• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-damage photolithography for magnetically doped(Bi,Sb)2Te3 quantum anomalous Hall thin films

    2023-12-02 09:22:48ZhitingGao高志廷MinghuaGuo郭明華ZichenLian連梓臣YaoxinLi李耀鑫YunheBai白云鶴XiaoFeng馮硝KeHe何珂YayuWang王亞愚ChangLiu劉暢andJinsongZhang張金松
    Chinese Physics B 2023年11期
    關(guān)鍵詞:劉暢高志白云

    Zhiting Gao(高志廷), Minghua Guo(郭明華), Zichen Lian(連梓臣),Yaoxin Li(李耀鑫), Yunhe Bai(白云鶴), Xiao Feng(馮硝),2,4,5, Ke He(何珂),2,4,5,Yayu Wang(王亞愚),4,5, Chang Liu(劉暢), and Jinsong Zhang(張金松),4,5,§

    1State Key Laboratory of Low Dimensional Quantum Physics,Department of Physics,Tsinghua University,Beijing 100084,China

    2Beijing Academy of Quantum Information Sciences,Beijing 100193,China

    3School of Integrated Circuits,Tsinghua University,Beijing 100084,China

    4Frontier Science Center for Quantum Information,Beijing 100084,China

    5Hefei National Laboratory,Hefei 230088,China

    6Beijing Key Laboratory of Opto-electronic Functional Materials&Micro-Nano Devices,Department of Physics,

    Renmin University of China,Beijing 100872,China

    7Key Laboratory of Quantum State Construction and Manipulation(Ministry of Education),Renmin University of China,Beijing 100872,China

    Keywords: topological insulator,quantum anomalous Hall effect,fabrication techniques

    1.Introduction

    Magnetic topological insulators(TIs)have attracted wide attention in condensed matter physics in the past decade.The intricate interplay between magnetic order and band topology gives rise to a variety of exotic topological quantum phenomena.[1,2]A prominent example is the QAH effect[3]that was first realized in Cr-doped (Bi,Sb)2Te3magnetic TI thin films grown by molecular beam epitaxy (MBE).As a contemporary version of the integer quantum Hall(QH)effect without magnetic field,[4,5]the QAH effect is characterized by a quantized Hall resistanceRyx ~h/e2and a zero longitudinal resistanceRxx ~0 at zero magnetic field, wherehrepresents the Plank constant andedenotes the elementary charge.Distinct from the integer QH effect that originates from the formation of Landau levels in strong magnetic field,[6]the QAH effect arises from the interplay between magnetic order and spin–orbit coupling,which opens an exchange gap at the Dirac point of the surface state.[7,8]When the Fermi level (EF) is tuned within the band gap, the QAH effect appears and the transport is carried by 1D dissipationless chiral edge state.[9,10]The realization of the QAH effect not only opens a new avenue for exploring exotic topological quantum physics,[11–20]but also holds great potential for practical applications, such as the low power consumption electronic devices,[9]topological quantum computation,[21,22]and metrology for quantum resistance.[23,24]

    Since the first experimental observation of the QAH effect in Cr-doped (Bi,Sb)2Te3magnetic TIs,[3,11,12]the optimization of the QAH effect has become an important target in both condensed matter physics and material science.On the one hand,the adjustment of the sample growth conditions,such as by changing the magnetic dopant from Cr to V[25,26]or developing the magnetic modulation doping method instead of single doping,[26]can significantly enhance the observable temperature from 50 mK to 1 K.On the other hand,the continuously being discovered new materials such as MnBi2Te4intrinsic magnetic TI,[27,28]twisted bilayer graphene,[29,30]and AB-stacked MoTe2/WSe2heterobilayers[31]provide alternative routes to realize the QAH effect.In addition to the progress in searching for new materials, developing effective sample protection scheme represents another important direction in the study of the QAH effect.[32,33]However, in real experiment,even starting with the optimized materials,it does not guarantee that the fabricated device would retain its electronic properties as the original materials.The protective layer may also react with the chemical reagents during the fabrication process.In order to control and manipulate the dissipationless chiral edge states in functional electronic devices,artificially fabricating micro-structures by lithography are unavoidable.Therefore, considering the sensitivity of the electronic properties of TI films,[34,35]it is of great importance to develop a low-damage lithography method for magnetically doped(Bi,Sb)2Te3QAH films.

