• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High stability and low noise laser-diode end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti3C2Tx-PVA saturable absorber

    2023-12-02 09:29:14JiaLeYan閆佳樂BenLi李奔GuoZhenWang王國珍ShunYuYang楊順宇BaoLeLu陸寶樂andYangBai白楊
    Chinese Physics B 2023年11期
    關(guān)鍵詞:白楊王國

    Jia-Le Yan(閆佳樂), Ben Li(李奔), Guo-Zhen Wang(王國珍), Shun-Yu Yang(楊順宇),Bao-Le Lu(陸寶樂),2, and Yang Bai(白楊),2,?

    1Institute of Photonics&Photon-Technology,Northwest University,Xi’an 710127,China

    2Shaanxi Engineering Technology Research Center for Solid State Lasers and Application,Xi’an 710127,China

    Keywords: passively Q-switched,pulsed laser at 1123 nm,Ti3C2Tx-PVA film,frequency selection and filtering of Brewster polarizer(BP)and birefringent crystal(BC)

    1.Introduction

    The 1123 nm near-infrared laser, as widely recognized,generated through stimulated radiation from the4F3/2energy level to the4I11/2energy level in Nd: YAG crystal or Nd:YAG ceramic,has been extensively applied in specialized fields such as biotechnology, laser displays, and frequency conversion.[1–3]For example, 1123 nm laser has been used to remote sensing atmospheric water vapor concentration.In the domains of RGB color displays,printing,and data recording, the 1123 nm laser serves as a pump source for thulium up-conversion fiber lasers to generate blue-light emission at 481 nm.[4–6]Additionally,the 561 nm yellow-green laser generated by the frequency doubling 1123 nm is an ideal laser source for dermatology,bioluminescence detection,and holographic storage.[7–9]

    However, the absence of active frequency selection and filtering results in significant output noise in the 1123 nm pulsed laser.This is due to the fact that the Nd:YAG crystal or Nd: YAG ceramic generates three spectral lights at 1112 nm,1116 nm and 1123 nm through stimulated emission.[10–12]The stimulated-emission cross section values are similar for 1123 nm and the other two spectral lights, and they have a small wavelength difference.Achieving simultaneous suppression of the spectral lights at 1112 nm and 1116 nm using anti-reflection coatings is not feasible.

    To address mode competition from 1112 nm and 1116 nm, the implementation of Fabry–Perot (F–P) etalons or birefringent crystal(BC)placed according to Brewster angle proves effective in suppression.[13–15]However,the higher losses associated with the use of F–P etalons often result in lower output power and optical-to-optical conversion efficiency of the 1123 nm laser.When using BC, it becomes critical to accurately adjust the Brewster angle and the angle between the BC surface and the optical axis of the 1123 nm spectral light.The intricacies involved in these adjustments often present challenges in achieving a stable output for the 1123 nm laser.

    As an emerging two-dimensional material in recent years,titanium carbide Ti3C2Txfilm has garnered significant attention in the field of passivelyQ-switched laser due to its advantages such as controllable electronic band structure, a wide range of nonlinear optical response, high optical damage threshold, and large nonlinear absorption coefficient.However, the majority of existing reports on Ti3C2Txtwodimensional film used as a SA in passivelyQ-switched lasers focus on wavelengths at 1.06 μm, 1.3 μm, 2.73 μm, and 3μm.[16–19]Few of the reports are about Ti3C2Txused as an SA for passivelyQ-switched lasers at 1123 nm.

    Here, we report a first demonstration, to the best of our knowledge,of a passivelyQ-switched pulsed laser at 1123 nm using a“Ti3C2Tx-PVA film passivelyQ-switching”combined with “frequency selection and filtering of Brewster polarizer(BP)+BC” technology path.A new two-dimensional (2D)material Ti3C2Tx-PVA film was employed to demonstrate the passivelyQ-switched pulsed laser at 1123 nm with high repetition frequency.The combined use of BP and BC reduced the number of longitudinal modes of the passivelyQ-switched pulsed laser at 1123 nm in the cavity while suppressing intracavity oscillations in two spectral lines at 1112 nm and 1116 nm, which was conducive to the improvement of the power stability and the reduction of its noise.A passivelyQ-switched pulsed laser at 1123 nm with an average power of 457.9 mW, a pulse width of 56 ns, a power-instability of±0.92%, and a laser noise of 0.89% width at the repetition frequency of 1.09 MHz were obtained.

