徐娜,陳桂玲,楊磊,朱子涵,陳麗,韓亞丁,劉飛
玻璃化法超低溫高效保存‘Gala’蘋果組培苗
徐娜,陳桂玲,楊磊,朱子涵,陳麗,韓亞丁,劉飛*
濟(jì)寧醫(yī)學(xué)院, 山東 日照 276800
本試驗(yàn)以蘋果‘Gala’蘋果為材料,從低溫鍛煉時(shí)間、預(yù)培養(yǎng)基蔗糖濃度、預(yù)培養(yǎng)時(shí)間和玻璃化溶液及處理時(shí)間4個(gè)方面優(yōu)化玻璃化超低溫保存體系,獲得‘Gala’蘋果莖尖超低溫保存的最佳體系。結(jié)果表明,將生長(zhǎng)30 d的組培苗在4 ℃的條件下低溫鍛煉5周,剝?nèi)∏o尖,將其置于含0.4 mol/L蔗糖的預(yù)培養(yǎng)基中培養(yǎng)5 d,滲透裝載液滲透30 min,0 ℃的條件下用PVS3玻璃化溶液處理60 min,放入液氮中冷凍24 h,取出后置于40 ℃水浴中1 min快速化凍,卸載液清洗2次,每次10 min,然后在恢復(fù)培養(yǎng)基上培養(yǎng),莖尖的再生率最高達(dá)到96.6%且生長(zhǎng)穩(wěn)定性好。本試驗(yàn)成功建立了‘Gala’蘋果的玻璃化法超低溫保存體系,為蘋果種質(zhì)資源的長(zhǎng)期保存提供了一條有效途徑。
‘Gala’蘋果; 超低溫處理; 組培
蘋果富含糖類、蛋白質(zhì)、有機(jī)酸、維生素和微量元素等多種有益于身體健康的物質(zhì),是深受大眾喜愛的一種水果。中國(guó)是野生蘋果主要起源地之一,也是世界上最大的蘋果生產(chǎn)國(guó)[1,2]。農(nóng)業(yè)生產(chǎn)上,一個(gè)優(yōu)良的品種是決定蘋果產(chǎn)量與品質(zhì)的關(guān)鍵因素。據(jù)統(tǒng)計(jì),目前世界上的蘋果品種約有1000個(gè),其中已有幾十個(gè)品種在生產(chǎn)中廣泛栽培,但沒有一個(gè)品種能夠完全滿足生產(chǎn)者和消費(fèi)者的所有需求?,F(xiàn)已發(fā)現(xiàn)許多具有優(yōu)良性狀的自然突變體,并將其引入到生產(chǎn)中,成功改善了蘋果的品質(zhì)。蘋果的野生種、半野生種和栽培種等種質(zhì)資源,是蘋果傳統(tǒng)育種和基因工程育種的基礎(chǔ),也是培育優(yōu)良蘋果品種的保障[3]。因此,建立安全、有效的蘋果種質(zhì)資源保存方法是非常必要的。
蘋果既可利用種子繁殖也可無(wú)性繁殖,因無(wú)性繁殖具有能夠保存母本優(yōu)良性狀且耗時(shí)較短的優(yōu)點(diǎn),生產(chǎn)上蘋果以無(wú)性繁殖為主。田間保存和試管保存是用來(lái)保存無(wú)性繁殖植物種質(zhì)的傳統(tǒng)方法[4]。中國(guó)、美國(guó)、德國(guó)、意大利等多個(gè)國(guó)家通過建立蘋果種質(zhì)圃保存了多份蘋果材料[5-8]。田間保存的優(yōu)點(diǎn)是可原位保存且操作簡(jiǎn)易,但田間保存需占用大面積的土地、耗費(fèi)大量的勞力、受自然災(zāi)害和病蟲害的影響大,容易造成珍貴種質(zhì)材料的喪失。試管苗保存法可有效節(jié)省空間、避免了自然環(huán)境的威脅,但所需成本高,且需不斷繼代培養(yǎng),繼代培養(yǎng)次數(shù)增多易引起材料污染和遺傳變異,致使保存材料丟失[9-11]。超低溫保存法是將植物的組織或器官保存在-196 ℃的液氮中,在此溫度下,被保存植物材料的生命活動(dòng)幾乎完全停止,延長(zhǎng)了保存時(shí)間,避免了反復(fù)繼代培養(yǎng),有效地保持了植物組織的遺傳穩(wěn)定性,并且無(wú)需占用土地,節(jié)省了大量的空間和勞力[4,12,13]。超低溫保存法克服了傳統(tǒng)保存法存在的問題,被認(rèn)為是長(zhǎng)期保存無(wú)性繁殖植物材料的最有效、最理想的方法[3,14]。
