)系也可能存在顯著偏差和誤導(dǎo).
小網(wǎng)絡(luò)模型(見圖6)包含8個交通小區(qū),20個節(jié)點和20個路段. 交通運行數(shù)據(jù)包含14個路段共25個方向的路段交通量觀測數(shù)據(jù)以及研究范圍內(nèi)全部5個交叉口共38個轉(zhuǎn)向交通流量數(shù)據(jù)(見圖7),出行需求總量為5 994 pcu/h. 與大型網(wǎng)絡(luò)模型通過核查線及觀測點流量來開展研究不同,小型網(wǎng)絡(luò)的OD估計模擬實驗還增加了轉(zhuǎn)向交通流量作為約束條件,從路段觀測值發(fā)展到路段加轉(zhuǎn)向觀測值,提升了約束條件的層次性. 同時增加了轉(zhuǎn)向交通流量的誤差檢驗,能更進一步的檢驗OD估計結(jié)果與觀測數(shù)據(jù)的最佳適配.
圖6 交通網(wǎng)絡(luò)、交通分區(qū)與交叉口編號示意
圖7 交叉口流量流向圖
大型網(wǎng)絡(luò)交通模型中已經(jīng)對路段觀測點校核方法進行了研究,結(jié)果表明初始矩陣的質(zhì)量是OD矩陣估計結(jié)果正確性的關(guān)鍵變量,同時考慮以目標(biāo)矩陣生成的2種矩陣校核結(jié)果差異較小,本節(jié)只研究對低誤差初始矩陣情形. 按照實驗設(shè)計設(shè)想,使用常數(shù)矩陣、重力模型和與目標(biāo)矩陣存在低隨機誤差3個矩陣作為初始矩陣,并按照有無交叉口轉(zhuǎn)向流量作為約束條件,構(gòu)造6種情形(見表6),誤差條件同表1. 與大型網(wǎng)絡(luò)交通模型相比,由于小型網(wǎng)絡(luò)的交通模型的運行速度快,時間近乎可忽略,因此不考慮運行速度和迭代次數(shù)等效率等指標(biāo)的對比評價.
3.2.1 路段交通量檢驗
同大型交通模型的實驗方法,對6種情形進行檢驗. 總體來看,轉(zhuǎn)向交通約束條件能有效提升校核質(zhì)量(見圖8),有助于改善擬合優(yōu)度并減少相對均方根偏差(RMSE).
3.2.2 轉(zhuǎn)向交通量檢驗
路段流量的校核精度和交叉口轉(zhuǎn)向交通量的模擬精度有一定獨立性,未考慮轉(zhuǎn)向流量約束條件的校核結(jié)果,其轉(zhuǎn)向交通流量誤差顯著(見圖9),這也說明僅考慮路段流量約束的校核結(jié)果對路網(wǎng)的真實OD估計存在不足.
圖9 轉(zhuǎn)向交通量觀測值與模擬值比較
從矩陣校核結(jié)果來看,OD矩陣的估計結(jié)果與目標(biāo)矩陣的擬合優(yōu)度較高(見表7),且考慮交叉口轉(zhuǎn)向流量約束條件下估計結(jié)果更為準(zhǔn)確(見圖10). 參考核查線觀測點的檢驗標(biāo)準(zhǔn),考慮交叉口轉(zhuǎn)向流量約束條件的OD估計結(jié)果中GEH值小于5的OD對占比均超過85%,滿足檢驗條件. 但前4種以構(gòu)造矩陣為初始輸入矩陣的估計結(jié)果與目標(biāo)矩陣相同OD點對的變化來看,依然偏差明顯. 從矩陣總量來看,OD對的絕對誤差之和的最小值為16.3%. 從OD對來看,平均誤差最小值為38.5%,中位數(shù)為16.7%,也表明估計的OD矩陣與目標(biāo)矩陣存在較明顯的差異. 與之對比,情形5和情形6結(jié)果再次驗證了改善初始輸入矩陣是提升OD估計結(jié)果的優(yōu)選途徑,在擬合優(yōu)度、絕對誤差比、平均誤差和誤差中位數(shù)等指標(biāo)方面均有較好的表現(xiàn).