    Previous researches on magnetic TIs along this direction mainly focused on the electron-beam-lithography (EBL), by which nanostructures down to tens of nm can be easily patterned.By developing low-damage EBL for nanostructures on Bi2Te3family TIs,various interesting quantum transport phenomena have been observed in experiment.[36–38]However,for another lithography method, the photolithography, which is more compatible with modern integrated circuit manufacture, its influence on the QAH behaviors has not been thoroughly explored.It is unclear whether the chemical reagents in photolithography would shift theEFposition or affect the magnetism.Therefore, it is highly desirable to develop lowdamage photolithography methods and perform control experiments on the influence of different fabrication methods on the properties of QAH thin films.Here, we have developed a low-damage photolithography method for magnetically doped (Bi,Sb)2Te3QAH thin films incorporating two resist layers of PMMA and AR-P 3740 (manufactured by AllResist),two commonly used positive resists in conventional EBL and photolithography, respectively.By measuring the transport behaviors of five QAH thin films fabricated by mechanical scratching,conventional photolithography with single resist, and modified photolithography scheme with two resists,we found that the new photolithography method enables the fabrication of QAH thin films with the transport and magnetic properties almost identical to those of the films fabricated by mechanical scratching.Our result represents a key step towards the production of novel micro-structured devices based on the dissipationless QAH chiral edge states.

    2.Experimental details

    The three QAH samples used in this study were 5-QL thick Cr/V doped (Bi,Sb)2Te3thin films grown by MBE on three SrTiO3(111)substrates following the recipes in our previous work.[19,25]Samples #1 and #2 were deposited with a 2-nm thick Al layerin-situin the MBE chamber at room temperature, which was then oxidized naturally into highly insulating AlOxwhen the samples were taken out of the MBE chamber [Fig.1(a)].The deposition of AlOxcan protect the QAH thin films from aging effect and is one of the most efficient methods for QAH sample protection.To explore the influences of photolithography on the transport properties,both samples#1 and#2 were cut into two pieces(#1-A,#1-B,#2-A,and#2-B).For samples#1-A and#2-A,Hall bar structures were mechanically scratched by hand using a sharp needle.For samples#1-B and#2-B,we adopted the conventional photolithography with single resist(AR-P 3740)and the modified photolithography method with two resists(PMMA and AR-P 3740),along with the etching method to pattern Hall bar structures(see the following paragraph for details).For sample#3,no capping layer was covered on the surface,which was used to determine the effect of heating on the transport properties.For transport measurements, a standard low-frequency fourprobe lock-in method was adopted with an excitation current of 200 nA at the frequency of 13 Hz.The SiTiO3substrate served as the gate dielectric due to its large dielectric constant at low temperature.The magnetic field was applied perpendicular to the film plane in a commercial He4refrigerator with the base temperature of 1.5 K.To eliminate the pick-up signals from geometrical misalignments,all the collectedRyxdata were antisymmetrized with respect to the magnetic field.

    Figure 1 illustrates the schematic process of the modified photolithography method with two resists of PMMA and ARP 3740.We started by spin-coating the QAH thin films with a layer of 120 nm thick PMMA(marked by blue color)in an argon-filled glovebox with the O2and H2O levels lower than 0.1 PPM [Fig.1(b)].The sample was then transferred to a low-pressure environment pumped down to 5 Pa for 20 min to drive off excess resist solvent.Next,another 700 nm thick resist AR-P 3740(marked by yellow color)was coated on top of the PMMA layer [Fig.1(c)].Then the film was baked at 85?C for 5 min to solidify the resists.After baking, the device was first exposed to a pattern of intense ultraviolet(UV)light with the dose of 55 mJ/cm2.In the next,the exposed area of AR-P 3740 was then dissolved by the sodium hydroxide developer for 20 s and rinsed with deionized water, leaving a Hall-shaped photoresist layer on the top of the PMMA layer[Fig.1(d)].Subsequently, oxygen plasma was employed to etch the PMMA layer [Fig.1(e)], with the Hall-shaped photoresist layer serving as a mask.The oxygen flow rate and pressure were controlled at 15 SCCM and 200 Pa, and the frequency and power of the radio-frequency field were set to be 13.56 MHz and 60 W.Although the AR-P 3740 layer also became slightly thinner during the oxygen plasma ashing process,the remaining layer was sufficient to serve as a mask during the etching of the PMMA layer.For the AlOxprotective layer and the QAH thin film, argon ion beam etching (IBE)with a beam current of 70 mA was employed at the rate of 15 SCCM and pressure of 2.2×10-2Pa[Fig.1(f)].After that,the sample was cleaned with acetone,rinsed with isopropanol and deionized water, and dried with nitrogen to remove the PMMA and AR-P 3740 resists completely[Fig.1(g)].Finally,electrical contacts were made by pressing indium pieces onto the films[Fig.1(h)].Commonly adopted deposition methods such as evaporation or sputtering can also be used for making electrodes.Compared to conventional photolithography, the modified method contains two additional steps of spin-coating PMMA and oxygen plasma ashing for the PMMA layer.