    2.Material fabrication and characterization

    The process of preparing Ti3C2Tx-PVA film is as follows:Initially, 1.0 g of LiF powders were placed in 20 mL of HCl solution (10 mol/L) and stirred continuously.Once the LiF powders were completely dissolved, 1.0 g of Ti3AlC2powders were slowly introduced to the above solution and the reaction was carried out at 36?C for 36 h.Next,the solution was further diluted with deionized water and subjected to multiple centrifugation cycles at a centrifuge speed of 5000 r/min for 5 min each until the pH of the supernatant reached approximately 6–7.The resulting precipitate was then transferred to a vacuum drying oven, where it was dried at 40?C for 24 h,yielding the Ti3C2Txpowders.

    Secondly,50 mg of Ti3C2Txpowders were introduced in a mixed solution comprising 150 mL of deionized water and 150 mL of anhydrous ethanol.The mixed solution was subjected to 30 min of continuous sonication to further reduce the number of layers of the Ti3C2Txpowders.Subsequently, the sonicated mixed solution was centrifuged for 10 min using a centrifuge at 7000 r/min and then its supernatant containing the Ti3C2Txnanosheets was extracted.

    The supernatant was analyzed using confocal Raman spectroscopy excited with a 1064 nm laser.Figure 1(a)illustrates the presence of four characteristic peaks at 148 cm-1,202 cm-1, 403 cm-1, and 620 cm-1, providing confirmation of the fabricated material being Ti3C2Tx.[20]The Ti3C2Txnanosheets were characterized using an atomical force microscopy (AFM).As shown in Fig.1(b), the thickness analyzed from the profile is about 3.5 nm.Based on the research conclusion that the layer spacing of the Ti3C2Txnanosheets is about 0.99 nm,[21]it is concluded that the number of layers of the Ti3C2Txnanosheets prepared in this study is 3–4 layers.

    Finally,0.5 g of PVA powders were dissolved in 50 mL of deionized water at a temperature of 90?C,and the solution was magnetically stirred for 1 h to fully dissolve the PVA powder.The PVA solution was mixed with the supernatant containing Ti3C2Txat a volume ratio of 1:1 and subjected to continuous sonication for 1 h.The sonicated Ti3C2Tx-PVA mixed solution was then uniformly spin-coated using a spin coater onto a surface of sapphire glass with a thickness of 0.2 mm.The coated samples were dried in a thermostatic chamber at 80?C for 24 h, resulting in the fabrication of a Ti3C2Tx-PVA film.The thickness of the Ti3C2Tx-PVA film on the sapphire glass was measured to be 15.3μm using a thickness gauge.

    The transmittance versus illumination intensity of the Ti3C2Tx-PVA film was obtained using a balanced twindetector system.The light source of the detection system is a 1064 nm mode-locked fiber laser with a pulse width of 14 ps and a repetition frequency of 28.8 MHz, operating close to 1123 nm.As shown in Fig.1(c), the transmittance exhibits a trend of first enhancement and then saturation with the pulse intensity, confirming that the Ti3C2Tx-PVA film can be used as an SA.The nonlinear optical transmittance of the Ti3C2Tx-PVA film can be fitted using the most common SA model[22]

    whereTdenotes the transmittance;αsandαnsdenote saturable absorption component (also termed the modulation depth)and non-saturable absorption component,respectively.IandIsatdenote the incident light intensity and the saturation light intensity,respectively.

    As evident from the results presented in Fig.1(c), there is a high degree of agreement between the experimental data and Eq.(1).The calculated saturation light intensity and modulation depth of the Ti3C2Tx-PVA film near 1μm wavelength are 2.12 MW/cm2and 6.47%,respectively.In addition,a thermally conductive copper sheet is attached to each side of the Ti3C2Tx-PVA film coated sapphire glass,and a square copper heat sink is attached to one of the thermally conductive copper sheets,as shown in Fig.1(d).This arrangement enhances the natural heat dissipation efficiency and alleviates stability and reliability concerns of the Ti3C2Tx-PVA film during long-term operation caused by insufficient heat dissipation.