1960年Sakai首次在Nature上報(bào)道了超低溫冷凍法保存桑樹材料[15]。隨后不斷對(duì)超低溫保存體系進(jìn)行優(yōu)化,發(fā)展了兩步冷凍法和快速冷凍法[3,4,13,16]。迄今已報(bào)道了多種果樹如柑橘、杏、桃、柿子等的材料成功利用超低溫法獲得保存[17-20]。近年來(lái),多個(gè)國(guó)家已建立并成功使用超低溫種質(zhì)資源基因庫(kù),如秘魯?shù)鸟R鈴薯超低溫基因庫(kù)[21]、比利時(shí)的香蕉種質(zhì)資源超低溫庫(kù)[22]、韓國(guó)和德國(guó)的大蒜超低溫基因庫(kù)[23,24]、美國(guó)的甘薯種質(zhì)資源超低溫庫(kù)[25]等。
1985年Kuo and Lineberge首次使用超低溫保存法成功保存了蘋果試管苗莖尖材料[26],之后相繼報(bào)道了多種優(yōu)化的蘋果超低溫保存技術(shù),如:兩步冷凍法[27]、玻璃化法[28,29]、小滴-玻璃化法[30]等。超低溫保存法通常包含培養(yǎng)、預(yù)處理、預(yù)培養(yǎng)、低溫鍛煉、液氮冷凍、解凍、再生等幾個(gè)步驟[31,32]。不同的超低溫保存技術(shù)體系會(huì)影響蘋果組織的再生和遺傳穩(wěn)定性,因此我們以‘Gala’蘋果組培苗為材料,在保證蘋果材料遺傳穩(wěn)定性的基礎(chǔ)上,通過不斷改進(jìn)和優(yōu)化玻璃化法超低溫保存試驗(yàn)條件,進(jìn)一步提高蘋果種質(zhì)冷凍保存的效率及穩(wěn)定性。
以‘Gala’蘋果的離體莖尖為材料,組培苗在繼代培養(yǎng)基上生長(zhǎng)30 d,每天16 h光照,光強(qiáng)為75 μmo1/(m2·s),培養(yǎng)溫度為25 ℃。
繼代培養(yǎng)基(pH=5.8):MS、6-BA(0.5 mg/L)、NAA(0.05 mg/L)、sucrose(0.5 mol/L)、agar(0.7%);
預(yù)培養(yǎng)液(蔗糖濃度梯度):MS、sucrose(0~1.2 mol/L);
裝載液:MS、sucrose(0.4 mol/L)、甘油(2 mol/L);
PVS2:MS、乙二醇(15%)、甘油(30%)、二甲基亞砜(15%)、sucrose(0.4 mol/L);
PVS3:甘油(50%)、sucrose(50%);
卸載液:MS、sucrose(1.2 mol/L);
恢復(fù)培養(yǎng)基(pH=5.8):MS、6-BA(0.5 mg/L)、sucrose(0.5 mol/L)、agar(0.7%);
4 ℃條件下,低溫馴化繼代生長(zhǎng)30 d的組培苗0~8周。取含頂芽的莖段,在顯微鏡下剝?nèi)∏o尖(長(zhǎng)度約1.5 mm,含1~2個(gè)葉原基),放入含蔗糖(0~1.2 mol/L)的預(yù)培養(yǎng)液中0~7 d,每組莖尖至少30個(gè);預(yù)培養(yǎng)后的莖尖放入裝載液中30 min;除去裝載液,添加玻璃化溶液PVS2或PVS3,0 ℃放置0~90 min;去除玻璃化溶液,再加入新的玻璃化溶液至恰好浸沒莖尖,投入液氮中冷凍24 h。取出液氮中保存的材料,放入40 ℃水浴中快速化凍1 min;添加卸載液,放置10 min,重復(fù)1次;將莖尖轉(zhuǎn)至恢復(fù)培養(yǎng)基中,暗培養(yǎng)1周后光照培養(yǎng),光強(qiáng)75 μmo1/(m2·s)光周期12 h/d,溫度25 ℃。