    3.Results and discussion

    To study the effect of standard photolithography on the properties of the QAH thin films, we first explored the magnetic field dependentRyxandRxxat various gate voltages(Vgs) for samples #1-A and #1-B, which were fabricated by mechanical scratching and conventional photolithography,respectively.Figure 2(a) displays the magnetic field dependentRyxandRxxfor sample#1-A.All the transport data shown in this work were taken at 1.5 K.The Hall traces exhibit wellsquared hysteresis loops, indicating the formation of longrange ferromagnetic order.AtVg=50 V,Ryxreaches the maximum value of 21.8 k? at zero magnetic field.Such high value ofRyxsuggests that the sample has already entered the incipient QAH state.[3]AsVgis moved away from 50 V,electronand hole-like carriers are injected into the sample.As a result, the zero-magnetic-fieldRyxis progressively reduced to 16.0 k? and 17.9 k? at-200 V and 200 V.The magnetoresistance curves exhibit the typical shape for a ferromagnet with two symmetric peaks at the coercive field.AtVg=50 V,Rxxreaches the minimum value of 20.1 k? at zero magnetic field,and increases to 41.6 k? at the plateau transition.To check if the conventional photolithography affects the transport properties of QAH thin films, we measured the transport properties on sample#1-B at the same conditions,with the data displayed in Fig.2(b).For sample #1-B, the shape of the Hall hysteresis is much less-squared than that of the sample #1-A.And the maximum value ofRyxis only as low as 3.3 k?at 150 V,significantly reduced by nearly one order of magnitude.Meanwhile,the overall value ofRxxalso increases significantly,along with two broad and gentle peaks.These results clearly indicate the severe degradation of QAH sample quality during the conventional photolithography process.

    In previous studies, people have already found that the QAH thin films are fragile and very sensitive to ambient conditions.[32–35]Therefore, a layer of AlOxis usually deposited on the surface to protect the sample from degradation.However, during the developing process of photolithography,the sodium hydroxide developer could react with the AlOxlayer and is also detrimental to the QAH films.To figure out this issue, we came up with the idea of adding an additional capping layer to isolate the AlOxlayer from directly contacting with the developer.In this case,the transport properties of the QAH films can be largely retained after fabrication.In order to verify our conjecture,we performed another control experiment on two QAH devices(samples#2-A and#2-B)obtained from one film, which were fabricated by mechanical scratching and modified photolithography,respectively.As shown in Figs.2(c) and 2(d), the Hall and magnetoresistance traces of the film by the modified photolithography(#2-B)show similar transport behaviors to those of the film fabricated by mechanical scratching (#2-A).The maximumRyxat zero magnetic field of sample#2-B reaches as high as 18.9 k?,only slightly lower than that of sample #2-A, which is 20.1 k?.The values ofRxxand their variation in magnetic field for negativeVgs of sample#2-B are very close to those of sample#2-A.Only a small decrease is observed inRxxfor positiveVgs, which is far away from the charge neutrality point.These observations strongly suggest that the modified photolithography with two resists is of low damage to the sample quality.

    To amplify the different transport behaviors between the three fabrication methods, we extracted the values ofRyxat zero magnetic field and summarized its variation as a function ofVg.As shown in Fig.3(a),the conventional photolithography process not only reduces the value ofRyx, but also shifts the position ofEF.For sample #1-A,Ryxreaches the maximum at the charge neutrality point of around 50 V.However,for sample #1-B, theVgof the maximumRyxshifts to 150 V,indicating that the sample is p-doped during the photolithography.In contrast,for samples#2-A and#2-B,we found that theVgdependent transport data are almost overlapped.There is no obvious doping effect after the modified photolithography process.In Figs.3(c)and 3(d), we summarized the values of coercive field(Hc)as a function ofVgfor the two sets of data.The sharp contrast between the two curves in Fig.3(c)clearly demonstrates that the conventional photolithography scheme is detrimental to the properties of the QAH thin films.In contrast, the PMMA-protected photolithography method can largely keep the magnetism less affected by fabrication,as displayed in Fig.3(d).

    Fig.3.Comparison of transport and magnetic behaviors of the samples fabricated by different methods.(a)Vg dependent Ryx at zero magnetic field for samples #1-A and #1-B.The data for #1-B are multiplied by 3 for clarity.(b)Ryx at zero magnetic field as a function of Vg for samples#2-A and#2-B.(c)Vg dependent coercive field(μ0Hc)for samples#1-A and#1-B.(d)μ0Hc as a function of Vg for samples#2-A and#2-B.