    3.Experimental setup

    A linear-cavity for a passivelyQ-switched pulsed laser at 1123 nm using a Ti3C2Tx-PVA film as an SA is shown in Fig.2.A Nd: YAG ceramic(2 mm×2 mm×6 mm,0.5 at.%Nd3+doped)was water-cooled at 16?C and was end-pumped by an 808 nm continuous wave laser-diode (LD) with a total pump power of 5.1 W.Two symmetrically positioned G2 plano-convex lenses were used to collimate and focus the LD pump laser.A focused beam with a focal length of 3.4 mm and a focal spot radius of 250 μm was formed behind the pump surface of the Nd: YAG ceramic.The pumped end surface of the Nd: YAG ceramic was coated with anti-reflection(AR)coatings covering the wavelengths of 808 nm(reflectivity,R<1%), 946 nm (R<5%), 1064 nm (R<0.5%) and 1319 nm (R<5%), as well as high reflection (HR) coatings covering the wavelength range from 1100 nm to 1130 nm(R>99.5%).The other end surface was anti-reflection(AR)coated for wavelengths from 1064 nm to 1319 nm(R<0.5%).Mirror M was the output mirror of the 1123 nm laser.Its intracavity concave surface was coated with AR-coatings covering the wavelength range from 1110 nm to 1125 nm(transmittance,T ≈4%)and AR-coatings covering the wavelengths of 1064 nm (R<5.0%), 946 nm (R<5.3%), and 1319 nm(R<7.5%).Its plane surface was coated with anti-reflection(AR)coatings the wavelength range from 1064 nm to 1319 nm(R<0.6%).BP was made of fused quartz glass with a size of 6.0 mm×6.0 mm×0.5 mm,while BC is made of quartz crystal with a size of 6.0 mm×6.0 mm×2.5 mm.The optical axis of BC was parallel to the diagonal at 45?above its incident surfaces.The transparent surfaces of BP and BC were not coated.The size of the sapphire glass coated with the Ti3C2Tx-PVA film on one side was 8.0 mm×8.0 mm×0.2 mm.

    The thermal focal length of the Nd: YAG ceramic was measured using a dynamic testing method.[23]The results indicated a decrease in the thermal focal length from 900 mm to 500 mm when the pump power of the LD increased from 1 W to 6 W.The cavity structure of the 1123 nm laser was optimized based on the ABCD matrix theory, taking into account the measured thermal lens focal length.Ultimately,the curvature radius of the output mirror M was determined to be 250 mm,and the length of the cavity was 45.2 mm.In the cavity range from the output end surface of the Nd: YAG ceramic to the concave surface of the output mirror M,the distance between the two adjacent optical elements was 4.5 mm,4.5 mm,21.0 mm, and 6.5 mm, respectively.When the thermal focal length changed from 900 mm to 500 mm,the stability parameters (A+D)/2 of the sagittal and tangential components at 1123 nm within the cavity experienced changes from 0.49 to 0.41 and 0.52 to 0.45, respectively.According to the stable oscillation condition of|(A+D)/2|<1,the cavity is not sensitive to heat.[24]

    4.Result and discussion

    According to Fresnel’s law, non-polarized light at 1123 nm that passes through BP separates into p- and spolarized light.The reflectivity of the two polarizations on the BP face can be expressed as follows:[25,26]

    whereRpandRsdenote the reflectivity of p- and s-polarized lights, respectively.θandωdenote the incident angle and refraction angle of the non-polarized light,respectively.

    For BP made of optical quartz glass,the refractive indices(ni) at 1112 nm, 1116 nm, and 1123 nm are provided by the manufacturer as 1.444,1.435,and 1.424,respectively.Assuming the refractive index of air as approximately 1,the relationship between Brewster’s angleΦi,ni,θ,andωare as follows based on Brewster’s law and the law of refraction:

    whereidenote the wavelengths of 1112 nm, 1116 nm, and 1123 nm,respectively.TheΦican be calculated as 55.31?at 1112 nm, 55.12?at 1116 nm, and 54.92?at 1123 nm using Eqs.(4)and(5),respectively.

    As shown in Fig.3,only theRpof the p-polarized light at 1123 nm is zero atα=Φ1123=54.92?.The result is that the ppolarized light at 1123 nm only achieves oscillation in the cavity due to the lowest reflection loss on the BP face by precisely adjusting the horizontal and pitch angles of the output mirror M.And the other two wavelengths at 1112 nm and 1116 nm are suppressed due to the roundtrip reflection loss caused by non-zero reflectivity (~0.48% at 1112 nm and~0.88% at 1116 nm in the cavity,respectively).

    Meanwhile,BC is introduced where its transmission surface is perpendicular to the p-polarized 1123 nm laser.Leveraging the inherent birefringent effect,BC splits the p-polarized 1123 nm laser into an ordinary light (o-light) and an extraordinary light(e-light).After a single round-trip through BC,a phase delay ??is induced between the o-light and e-light[27]

    whereD= 2.5 mm represents the thickness of BC.λ=1123 nm represents the laser wavelength.noandnedenote the refractive indices of the o-light and the e-light,respectively.