光照培養(yǎng)2周后統(tǒng)計(jì)存活率,綠色或黃綠色、長(zhǎng)出小葉或者脫分化形成愈傷組織的莖尖均視為存活,存活率(%) = 存活的莖尖個(gè)數(shù)/總莖尖數(shù)×100,重復(fù)3次,取平均值。
低溫處馴化組培苗能誘發(fā)植物的自然休眠,提高細(xì)胞內(nèi)的溶質(zhì)濃度,降低自由水含量,增強(qiáng)試管苗的抗寒能力,有助于提升試管苗冷凍后的再生能力[33,34]。為獲得‘Gala’蘋果試管苗的最佳低溫鍛煉時(shí)間,進(jìn)行了低溫?zé)捗绲臅r(shí)間進(jìn)程試驗(yàn)。結(jié)果顯示蘋果莖尖存活率隨低溫鍛煉時(shí)間的延長(zhǎng)呈現(xiàn)逐漸上升的趨勢(shì)。沒有經(jīng)過低溫處理的試管苗莖尖存活率只有46.2%,處理1周后的莖尖存活率顯著提高,達(dá)到62.7%;隨著低溫處理時(shí)間增長(zhǎng)至5周,蘋果莖尖存活率都逐漸升高,且升高趨勢(shì)顯著;處理5周后,蘋果莖尖的存活率升高趨勢(shì)變緩,變化不明顯(圖1)。隨著低溫處理時(shí)間增長(zhǎng),培養(yǎng)瓶?jī)?nèi)養(yǎng)分、水分不斷減少,致使試管苗開始萎蔫、發(fā)黃甚至死亡,不利于后續(xù)莖尖的剝?nèi)?,因此‘Gala’蘋果的低溫鍛煉的最佳時(shí)間為5周。
圖 1 不同低溫鍛煉時(shí)間對(duì)蘋果莖尖超低溫保存后存活率的影響
植物材料細(xì)胞中的自由水含量是超低溫保存成功的關(guān)鍵因素。自由水含量過高,細(xì)胞內(nèi)易形成冰晶,造成細(xì)胞機(jī)械損傷;含量過低,細(xì)胞會(huì)因過度脫水而死亡[35]。按冰凍保護(hù)劑能否滲透到細(xì)胞內(nèi),可將其分為滲透性和非滲透性兩類,蔗糖屬于非滲透性冰凍保護(hù)劑,是目前預(yù)培養(yǎng)培養(yǎng)基中常添加的冰凍保護(hù)劑[36,37]。為研究‘Gala’蘋果莖尖預(yù)培養(yǎng)的最適蔗糖濃度,進(jìn)行了蔗糖濃度梯度實(shí)驗(yàn)。由圖2A可知,蘋果莖尖存活率隨蔗糖濃度的升高呈現(xiàn)先上升再下降的趨勢(shì),預(yù)培養(yǎng)液中蔗糖濃度為0.3 mol/L時(shí),存活率達(dá)到最高,說明預(yù)培養(yǎng)液中蔗糖濃度顯著影響蘋果莖尖玻璃化法超低溫保存的成活率。
植物組織的預(yù)培養(yǎng)時(shí)間對(duì)玻璃化超低溫保存的成功率有很大的影響。如圖2B所示,蘋果莖尖玻璃化法超低溫保存后的存活率隨預(yù)培養(yǎng)天數(shù)的延長(zhǎng)表現(xiàn)出先上升后下降的趨勢(shì),在預(yù)培養(yǎng)5天時(shí)蘋果莖尖存活率達(dá)到最高,之后隨著時(shí)間延長(zhǎng),再生率開始下降。
圖 2 預(yù)培養(yǎng)基蔗糖濃度和預(yù)培養(yǎng)時(shí)間對(duì)蘋果莖尖超低溫保存后存活率的影響
A:不同蔗糖濃度預(yù)培養(yǎng)蘋果莖尖,超低溫保存后存活率的統(tǒng)計(jì);B:蘋果莖尖預(yù)培養(yǎng)不同時(shí)間,超低溫保存后存活率的統(tǒng)計(jì)。
A: Effect of sucrose concentration of preculture on survival rate of cryopreserved ‘Gala’ shoot tips; B: Effect of preculture duration on survival rate of cryopreserved ‘Gala’ shoot tips.