    Finally, we discuss a heating issue in the baking process during the lithography.In both EBL and photolithography,after the spin coating of the resist, a baking process is required to solidify the resist.The typical heating temperature for photoresist and e-beam resist ranges from 90?C to 180?C, and the baking time depends on the temperature and the thickness of resist,usually from 5 to 20 minutes.However,as displayed in Fig.4(a)for sample#3,Ryxdecreases from 18 k? to 11 k?when the sample is heated at 90?C in vacuum for 5 min, indicating that the properties of the QAH thin film are sensitive to heating and can be damaged at high temperature.Therefore,the up limits of baking temperature and time throughout our experiment are controlled to be 85?C and 5 minutes.To make sure that both resists can be tempered enough at such a low temperature and a short total time,we conducted only one baking process after the spin coating of both resists.However,it brings in another issue that micrometer size holes appeared in the PMMA layer after the development of the photoresist.Figures 4(b) and 4(c) display the typical optical image of a fabricated device after the photoresist development and the atomic force microscopy (AFM) measurement result for the holes, respectively.We found that the depth of the holes is exactly the thickness of the PMMA layer, indicating that the holes run through the PMMA layer.Such result indicates that the sodium hydroxide developer can touch the film through these holes,making the protection ineffective.The appearance of the holes is attributed to the mutual dissolving of PMMA and AR-P 3740 due to the lack of baking of the PMMA layer before spin-coating AR-P 3740 photoresist.Exposure and development of the AR-P 3740 droplets in the PMMA layer give rise to the formation of holes in the PMMA layer,as illustrated in Figs.4(f)–4(h).To address this issue,we introduced a vacuuming process before spin coating of AR-P 3740, in which the pressure was reduced to 5 Pa for 20 min to solidify the PMMA layer.As shown in Figs.4(d) and 4(e), no obvious holes are observed in the optical image after the vacuuming process,and the AFM result displays a step edge with a height of 700 nm,which corresponds to the thickness of the photoresist.The schematic illustration of a device without holes is depicted in Fig.4(i).

    4.Conclusion

    In summary,we found that the conventional photolithography scheme with single resist cannot retain the properties of the original QAH thin film.Compared to the device fabricated by mechanical scratching,photolithography process reduces the Hall resistance and weakens the magnetic coercive field.By covering a layer of PMMA to isolate the protective layer of AlOxfrom the photoresist, we demonstrated that the PMMA-protected photolithography method enables the fabrication of QAH devices with the transport and magnetic properties almost identical to those of the pristine films.Our result represents a key step towards the production of microstructured electronic devices based on the dissipationless QAH chiral edge states.Additionally,this method could also be effectively applied to other sensitive two-dimensional thin film materials.

    Acknowledgements

    This work was supported by the National Key Research and Development Program of China (Grant No.2018YFA0307100), the Basic Science Center Project of the National Natural Science Foundation of China (Grant No.52388201), the National Natural Science Foundation of China (Grant Nos.12274453 and 92065206), and the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302502).Chang Liu was also supported by Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (Grant No.KF202204).Yayu Wang was also supported by the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE.