    Rotating BC around the optical axis of the cavity, the ppolarized light at 1123 nm undergoes a 180?rotation after a single round trip through BC when the angleβbetween the ppolarized light at 1123 nm and the optical axis of BC becomes 45?,corresponding to a 2πmultiple of ??:[28]

    wherem=0,±1,±2,±3,...

    Since the p-polarized direction has not changed,only the longitudinal modes at 1123 nm withm=0,±1,±2,±3,...can achieve low-loss oscillation in the cavity.At 1123 nm,the remaining longitudinal modes will be suppressed.It should be emphasized that the round-trip transmittance of p- and spolarized laser beams in the cavity after passing BC is given by the following equations:[29]

    whereTpandTsdenote the transmittance of p-and s-polarized lights, respectively.n*idenote the refractive indices of BP made of optical quartz glass at wavelengths of 1112 nm,1116 nm,and 1123 nm,respectively.

    Figure 4 shows the solution ofTpandTsa function of??.The upper line corresponds toTpand the lower one toTs.These two lines join to form a single line at the angle of about 14?and the transmittance of about 78.3%.This figure indicates the zero round-trip loss at ??=2mπ(mis even) for the 1123 nm p-polarized laser beam.However,the phase delays ??*of the two adjacent p-polarized spectral lines at 1112 nm and 1116 nm will not satisfy Eq.(7).The refractive indices of o- and e-light of quartz crystals at 1112 nm, 1116 nm and 1123 nm are (n*o-1112 = 1.5309,n*e-1112 =1.5446), (n*o-1116 =1.5308,n*e-1116 =1.5445) and(n*o-1123=1.5307,n*e-1123=1.5443),respectively.According to Eqs.(6)and(7),it can be derived that the additional phase delays ??*of the 1112 nm and 1116 nm spectral lines with respect to 1123 nm after round-trip passage through BC are 6.5854?and 5.1988?, which correspond to a transmittance of~97.17%and~98.28%,respectively.BC attaches a roundtrip reflection loss of~2.83%and~1.72%for the two spectral lines 1112 nm and 1116 nm (mis zero or even), respectively.Whenmis odd, the three spectral lines at 1112 nm,1116 nm, and 1123 nm are suppressed due to the high reflectivity (about 40%) when passing through BC.The above results indicate that both BP and BC have the capability to suppress oscillation of the 1112 nm and 1116 nm spectral lines in the cavity.The synergistic utilization of BP induces BC to exhibit greater reflective losses for the 1112 nm and 1116 nm spectral lines,thereby further enhancing the cavity’s suppression capability towards these two lines.In summary,the combined use of BP and BC not only ensures that only the 1123 nm laser oscillates and is amplified in the cavity,but also reduces the number of longitudinal modes in the 1123 nm laser, thereby achieving filtering and noise reduction in the 1123 nm laser.

    4.1.BP and BC are not placed in the cavity

    When BP and BC are not used, a passivelyQ-switched pulsed laser based on cavity finely tuning is observed when the LD pump power reaches 1.26 W,as shown in Figs.5(a)–5(d).Continuing to increase the LD pump power,the repetition frequency of the laser pulse train gradually increased while the pulse width was gradually compressed.This is attributed to the increasing trend of laser power density in the cavity with the increasing LD pump power,allowing the Ti3C2Tx-PVA film to reach the absorption saturation state for a shorter time period.When the LD pump power was increased to the maximum value of 5.1 W,the maximum average power of the passivelyQ-switched pulsed laser with a maximum repetition frequency of 909 kHz reached 365.2 mW, corresponding to an oblique efficiency of 9.5% and an optical to optical conversion efficiency of 7.1%,respectively.The narrowest pulse was 70 ns.However, the three spectral lights at 1112 nm, 1116 nm, and 1123 nm oscillated simultaneously in the cavity lacking frequency selection and filtering of BP+BC.