玻璃化溶液對(duì)莖尖細(xì)胞有滲透保護(hù)的作用,降低細(xì)胞的自由水含量,減少冷凍時(shí)細(xì)胞內(nèi)冰晶的形成,進(jìn)而保護(hù)細(xì)胞的完整性,因此玻璃化法可提高超低溫保存的存活率[38]。目前常用的玻璃化溶液主要有PVS2[39]和PVS3[40]兩種。由于玻璃化溶液的濃度及處理時(shí)間影響植物細(xì)胞的狀態(tài)及再生效果,需不斷優(yōu)化試驗(yàn)條件,尋找最佳的玻璃化溶液和處理時(shí)間。由圖3所知,與沒有經(jīng)過玻璃化溶液處理的材料相比,玻璃化處理的莖尖材料的再生率顯著提高,就‘Gala’蘋果莖尖材料而言,玻璃化溶液PVS3的效果要明顯優(yōu)于PVS2,且處理60 min時(shí),冷凍保存后的再生率高達(dá)96.6%,效果最好。
圖 3 玻璃化溶液及處理時(shí)間對(duì)蘋果莖尖超低溫保存后存活率的影響
為探究?jī)?yōu)化的玻璃化超低溫保存技術(shù)是否影響再生后組培苗的生長(zhǎng)狀態(tài),將超低溫保存的蘋果莖尖與未經(jīng)超低溫保存的莖尖在恢復(fù)培養(yǎng)基上進(jìn)行生長(zhǎng)并觀察其生長(zhǎng)狀態(tài)(圖4)。通過統(tǒng)計(jì)對(duì)比發(fā)現(xiàn),玻璃化超低溫冷凍保存的蘋果莖尖再生苗在葉片長(zhǎng)寬比、葉片顏色、擴(kuò)繁系數(shù)和生根能力等方面均與未經(jīng)超低溫保存的莖尖再生苗無(wú)顯著差異(表1)。說明優(yōu)化的‘Gala’蘋果莖尖玻璃化超低溫冷凍保存法不影響植物材料的生長(zhǎng)狀態(tài),能保持其生長(zhǎng)的穩(wěn)定性。
圖 4 蘋果莖尖再生苗
A:超低溫冷凍保存復(fù)活后的組培苗;B:未冷凍保存處理的蘋果莖尖組培苗。
A: Regrowth of cryopreserved ‘Gala’ shoot tips; B: Regrowth of apple stem tip without cryopreservation treatment.
表 1 超低溫冷凍保存后蘋果莖尖組培苗生長(zhǎng)狀態(tài)觀察
超低溫保存技術(shù)的成功率與被保存植物材料的生理特性有密切關(guān)系,因此必須對(duì)材料進(jìn)行預(yù)處理。預(yù)處理通常有反復(fù)繼代、低溫鍛煉和預(yù)培養(yǎng)3種方法,進(jìn)而減少細(xì)胞內(nèi)的自由水含量,增強(qiáng)被保存材料的抗凍能力,提高超低溫保存材料的再生力[41]。我們的研究發(fā)現(xiàn)低溫鍛煉和預(yù)培養(yǎng)都對(duì)‘Gala’莖尖的超低溫保存效果有顯著的影響?!瓽ala’莖尖的存活率隨低溫鍛煉時(shí)間的延長(zhǎng)而提高,而吳傳金等[42]發(fā)現(xiàn)超低溫冷凍的新疆野蘋果的成活率隨低溫鍛煉時(shí)間的延長(zhǎng)呈下降趨勢(shì),說明低溫鍛煉的效果與蘋果的品種有關(guān)。由于不同蘋果樹種對(duì)超低溫保存的要求和條件差異較大,并且整個(gè)超低溫保存過程耗時(shí)較長(zhǎng),致使現(xiàn)今仍缺乏高效、廣譜的蘋果莖尖超低溫保存技術(shù)[43],限制了蘋果種質(zhì)資源超低溫保存庫(kù)的建立。今后,在保持蘋果莖尖存活率的基礎(chǔ)上,仍需簡(jiǎn)化超低溫保存技術(shù)的操作,建立簡(jiǎn)易、高效的保存體系。
多個(gè)莖尖超低溫保存的研究中發(fā)現(xiàn),不同實(shí)驗(yàn)室利用相同的技術(shù)體系保存同一基因型材料,統(tǒng)計(jì)的再生率表現(xiàn)出極大差異[44,45]。這可能是由受試材料的帶毒狀況不同導(dǎo)致的,病毒對(duì)試管苗的分化、生長(zhǎng)及生理代謝等都有顯著的影響[46]。在研究莖尖超低溫保存技術(shù)時(shí)可以與脫毒技術(shù)相結(jié)合,建立新型的脫毒技術(shù),保存蘋果無(wú)毒苗,為蘋果的無(wú)毒生產(chǎn)開辟新的途徑。
玻璃化超低溫保存法是目前果樹資源種質(zhì)保存的常用方法。本研究從低溫鍛煉時(shí)間、預(yù)培養(yǎng)基蔗糖濃度、預(yù)培養(yǎng)時(shí)間和玻璃化溶液及處理時(shí)間四個(gè)方面對(duì)‘Gala’蘋果莖尖的玻璃化超低溫保存體系進(jìn)行了優(yōu)化,獲其保存的最佳體系為:將生長(zhǎng)30 d的組培苗在4 ℃的條件下低溫鍛煉5周,剝?nèi)∏o尖,放置于含0.4 mol/L蔗糖的預(yù)培養(yǎng)基中,預(yù)培養(yǎng)5 d,在滲透裝載液中滲透30 min,0 ℃條件下,用PVS3玻璃化溶液處理60 min,放入液氮中冷凍24 h,取出后置于40 ℃水浴中1 min快速化凍,卸載液清洗兩次,每次10 min,然后在恢復(fù)培養(yǎng)基上培養(yǎng),莖尖的再生率最高且生長(zhǎng)穩(wěn)定性好。
[1] 李育農(nóng).世界蘋果屬植物的起源演化研究新進(jìn)展[J].果樹科學(xué),1999,16(S1):8-19
[2] 汪景彥,程存剛,鮑玉院,等.論我國(guó)蘋果生產(chǎn)類型與技術(shù)特點(diǎn)[J].果農(nóng)之友,2008,2:4
[3] Wang QC, Perl A. Cryopreservation in floricultural plants [M]//Silva JT (ed) Floriculture, ornamental and plant biotechnology: advances and topical issues. Global Science Book, London, 2006:524-539
[4] Engelmann F. In vitro conservation methods [M]//Callow JA, Ford-Lloyd BV, Newbury HJ (eds) Biotechnology and plant genetic resources. CAB International, Oxon, 1997:119-161