表7 OD估計結(jié)果評價
表7 小型網(wǎng)絡(luò)交通模型OD估計情形設(shè)定
圖10 OD估計矩陣與目標(biāo)矩陣的比較
小型網(wǎng)絡(luò)交通模型的模擬實驗表明,以構(gòu)造矩陣作為初始輸入且僅考慮路段流量觀測值作為約束條件的OD估計結(jié)果存在較明顯不足,不宜作為目標(biāo)矩陣. 在考慮交叉口轉(zhuǎn)向流量約束條件下,OD矩陣估計結(jié)果雖然能滿足GEH值檢驗的要求,但仍不能否認(rèn)其與目標(biāo)矩陣的差異,模擬實驗再次驗證了改善初始輸入矩陣質(zhì)量是提升OD估計結(jié)果精度的關(guān)鍵. 文中算例是超強約束條件下的求解結(jié)果,模型中包含43個有效OD點對,約束條件包括25個流量觀測斷面(單方向)、38個轉(zhuǎn)向流量以及交通小區(qū)的14個產(chǎn)生或吸引量,總計77個約束條件,平均每個變量對應(yīng)1.8個約束條件. 這也意味著盡可能挖掘更多的觀測值作為約束條件是提升模型精度的關(guān)鍵技術(shù)路徑.
根據(jù)Willumsen[9]的描述,最早的OD估計模型始見與1972年[10],距今已超過50 a. 在這半個世紀(jì)的時間里,OD矩陣估計技術(shù)在很長一段時間內(nèi)承擔(dān)了在已知部分路段流量觀測值條件下去推斷整體OD的重任,且從已知約束條件檢驗的角度來說起到了較好的效果. 但由于長期以來受制于數(shù)據(jù)條件障礙,真實OD矩陣仍很難獲取,即便是當(dāng)前的數(shù)據(jù)獲取和挖掘技術(shù)條件下依然有較大的難度,缺少 1個評估OD矩陣估計方法有效性的完備方法和絕對真值矩陣支持. 本文嘗試運用模擬仿真的方法提供1種對比檢驗方法,對OD估計結(jié)果進行檢驗,有助于比較不同的估計輸入所得到結(jié)果的相對合理性和可靠性. 隨著城市治理的精細化和數(shù)字化深入發(fā)展,城市交通治理也迫切需要高精度、可用的交通模型量化分析提供支撐,結(jié)合數(shù)據(jù)資源能力的提升,對交通模型分析方法的有效性和可靠性進行檢驗,有助于提升量化分析的可信度.
文章結(jié)果顯示,初始矩陣的質(zhì)量對OD估計結(jié)果有著決定性影響. 特別是對大型網(wǎng)絡(luò)交通模型而言,運用構(gòu)造法建立的初始矩陣作為估計過程的初始輸入,其得到的估計矩陣即便觀測值檢驗?zāi)芊舷嚓P(guān)的要求,但與真實OD矩陣之間依然存在著嚴(yán)重偏差,在大部分情況下幾乎可認(rèn)為是該方法是無效的. 小型網(wǎng)絡(luò)交通模型測試結(jié)果顯示,OD估計方法能逐漸逼近真實OD矩陣,特別是在考慮交叉口轉(zhuǎn)向流量的強約束條件下,在檢驗指標(biāo)誤差方面可做到十分微小,但從貼近真實矩陣分布角度要求,初始矩陣質(zhì)量仍然是決定性的變量. 當(dāng)前,隨著大規(guī)模時空位置數(shù)據(jù)和交通運行監(jiān)測數(shù)據(jù)的普及,為獲得和逼近真實出行OD矩陣創(chuàng)造了條件,有可能獲得較高質(zhì)量的初始矩陣,這也為OD估計技術(shù)適用于大型交通模型創(chuàng)造了條件. 總之,OD估計技術(shù)方法有用,但存在一定局限性,理解問題的成因更加有助于正確、恰當(dāng)?shù)亻_展運用.