    Using a splitter mirror (with a transmittance of~96%and a reflectivity of~4% at 1123 nm), a power meter, an oscilloscope, and a PIN-type silicon photodiode, the power stability and laser noise of the passivelyQ-switched pulsed laser at 1123 nm were simultaneously measured at maximum output power.The duration and interval of the measurement were 4 h and 2 s, respectively.The power meter was used to measure the power instability of the transmitted pulsed laser at 1123 nm(Fig.6(a)).In contrast,two PIN-type silicon photodiodes and an oscilloscope were employed to measure the laser noise of the reflected pulsed laser at 1123 nm(Fig.6(b)).The silicon photodiode generated an electrical signal that was split in two.With an optical shutter blocking the laser beam,the electrical signal into the channel 1#(AC-coupled mode)of the oscilloscope represented background noise (areaΓB-RMS in Fig.6(b), blue curve).Removing the optical shutter, the electrical signal into channel 1#represented total noise (areaΓT-RMS in Fig.6(b), blue curve), including the laser noise of the pulsed laser at 1123 nm and background noise, while the electrical signal into channel 2#(DC-coupled mode)of the oscilloscope represented the absolute intensity of the pulsed laser at 1123 nm (areaΓI-RMS in Fig.6(b), red curve).The power instabilityρa(bǔ)nd the noiseΓL-RMS of the passivelyQ-switched pulsed laser at the maximum average power were measured to be±5.23%and 5.21%within a 4 h period using the following equations:[30,31]

    wherePMAX,PMIN, andPAMdenote the maximum, minimum, and arithmetic mean values of the detected laser average power, respectively.ΓB-RMS,ΓT-RMS, andΓI-RMS denote the RMS-background noise, the RMS-total noise, and the RMS-absolute intensity,respectively.The poor output stability indicates that it is necessary to suppress the oscillation of the 1112 nm and 1116 nm spectral lights in the cavity to achieve stable output of the passivelyQ-switched 1123 nm pulsed laser.

    4.2.BP frequency selection in the cavity

    A BP was inserted into the above unfiltered cavity, and its horizontal angle was precisely adjusted to match the Brewster angle(54.92?at 1123 nm).As shown in Figs.7(a)–7(d),the presence of the spectrum line at 1123 nm only in the collected laser spectrum indicates that the BP suppresses intracavity oscillations at 1112 nm and 1116 nm.The insertion of BP increased the threshold of LD pump power from 1.26 W to 1.86 W.However, the effective suppression of the intracavity oscillations for the spectral lines at 1112 nm and 1116 nm mitigates mode competition and enhances the gain of the spectral line at 1123 nm.At 1123 nm at the maximum LD pump power of 5.1 W,the passivelyQ-switched pulsed laser had the maximum average output power of 405.3 mW,the maximum repetition frequency of 1.01 MHz, the narrowest pulse width of 63 ns,and the narrowest line width of 0.95 nm.The measuredρa(bǔ)ndΓL-RMS decreased to±1.84%and 2.55%after continuous monitoring for 4 h with an interval of 2 s,respectively.

    4.3.Frequency selection and filtering of BP + BC in the cavity

    On the basis of BP frequency selection,a BC was inserted into the cavity.The horizontal and pitch angles of BC were precisely adjusted with the aim of ensuringβ=45?.BC filtering reduces the number of longitudinal modes in the cavity,thereby alleviating mode competition between longitudinal modes in the passivelyQ-switched pulsed laser at 1123 nm.On the one hand, the longitudinal modes that satisfy Eq.(7)and m is zero or even can achieve higher gain,while on other hand the combination of BP and BC is more effective in suppressing intracavity oscillation of spectral lines at 1112 nm and 1116 nm.As shown in Figs.9(a)–9(d), although BC further increased the pump threshold of LD to 2.84 W, the passivelyQ-switched pulsed laser at 1123 nm obtained the better output characteristics.As a result,the average power of the passivelyQ-switched pulsed laser at 1123 nm with a maximum repetition frequency of 1.09 MHz reached 457.9 mW under the maximum LD pump power of 5.1 W.Meanwhile, a narrowest pulse width of 56 ns and a narrowest spectral line width of 0.65 nm were measured.This is because, the power density of the passivelyQ-switched pulsed laser at 1123 nm with partial longitudinal mode suppressed significantly increases,which allows the Ti3C2Tx-PVA film to reach absorption saturation at a shorter period and higher frequency.[32,33]At higher power density,the time required for the excited energy level of the Ti3C2Tx-PVA film to enter saturation is shorter, thus obtaining higher repetition frequency and shorter pulse width.[34]Continuously monitoring the maximum average power of the passivelyQ-switched pulsed laser at 1123 nm for 4 h with an interval of 2 s, theρa(bǔ)ndΓL-RMS were reduced to±0.92%and 0.89%,respectively.The results demonstrate that the frequency selection and filtering of BP+BC have jointly suppressed the noise in the passivelyQ-switched pulsed laser at 1123 nm by reducing both the number of wavelengths and longitudinal modes in the cavity.Considering the adopted thermal management measures,the stable output of the passivelyQ-switched laser over duration of 12 h also demonstrates the excellent operational reliability of the Ti3C2Tx-PVA film as SA from another perspective.