[5] 劉鳳之,王昆,曹玉芬,等.我國(guó)蘋果種質(zhì)資源研究現(xiàn)狀與展望[J].果樹學(xué)報(bào),2006,23(6):1009-9980
[6] Gao Y, Liu FZ, Wang K,. Genetic diversity ofcultivars and wild relatives in the Chinese National Repository of Apple Germplasm Resources [J]. Tree Genetics & Genomes, 2005,11(5):106
[7] Hanke MV, Flachowsky H, Hofer M,. Collecting fruit genetic resources in the North Caucasus region [J]. Journal Fur Kulturpflanzen, 2012,64(4):126-136
[8] Sartori A, Grassi F, Vitellozzi F,. The conservation activity on fruit tree germplasm in Italy [J]. Acta Horticulturae, 2003,623(23):217-224
[9] Hao YJ, Deng XX. Genetically stable regeneration of apple plants from slow growth [J]. Plant Cell Tissue and Organ Culture, 2003,72(3):253-260
[10] Negri V, Tosti N, Standardi A. Slow-growth storage of single node shoots of apple genotypes [J]. Plant Cell Tissue and Organ Culture, 2000,62(2):159-162
[11] Kovalchuk I, Lyudvikova Y, Volgina M,. Medium, container and genotype all influence in vitro cold storage of apple germplasm [J]. Plant Cell Tissue and Organ Culture, 2009,96(2):127-136
[12] Benson EE. Cryopreservation of phytodiversity: a critical appraisal of theory & practice [J]. Critical Reviews in Plant Science, 2008,27(3):141-219
[13] Reed BM, Uchendu E. Controlled rate cooling [M]//Reed BM. Plant cryopreservation: A practical guide. London: Springer Press, 2008:77-92
[14] Feng CH, Yin ZF, Ma YL,. Cryopreservation of sweet potato () and its pathogen eradication by cryotherapy [J]. Biotechnology Advances, 2011,29(1):84-93
[15] Sakai A. Survival of the twigs of woody plants at -196 ℃ [J]. Nature, 1960,185:392-394
[16] Wang RR, Gao XX, Chen L,. Shoot recovery and genetic integrity ofshoot tips following cryopreservation bydroplet-vitrification [J]. Scientia Horticulturae, 2014,176:330-339
[17] 艾鵬飛,羅正榮.柿和君遷子試管苗莖尖玻璃化法超低溫保存及再生植株遺傳穩(wěn)定性研究[J].中國(guó)農(nóng)業(yè)科學(xué),2004,37(12):2023-2027
[18] 王子成.柑橘種質(zhì)資源的離體保存研究[D].武漢:華中農(nóng)業(yè)大學(xué),2002
[19] 趙艷華,吳雅琴.桃離體莖尖的超低溫保存及植株再生[J].園藝學(xué)報(bào),2006,33(5):1042-1044
[20] Channuntapipat C, Collins G, Bertozzi T,. Cryopreservation of in vitro almond shoot tips by vitrification [J]. Journal of Horticultural Science & Biotechnology, 2000,75(2):228-232
[21] Panta A, Panis B, Ynouye C,. Improvement of potato cryopreservation for the long-term conservation of Andean landraces at the International Potato Center (CIP) [J]. Cryobiology, 2006,53(3):401-403
[22] Panis B. Cryopreservation of Musa germplasm [M]//Engelmann F, Benson E. Technical Guidelines No. 9. 2nd edition. Bioversity International, 2009
[23] Zanke C, Zamecnik J, Kotlińska T,. Cryopreservation of garlic for the establishment of a European core collection [J]. Acta Horticulturae, 2011,908:431-438
[24] Kim HH, Popova E, Shin DJ,. Cryobanking of Korean Allium germplams collections: results from a 10 year experience [J]. Cryo Letters, 2012,33(1):45-57