    猜你喜歡
    劉暢高志白云
    本期名家—高志祥
    高志剛
    Shallow-water sloshing motions in rectangular tank in general motions based on Boussinesq-type equations *
    白云(外三首)
    天津詩人(2017年2期)2017-11-29 01:24:14
    春來啦
    尋找丟失的快樂
    The dynamics of the floodwater and the damaged ship in waves*
    珍視自我
    白云的來歷
    夏天咋來的
    欧美精品一区二区大全| 黑人高潮一二区| 老熟女久久久| 下体分泌物呈黄色| 国产精品久久久久久av不卡| 另类亚洲欧美激情| 国产精品久久久久久精品古装| 国产黄片视频在线免费观看| 中文字幕人妻丝袜制服| 老司机影院成人| 久久久国产一区二区| 欧美97在线视频| 97精品久久久久久久久久精品| 免费大片18禁| 精品少妇久久久久久888优播| 久久99热这里只频精品6学生| 日本av免费视频播放| 久久热精品热| 亚洲精品久久成人aⅴ小说 | 男女边吃奶边做爰视频| 日韩av在线免费看完整版不卡| 成人毛片60女人毛片免费| 高清午夜精品一区二区三区| 青春草视频在线免费观看| 97在线人人人人妻| 日本91视频免费播放| 免费黄频网站在线观看国产| 中文字幕人妻熟人妻熟丝袜美| 色婷婷久久久亚洲欧美| 久久ye,这里只有精品| 国产 一区精品| 99视频精品全部免费 在线| 亚洲三级黄色毛片| 韩国高清视频一区二区三区| av卡一久久| √禁漫天堂资源中文www| 亚洲色图 男人天堂 中文字幕 | 人妻系列 视频| 一区二区三区四区激情视频| 日韩中文字幕视频在线看片| 最新的欧美精品一区二区| 女人久久www免费人成看片| 国产一区有黄有色的免费视频| 天堂俺去俺来也www色官网| 丝袜美足系列| 国产亚洲午夜精品一区二区久久| 日本av免费视频播放| 亚洲精品av麻豆狂野| 精品人妻偷拍中文字幕| 国产毛片在线视频| 80岁老熟妇乱子伦牲交| 人妻 亚洲 视频| 国产精品人妻久久久久久| 精品少妇黑人巨大在线播放| www.av在线官网国产| 99视频精品全部免费 在线| 国产成人精品无人区| 久久久午夜欧美精品| 国产在线免费精品| 欧美人与善性xxx| 97超碰精品成人国产| 国产精品99久久久久久久久| 女人久久www免费人成看片| 寂寞人妻少妇视频99o| 成人毛片60女人毛片免费| 久久免费观看电影| 日韩av在线免费看完整版不卡| 久久久午夜欧美精品| 99热国产这里只有精品6| 精品一区二区免费观看| √禁漫天堂资源中文www| 看非洲黑人一级黄片| 日韩不卡一区二区三区视频在线| 黄片无遮挡物在线观看| av.在线天堂| 亚洲在久久综合| 精品一区二区三卡| 久热久热在线精品观看| 久久久久久久大尺度免费视频| 精品人妻熟女av久视频| 黄色视频在线播放观看不卡| 99热这里只有是精品在线观看| 欧美成人精品欧美一级黄| 精品人妻一区二区三区麻豆| 精品一品国产午夜福利视频| 18+在线观看网站| 女性生殖器流出的白浆| 91精品三级在线观看| 免费人成在线观看视频色| av黄色大香蕉| av视频免费观看在线观看| 伊人久久精品亚洲午夜| .国产精品久久| .国产精品久久| 99视频精品全部免费 在线| av.在线天堂| 国产黄频视频在线观看| 欧美日韩精品成人综合77777| 中国三级夫妇交换| 各种免费的搞黄视频| 国产黄频视频在线观看| 91久久精品电影网| 性高湖久久久久久久久免费观看| 亚洲人成网站在线观看播放| 亚洲第一av免费看| 99久久人妻综合| 免费看av在线观看网站| 亚洲av综合色区一区| 日本欧美国产在线视频| 下体分泌物呈黄色| 成年人午夜在线观看视频| 国产av国产精品国产| 青春草亚洲视频在线观看| 男女高潮啪啪啪动态图| 日日摸夜夜添夜夜爱| 少妇猛男粗大的猛烈进出视频| 多毛熟女@视频| 国产成人精品婷婷| 亚洲国产精品一区三区| 一区二区三区乱码不卡18| 久久精品夜色国产| 国产精品99久久99久久久不卡 | 日本av手机在线免费观看| 最近手机中文字幕大全| 亚洲欧美一区二区三区国产| 日韩欧美精品免费久久| av国产精品久久久久影院| 91久久精品国产一区二区三区| 日韩中文字幕视频在线看片| 亚洲综合色惰| 亚洲美女视频黄频| 国产一区二区三区av在线| 男女啪啪激烈高潮av片| 亚洲欧美一区二区三区黑人 | 久久精品久久精品一区二区三区| 男女国产视频网站| 国产精品免费大片| 我的女老师完整版在线观看| 一区在线观看完整版| 18在线观看网站| a级毛片在线看网站| 