    In addition, the beam qualityM2factors of the three passivelyQ-switched 1123 nm pulsed laser beams, as measured by a laser beam quality analyzer were found to be(M2x=5.814,M2y=5.428), (M2x=3.466,M2y=3.288), and(M2x=2.505,M2y=2.177),respectively.The 2D and 3D images of the near-field beam are shown in Fig.11.The smaller beam qualityM2factors further confirm that the “frequency selection and filtering of BP+BC”contributes to the improvement of beam quality for the passivelyQ-switched 1123 nm pulsed laser.

    5.Conclusion

    In this work, a solid-state pulsed laser at 1123 nm with high repetition frequency, high power stability and low laser noise based on a Ti3C2Tx-PVA film passivelyQ-switching combined with“frequency selection and filtering of BP+BC was proposed.The maximum average power of 457.9 mW,maximum repetition rate of 1.09 MHz,narrowest pulse width of 56 ns, and narrowest line width of 0.65 nm were obtained simultaneously,with corresponding the power instability and the laser noise only at±0.92% and 0.89%, respectively.Our first proposed “Ti3C2Tx-PVA film passivelyQswitching” combined with “frequency selection and filtering of BP+BC” technology path will be of great significance in promoting the wider application of passivelyQ-switched pulsed laser at 1123 nm with high repetition frequency, high power stability, and low noise in the fields of biotechnology,laser display, frequency conversion, and high-resolution optical sensing.

    Acknowledgments

    Project supported by the Serving Local Special Project of Shaanxi Provincial Department of Education of China(Grant No.19JC040)and the National Natural Science Foundation of China(Grant No.61905193).