[25] Vollmer R. Criopreservación de yemas apicales del tallo de camote ((L.) Lam.) conel método de “Vitrificación en la gota peque?a de PVS2” [D]. Lima: National University for Agronomic Science, 2013.
[26] Kuo CC, Lineberger RD. Survival of in vitro cultured tissue of ‘Jonathan’ apples exposed to -196 ℃ [J]. Hort Science, 1985,20(4):764-767
[27] Wu YJ, Engelman F, Zhao YH,. Cryopreservation of apple shoot tips: importance of cryopreservation technique and of conditioning of donor plants [J]. Cryo Letters, 1999,20(2):121-130
[28] Liu YG, Wang XY, Liu LX. Analysis of genetic variation in surviving apple shoots following cryopreservation by vitrification [J]. Plant Science, 2004,166(3):677-685
[29] Kushnarenko SV, Romadanova NV, Reed BM. Cold acclimation improves regrowth of cryopreserved apple shoot tips [J]. Cryo Letters, 2009,30(1):47-54
[30] Condello E, Caboni E, Andrè E,. Cryopreservation of apple in vitro axillary buds usingdroplet-vitrification [J]. Cryo Letters, 2011,32(2):175-185
[31] Harding K. Genetic integrity of cryopreserved plant cells: areview [J]. Cryo Letters, 2004,25(1):3-22
[32] González-Arnao MT, Engelmann F. Current development and application of plant cryopreservation in Latin America and the Caribbean [J]. Acta Horticulturae, 2011,908(908):447-452
[33] Bilav?ík A, Záme?ník J, Faltus M,. Dormancy development during cold hardening of in vitro cultured Malus domestica Borkh. plants in relation to their frost resistance and cryotolerance [J]. Trees, 2012,26(4):1181-1192
[34] Kushnarenko S, Kovalchuk I, Mukhitdinova Z,. Ultrastructure study of apple meristem cells during cryopreservation [J]. Asian Aust J Plant Sci Biotechnol, 2010,4(1):10-20
[35] Keefe PD, Moore KG. Freeze desiccation: a second mechanism for the survival of hydrated lettuce (L.) seed at sub-zero temperatures [J]. Annals of Botany, 1981,47(5):635-645
[36] Niino T, Tashiro K, Suzuki M,. Cryopreservation of in vitro gown shoot tips of cherry and sweet cherry by one-step vitrification [J]. Sci-Hortic, 1997,70(2-3):155-163
[37] Leena R. Effect of abscisic acid, cold hardening, and photoperiod on recovery of cryopreserved in vitro shoot tips of silver birch [J]. Cryobiology, 1998,36(1):32-39
[38] Niino T, Sakai A, Yakuwa H,. Cryopreservation of in vitro-grown shoot tips of apple and pear by vitrification [J]. Plant Cell Tissue and Organ Culture, 1992,28(3):261-266
[39] Sakai A, Kobayashi S, Oiyama I. Cryopreservation of nucellar cells of navel orange (Osb. var.Tanaka) by vitrification [J]. Plant Cell Reports, 1990,9(1):30-33
[40] Nishizawa S, Sakai A, Amano Y,. Cryopreservation of asparagus (L.) embryogenic suspension cells and subsequent plant regeneration by vitrification [J]. Plant Science, 1993,91(1): 67-73