永久网站在线| 久久99一区二区三区| 十八禁网站网址无遮挡| www.av在线官网国产| 亚洲中文av在线| 亚洲人成77777在线视频| 美女大奶头黄色视频| 免费播放大片免费观看视频在线观看| 男女国产视频网站| 亚洲婷婷狠狠爱综合网| 亚洲欧美一区二区三区国产| 欧美 日韩 精品 国产| 国产在线一区二区三区精| 午夜精品国产一区二区电影| 丝袜脚勾引网站| 亚洲人与动物交配视频| 亚洲精品乱码久久久v下载方式| 两个人免费观看高清视频| 国产免费现黄频在线看| 亚洲av国产av综合av卡| 亚洲精品,欧美精品| 日本vs欧美在线观看视频| 一级a做视频免费观看| 国产av国产精品国产| 国产黄色视频一区二区在线观看| 精品亚洲成国产av| 国产又色又爽无遮挡免| 亚洲精品美女久久av网站| av.在线天堂| 纵有疾风起免费观看全集完整版| 国产精品久久久久久久电影| 成人亚洲欧美一区二区av| 精品亚洲成a人片在线观看| 国产日韩欧美亚洲二区| av卡一久久| 99国产综合亚洲精品| 十八禁网站网址无遮挡| 成年人免费黄色播放视频| 一级,二级,三级黄色视频| 99久久精品国产国产毛片| 久久久久久久久久久久大奶| 国产欧美亚洲国产| 亚洲成人av在线免费| 狠狠婷婷综合久久久久久88av| 一级,二级,三级黄色视频| 国产欧美另类精品又又久久亚洲欧美| 久久午夜综合久久蜜桃| 国内精品宾馆在线| 亚洲欧美一区二区三区国产| 最近的中文字幕免费完整| 亚洲精品一区蜜桃| 久久久欧美国产精品| 亚洲经典国产精华液单| 国产精品久久久久久久电影| 亚洲精品,欧美精品| 高清av免费在线| 丝袜美足系列| 三上悠亚av全集在线观看| 国产探花极品一区二区| 精品国产一区二区三区久久久樱花| 男女边摸边吃奶| 欧美bdsm另类| 少妇人妻 视频| 久久久精品94久久精品| 大香蕉97超碰在线| 2021少妇久久久久久久久久久| 国产精品久久久久久精品电影小说| 美女视频免费永久观看网站| 国产在线一区二区三区精| 欧美激情极品国产一区二区三区 | av线在线观看网站| 亚洲精品一二三| 日产精品乱码卡一卡2卡三| xxx大片免费视频| 美女内射精品一级片tv| av不卡在线播放| 婷婷色综合大香蕉| 久久久精品免费免费高清| 日本av手机在线免费观看| 国产伦精品一区二区三区视频9| 国产永久视频网站| 国产有黄有色有爽视频| 国产视频内射| 国产亚洲午夜精品一区二区久久| 精品少妇黑人巨大在线播放| 精品久久久噜噜| 乱人伦中国视频| 三级国产精品片| 亚洲国产色片| 丰满少妇做爰视频| 色视频在线一区二区三区| 午夜久久久在线观看| 一本色道久久久久久精品综合| 日本与韩国留学比较| 亚洲国产精品一区二区三区在线| 看免费成人av毛片| 欧美激情 高清一区二区三区| 97在线人人人人妻| 晚上一个人看的免费电影| 51国产日韩欧美| 在线 av 中文字幕| 日韩免费高清中文字幕av| 啦啦啦中文免费视频观看日本| 一级毛片电影观看| 啦啦啦在线观看免费高清www| 日本vs欧美在线观看视频| 久久精品国产自在天天线| av在线观看视频网站免费| 老司机影院毛片| 你懂的网址亚洲精品在线观看| 性高湖久久久久久久久免费观看| 一区二区三区精品91| 两个人的视频大全免费| 亚洲精品aⅴ在线观看| 欧美日韩一区二区视频在线观看视频在线| 性高湖久久久久久久久免费观看| 日本黄色日本黄色录像| 欧美+日韩+精品| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产深夜福利视频在线观看| 成年av动漫网址| 亚洲精品乱码久久久v下载方式| 香蕉精品网在线| 国产无遮挡羞羞视频在线观看| 一边摸一边做爽爽视频免费| 熟女人妻精品中文字幕| 狂野欧美白嫩少妇大欣赏| 亚洲国产精品专区欧美| 99热国产这里只有精品6| 一区在线观看完整版| 国产一区二区三区av在线| 国产精品偷伦视频观看了| 日本与韩国留学比较| 中文欧美无线码| 中文欧美无线码| 哪个播放器可以免费观看大片| 69精品国产乱码久久久| 久久精品久久久久久噜噜老黄| 欧美bdsm另类| 亚洲怡红院男人天堂| 99热网站在线观看| 免费播放大片免费观看视频在线观看| 最黄视频免费看| 草草在线视频免费看| 国产伦精品一区二区三区视频9| 菩萨蛮人人尽说江南好唐韦庄| 精品国产一区二区久久| 亚洲av.av天堂| av又黄又爽大尺度在线免费看| 一本色道久久久久久精品综合| 精品久久蜜臀av无| 一级片'在线观看视频| 一级a做视频免费观看| 成人影院久久| 在线观看美女被高潮喷水网站| 久久99热这里只频精品6学生| av国产精品久久久久影院| 午夜福利视频精品| 一本大道久久a久久精品| av女优亚洲男人天堂| 