    猜你喜歡
    白楊王國
    蛋托變身記
    白楊
    白楊
    一滴水中的王國
    趣味(語文)(2020年5期)2020-11-16 01:34:54
    地下王國
    她的2000億打工王國
    逃離鼠王國
    建立新王國
    NBA特刊(2018年21期)2018-11-24 02:47:48
    我是一棵深秋的白楊
    中國火炬(2015年11期)2015-07-31 17:28:58
    黑白王國
    親子(2014年7期)2014-08-12 18:00:10
    国产成人欧美在线观看 | 午夜91福利影院| 国产精品一区二区精品视频观看| 人人妻,人人澡人人爽秒播| 国产欧美日韩精品亚洲av| 久久免费观看电影| 亚洲综合色网址| 精品高清国产在线一区| 国产亚洲一区二区精品| 国产欧美日韩一区二区三 | 男男h啪啪无遮挡| 妹子高潮喷水视频| 免费在线观看完整版高清| 一级片免费观看大全| 各种免费的搞黄视频| 99久久综合免费| 飞空精品影院首页| 高清视频免费观看一区二区| 亚洲人成电影观看| www.精华液| 免费日韩欧美在线观看| 午夜福利视频在线观看免费| 亚洲欧美精品自产自拍| 久久久久久亚洲精品国产蜜桃av| 夜夜骑夜夜射夜夜干| 精品亚洲乱码少妇综合久久| 亚洲人成77777在线视频| 欧美日韩福利视频一区二区| 脱女人内裤的视频| 成人国产一区最新在线观看| 美女脱内裤让男人舔精品视频| bbb黄色大片| av在线播放精品| 999精品在线视频| 久久av网站| 久久久久国内视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美在线黄色| 搡老岳熟女国产| 日韩欧美一区二区三区在线观看 | 欧美中文综合在线视频| 窝窝影院91人妻| 亚洲av电影在线观看一区二区三区| 欧美精品av麻豆av| 黄色a级毛片大全视频| 侵犯人妻中文字幕一二三四区| 久久精品熟女亚洲av麻豆精品| 亚洲七黄色美女视频| 亚洲成国产人片在线观看| 午夜日韩欧美国产| 丝袜喷水一区| 国产免费福利视频在线观看| 久久久久精品国产欧美久久久 | 免费观看人在逋| 夜夜夜夜夜久久久久| 咕卡用的链子| 男人添女人高潮全过程视频| 狠狠婷婷综合久久久久久88av| 国产成人免费观看mmmm| 国产老妇伦熟女老妇高清| 亚洲国产毛片av蜜桃av| 欧美精品人与动牲交sv欧美| 9色porny在线观看| 91字幕亚洲| 岛国毛片在线播放| 日本vs欧美在线观看视频| 99久久综合免费| 极品少妇高潮喷水抽搐| 老鸭窝网址在线观看| 一级毛片电影观看| 国产精品一二三区在线看| 精品乱码久久久久久99久播| 国产极品粉嫩免费观看在线| 色播在线永久视频| 一个人免费看片子| 一区福利在线观看| 久久精品aⅴ一区二区三区四区| 黄色片一级片一级黄色片| 少妇人妻久久综合中文| 亚洲va日本ⅴa欧美va伊人久久 | kizo精华| 国产精品av久久久久免费| 丝袜人妻中文字幕| 99久久精品国产亚洲精品| 黄片播放在线免费| 久久精品亚洲熟妇少妇任你| 欧美成人午夜精品| tube8黄色片| 国产欧美亚洲国产| 国产精品 国内视频| 99热网站在线观看| 亚洲 欧美一区二区三区| 少妇 在线观看| 啦啦啦免费观看视频1| 老汉色av国产亚洲站长工具| 日韩人妻精品一区2区三区| 性少妇av在线| 91老司机精品| 下体分泌物呈黄色| 丝瓜视频免费看黄片| 久久久精品免费免费高清| 99精国产麻豆久久婷婷| 国产精品偷伦视频观看了| 日韩中文字幕视频在线看片| 丁香六月欧美| 侵犯人妻中文字幕一二三四区| 搡老岳熟女国产| 人人妻人人澡人人爽人人夜夜| 亚洲人成电影观看| 美女扒开内裤让男人捅视频| 丁香六月欧美| 日韩一区二区三区影片| 国产真人三级小视频在线观看| 久久久国产精品麻豆| 青草久久国产| 日本猛色少妇xxxxx猛交久久| 咕卡用的链子| 蜜桃国产av成人99| 欧美变态另类bdsm刘玥| 91av网站免费观看| 亚洲熟女精品中文字幕| 国产亚洲欧美精品永久| 男男h啪啪无遮挡| 不卡一级毛片| 在线观看免费视频网站a站| 性高湖久久久久久久久免费观看| 亚洲精品自拍成人| 免费不卡黄色视频| 色视频在线一区二区三区| 国产精品99久久99久久久不卡| 久久久国产欧美日韩av| 性高湖久久久久久久久免费观看| 亚洲五月婷婷丁香| 精品欧美一区二区三区在线| 黄色毛片三级朝国网站| 久久久久久免费高清国产稀缺| 日韩精品免费视频一区二区三区| 午夜福利免费观看在线| 波多野结衣一区麻豆| 一级毛片电影观看| 夜夜骑夜夜射夜夜干| 纯流量卡能插随身wifi吗| 一本一本久久a久久精品综合妖精| 男女之事视频高清在线观看| 黄色片一级片一级黄色片| 国产一区二区 视频在线| 丝袜脚勾引网站| 亚洲国产毛片av蜜桃av| 