[41] Sopalun K, Thammasiri K, Ishikawa K,. Vitrification-based cryopreservation of grammatophyllum speciosum protocorms [J]. CryoLetters, 2010,31(4):347-357
[42] 吳傳金,陳學(xué)森,曾繼吾,等.新疆野蘋果()超低溫保存及其植株再生[J].遺傳資源學(xué)報(bào),2008,9(2):243-247
[43] Condello E, Caboni E, Andrè E,. Cryopreservation of apple in vitro axillary buds using droplet-vitrification [J]. Cryo Letters, 2011,32(2):175~185
[44] Hao YJ, Liu QL, Deng XX. Effect of cryopreservation on apple geneticresources at morphological, chromosomal, and molecular levels [J]. Cryobiology, 2001,43(1):46-53
[48] Feng CH, Cui ZH, Li BQ,. Duration of sucrose preculture is critical for shoot regrowth of in vitro-grown apple shoot-tips cryopreserved by encapsulation-dehydration [J]. Plant Cell Tissue and Organ Culture, 2013,112:369-378
[46] Li JW, Wang B, Song XM,. Potato leafroll virus (PLRV) and Potato virus Y (PVY) influence vegetative growth, physiological metabolism, and microtuber production of in vitro-grown shoots of potato (L.) [J]. Plant Cell Tissue and Organ Culture, 2013,114:313-324
Cryopreservation of 'Gala' Apple in Vitro by Vitrification
XU Na, CHEN Gui-ling, YANG Lei, ZHU Zi-han, CHEN Li, HAN Ya-ding, LIU Fei*
276800,
We optimized the vitrified cryopreservation system from low-temperature trained time, sucrose concentration of pre-culture medium, pre-culture time, vitrification solution and treatment time for cryopreservation of 'Gala' apple stem tip. Tissue culture seedlings grown for 30 days were subjected to cold acclimation at 4℃ for 5 weeks; the shoot tips were stripped, cultured in the preculture solution containing 0.4 mol/L sucrose for 5 days; followed by permeating in loading solution for 30 min; vitrified by PVS3 for 60 min at 0 ℃;frozen in liquid nitrogen for 24 h; thawed in water bath at 40 ℃for 1 min; washed twice by dilution solution, 10 min each time; finally recovered in the medium, the shoot tips grew stably and the regeneration rate was up to 96.6%. The study has successfully established effective vitrification cryopreservation protocol of 'Gala' shoot tips, and provided an innovative way for long-term conservation of apple germplasm.
‘Gala’ apple; cryopreservation; tissue culture
S602.4
A
1000-2324(2023)05-0718-06
10.3969/j.issn.1000-2324.2023.05.011
2023-06-21
2023-10-19
國(guó)家自然科學(xué)基金(32000194);山東省自然科學(xué)基金(ZR2017BC081);作物生物學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室開放項(xiàng)目(2017KF08);山東省高等學(xué)校青年創(chuàng)新團(tuán)隊(duì)(2022KJ102);山東省教育科學(xué)規(guī)劃創(chuàng)新素養(yǎng)專項(xiàng)課題(2022CYB210);濟(jì)寧醫(yī)學(xué)院教師國(guó)內(nèi)訪學(xué)項(xiàng)目
徐娜(1985-),女,博士研究生,研究方向:植物營(yíng)養(yǎng)學(xué)及果樹種質(zhì)資源保存. E-mail:xuna828@163.com
Author for correspondence. E-mail:liufei092531@163.com