亚洲欧美一区二区三区国产| 三级国产精品片| 国产精品蜜桃在线观看| av黄色大香蕉| 成年女人在线观看亚洲视频| 久久毛片免费看一区二区三区| 人人妻人人爽人人添夜夜欢视频| 国产成人freesex在线| 国产精品一区二区在线观看99| 色网站视频免费| 边亲边吃奶的免费视频| 一区二区三区精品91| 美女主播在线视频| 少妇人妻久久综合中文| 大码成人一级视频| 搡老乐熟女国产| 国产黄片视频在线免费观看| 国产免费一区二区三区四区乱码| 国产亚洲精品久久久com| 久久久久精品性色| 建设人人有责人人尽责人人享有的| 久久久久久久亚洲中文字幕| 永久免费av网站大全| 日本vs欧美在线观看视频| 一级片'在线观看视频| 黄片播放在线免费| 热re99久久国产66热| 国产老妇伦熟女老妇高清| 亚洲欧美日韩另类电影网站| 久久久久久久大尺度免费视频| 在线观看人妻少妇| 精品人妻在线不人妻| 看免费成人av毛片| 亚洲欧美精品自产自拍| 这个男人来自地球电影免费观看 | 精品人妻熟女毛片av久久网站| 免费av不卡在线播放| 久久久久久久久久久久大奶| 五月伊人婷婷丁香| 国产欧美另类精品又又久久亚洲欧美| 亚洲欧洲精品一区二区精品久久久 | 一本色道久久久久久精品综合| 久久ye,这里只有精品| 少妇猛男粗大的猛烈进出视频| 国产精品熟女久久久久浪| 国产视频内射| 涩涩av久久男人的天堂| 欧美变态另类bdsm刘玥| 欧美激情极品国产一区二区三区 | 色5月婷婷丁香| .国产精品久久| 这个男人来自地球电影免费观看 | 成人亚洲欧美一区二区av| 亚洲精品乱码久久久久久按摩| 最黄视频免费看| 少妇被粗大猛烈的视频| 亚洲精品乱久久久久久| 中文字幕最新亚洲高清| 99九九在线精品视频| 51国产日韩欧美| 亚洲av在线观看美女高潮| 赤兔流量卡办理| 精品国产一区二区三区久久久樱花| 婷婷色麻豆天堂久久| 亚洲国产av影院在线观看| 国产亚洲最大av| 王馨瑶露胸无遮挡在线观看| 99热6这里只有精品| 精品亚洲成a人片在线观看| 亚洲国产精品999| 制服丝袜香蕉在线| 日日撸夜夜添| 美女福利国产在线| 特大巨黑吊av在线直播| 91精品三级在线观看| 久久99精品国语久久久| 国产视频首页在线观看| av女优亚洲男人天堂| 国产免费又黄又爽又色| 精品熟女少妇av免费看| 国产成人91sexporn| 精品卡一卡二卡四卡免费| 纯流量卡能插随身wifi吗| 日韩在线高清观看一区二区三区| 日韩av在线免费看完整版不卡| 国产国拍精品亚洲av在线观看| 春色校园在线视频观看| 精品亚洲成国产av| 九九在线视频观看精品| 搡女人真爽免费视频火全软件| 精品少妇久久久久久888优播| 婷婷色av中文字幕| 91精品一卡2卡3卡4卡| 久久免费观看电影| 人成视频在线观看免费观看| 国产亚洲欧美精品永久| 国内精品宾馆在线| 大片电影免费在线观看免费| 久久久久精品性色| 夜夜爽夜夜爽视频| 满18在线观看网站| 精品午夜福利在线看| 免费观看的影片在线观看| 老女人水多毛片| 国产免费福利视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 婷婷色综合www| 久久国产精品男人的天堂亚洲 | 看免费成人av毛片| 国产极品粉嫩免费观看在线 | 狂野欧美白嫩少妇大欣赏| 另类亚洲欧美激情| av在线观看视频网站免费| 久久综合国产亚洲精品| 国产亚洲一区二区精品| 亚洲性久久影院| 国产午夜精品久久久久久一区二区三区| 观看美女的网站| 国产精品久久久久久久久免| 女人久久www免费人成看片| 国产国语露脸激情在线看| 国产成人a∨麻豆精品| 亚洲精品一区蜜桃| 久久人妻熟女aⅴ| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| 久久亚洲国产成人精品v| 日本午夜av视频| 美女内射精品一级片tv| 又黄又爽又刺激的免费视频.| 少妇丰满av| 一本一本综合久久| 久久久国产欧美日韩av| 我的老师免费观看完整版| 一级片'在线观看视频| 亚洲欧美日韩另类电影网站| 伦精品一区二区三区| 爱豆传媒免费全集在线观看| 女人精品久久久久毛片| av电影中文网址| 久久婷婷青草| 在线观看免费日韩欧美大片 | 亚洲三级黄色毛片| 久久久午夜欧美精品| 国产黄片视频在线免费观看| 99久久人妻综合| 在线看a的网站| av一本久久久久| 另类精品久久| 成人亚洲欧美一区二区av| 自拍欧美九色日韩亚洲蝌蚪91| 免费黄色在线免费观看| 国产不卡av网站在线观看| 69精品国产乱码久久久| 边亲边吃奶的免费视频| 久久午夜综合久久蜜桃| 纯流量卡能插随身wifi吗| 99精国产麻豆久久婷婷| 日日撸夜夜添| 简卡轻食公司| 国产精品99久久久久久久久| 一区二区av电影网| 亚洲精品日本国产第一区| 国产伦理片在线播放av一区| 日韩中字成人| 国语对白做爰xxxⅹ性视频网站| av专区在线播放| 久久99一区二区三区| 午夜久久久在线观看| 嘟嘟电影网在线观看| 夜夜看夜夜爽夜夜摸| 激情五月婷婷亚洲| 亚洲精品中文字幕在线视频| 99精国产麻豆久久婷婷| 国国产精品蜜臀av免费| 99热这里只有是精品在线观看| videosex国产| 国产精品三级大全| 女的被弄到高潮叫床怎么办| 午夜福利在线观看免费完整高清在| av一本久久久久| 内地一区二区视频在线| 人成视频在线观看免费观看| 啦啦啦中文免费视频观看日本| 国产高清三级在线| 日韩av在线免费看完整版不卡| 久久韩国三级中文字幕| 日韩精品免费视频一区二区三区 | 精品亚洲成国产av| 18在线观看网站| 午夜91福利影院| 另类亚洲欧美激情| 日本vs欧美在线观看视频| 免费黄色在线免费观看| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 久久99热6这里只有精品| 久久久久久久久久人人人人人人| 亚洲内射少妇av| 国产爽快片一区二区三区| 欧美精品人与动牲交sv欧美| 国产成人免费无遮挡视频| 亚洲精品久久成人aⅴ小说 | 成人影院久久| 新久久久久国产一级毛片| 免费高清在线观看视频在线观看| 美女内射精品一级片tv| 亚洲欧美成人精品一区二区| 久久久久久久久大av| 一级黄片播放器| 在线天堂最新版资源| 天堂8中文在线网| 夜夜爽夜夜爽视频| 看非洲黑人一级黄片| 精品人妻熟女av久视频| av有码第一页| 国产高清国产精品国产三级| 精品亚洲成国产av| 高清毛片免费看| 日韩一本色道免费dvd| av国产久精品久网站免费入址| 日韩在线高清观看一区二区三区| 亚洲av男天堂| 丝袜在线中文字幕| 美女大奶头黄色视频| 亚洲精品av麻豆狂野| 午夜免费男女啪啪视频观看| 桃花免费在线播放| 热re99久久精品国产66热6| 国产免费一级a男人的天堂| 卡戴珊不雅视频在线播放| 日韩在线高清观看一区二区三区| 日韩大片免费观看网站| 特大巨黑吊av在线直播| 久久久亚洲精品成人影院| 日本欧美国产在线视频| 成人毛片60女人毛片免费| 在线 av 中文字幕| 波野结衣二区三区在线| 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| 亚洲av.av天堂| 午夜精品国产一区二区电影| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| 尾随美女入室| 免费久久久久久久精品成人欧美视频 | 尾随美女入室| 日韩av免费高清视频| 国产爽快片一区二区三区| 亚洲美女视频黄频| 国产精品蜜桃在线观看| 91国产中文字幕| 狂野欧美激情性bbbbbb| 午夜福利在线观看免费完整高清在| 在线观看免费高清a一片| 久久av网站| 国国产精品蜜臀av免费| 亚洲av成人精品一区久久| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 18在线观看网站| 国产 精品1| 久久99一区二区三区| 一区二区三区乱码不卡18| 不卡视频在线观看欧美| 国产高清国产精品国产三级| 亚洲三级黄色毛片| 成人国语在线视频| 精品99又大又爽又粗少妇毛片| 国产精品无大码| 国产精品国产三级国产专区5o| 男的添女的下面高潮视频| 99久国产av精品国产电影| 美女脱内裤让男人舔精品视频| 久久国产亚洲av麻豆专区| 亚洲性久久影院| av天堂久久9| 少妇被粗大的猛进出69影院 | av有码第一页| 最近中文字幕高清免费大全6| 欧美激情 高清一区二区三区| 一级毛片电影观看| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 国产高清三级在线| 女人精品久久久久毛片| 乱人伦中国视频| 亚洲美女视频黄频| 熟妇人妻不卡中文字幕| 免费观看a级毛片全部| 国产无遮挡羞羞视频在线观看| 欧美亚洲 丝袜 人妻 在线| 狂野欧美激情性bbbbbb| 精品人妻偷拍中文字幕| 在线 av 中文字幕| 三级国产精品欧美在线观看| 日产精品乱码卡一卡2卡三| 欧美精品亚洲一区二区| 中文天堂在线官网| 欧美日韩av久久| 亚洲av欧美aⅴ国产| 国产精品一区www在线观看| 纵有疾风起免费观看全集完整版| 国产精品嫩草影院av在线观看| 亚洲欧美一区二区三区黑人 | 九草在线视频观看| 国精品久久久久久国模美| 国产成人精品福利久久| 在线观看免费高清a一片| 国产免费现黄频在线看| 91久久精品国产一区二区成人| 日韩熟女老妇一区二区性免费视频| 亚洲精品av麻豆狂野|