精品久久久久久久毛片微露脸 | 国产99久久九九免费精品| 精品福利观看| 午夜福利视频在线观看免费| 久久女婷五月综合色啪小说| 国产精品偷伦视频观看了| 久久国产精品人妻蜜桃| 日韩中文字幕欧美一区二区| 人妻一区二区av| 亚洲av日韩在线播放| 少妇人妻久久综合中文| 国产av国产精品国产| 国产无遮挡羞羞视频在线观看| 亚洲国产看品久久| 成在线人永久免费视频| 美女主播在线视频| 国产精品一区二区免费欧美 | 美女大奶头黄色视频| 日韩制服骚丝袜av| 啦啦啦在线免费观看视频4| 99热全是精品| 美女午夜性视频免费| 国产在线免费精品| 国产色视频综合| 国产男女内射视频| 国产成+人综合+亚洲专区| 国产欧美日韩一区二区三区在线| 亚洲av美国av| 亚洲激情五月婷婷啪啪| 色综合欧美亚洲国产小说| 午夜日韩欧美国产| 亚洲精品国产区一区二| 国产主播在线观看一区二区| 香蕉丝袜av| 国产精品秋霞免费鲁丝片| 黑人欧美特级aaaaaa片| 亚洲午夜精品一区,二区,三区| 极品少妇高潮喷水抽搐| 人人妻人人澡人人爽人人夜夜| 亚洲色图 男人天堂 中文字幕| 亚洲av日韩在线播放| 日本一区二区免费在线视频| 国产一区二区 视频在线| 97精品久久久久久久久久精品| 国产日韩欧美在线精品| 国产一区二区三区在线臀色熟女 | 亚洲精品国产一区二区精华液| 免费一级毛片在线播放高清视频 | 久久青草综合色| 亚洲精品在线美女| 宅男免费午夜| 老鸭窝网址在线观看| 熟女少妇亚洲综合色aaa.| 欧美精品啪啪一区二区三区 | a级片在线免费高清观看视频| 色精品久久人妻99蜜桃| av网站在线播放免费| 亚洲一区中文字幕在线| 男女午夜视频在线观看| 国产精品.久久久| av福利片在线| 精品国内亚洲2022精品成人 | 日韩大码丰满熟妇| 午夜久久久在线观看| 国产精品熟女久久久久浪| 国产在线一区二区三区精| 女性生殖器流出的白浆| 国产熟女午夜一区二区三区| 久久久久久久久免费视频了| 性色av一级| 亚洲第一青青草原| 嫁个100分男人电影在线观看| 一级毛片电影观看| 一级黄色大片毛片| 国产真人三级小视频在线观看| 最近中文字幕2019免费版| 满18在线观看网站| 欧美成狂野欧美在线观看| 久久久久久亚洲精品国产蜜桃av| 欧美少妇被猛烈插入视频| 不卡av一区二区三区| tube8黄色片| 少妇裸体淫交视频免费看高清 | 男女床上黄色一级片免费看| 男女边摸边吃奶| 免费av中文字幕在线| 亚洲欧美精品综合一区二区三区| av欧美777| 欧美在线一区亚洲| 亚洲第一欧美日韩一区二区三区 | 黑人欧美特级aaaaaa片| 亚洲熟女毛片儿| 黄片小视频在线播放| 久久精品亚洲av国产电影网| 国产高清videossex| 一级黄色大片毛片| 国产一卡二卡三卡精品| 亚洲精华国产精华精| 国产成人啪精品午夜网站| 97精品久久久久久久久久精品| 午夜福利一区二区在线看| 中国美女看黄片| 日本猛色少妇xxxxx猛交久久| 老司机在亚洲福利影院| 午夜福利一区二区在线看| 汤姆久久久久久久影院中文字幕| svipshipincom国产片| 一边摸一边抽搐一进一出视频| 国产淫语在线视频| 纵有疾风起免费观看全集完整版| 自拍欧美九色日韩亚洲蝌蚪91| 欧美人与性动交α欧美软件| 欧美精品高潮呻吟av久久| 亚洲精品中文字幕一二三四区 | 欧美国产精品一级二级三级| 久久久久网色| 国产精品久久久av美女十八| 国产精品av久久久久免费| 精品国产一区二区久久| 国产免费视频播放在线视频| 女人被躁到高潮嗷嗷叫费观| 成人免费观看视频高清| 日本一区二区免费在线视频| 国产成人精品久久二区二区免费| 日本五十路高清| 免费观看人在逋| 亚洲精品国产一区二区精华液| 一级黄色大片毛片| 他把我摸到了高潮在线观看 | 操出白浆在线播放| 99九九在线精品视频| 国产一区有黄有色的免费视频| 免费观看av网站的网址| 大码成人一级视频| 成年人午夜在线观看视频| 久久精品国产亚洲av香蕉五月 | 天天影视国产精品| 高清黄色对白视频在线免费看| 国产成人欧美在线观看 | 欧美日韩一级在线毛片| 久久 成人 亚洲| 99国产极品粉嫩在线观看| 亚洲精品中文字幕一二三四区 | 欧美大码av| 韩国高清视频一区二区三区| 国产精品九九99| 精品国产乱码久久久久久小说| 欧美日韩国产mv在线观看视频| tube8黄色片| 男女之事视频高清在线观看| av在线播放精品| 三上悠亚av全集在线观看| 亚洲中文av在线| 18禁黄网站禁片午夜丰满| 热re99久久国产66热| 国产亚洲精品第一综合不卡| 国产福利在线免费观看视频| 亚洲欧洲精品一区二区精品久久久| 建设人人有责人人尽责人人享有的| 欧美日本中文国产一区发布| 一进一出抽搐动态| 午夜91福利影院| 国产又爽黄色视频| 桃红色精品国产亚洲av| 一级毛片精品| 极品少妇高潮喷水抽搐| 亚洲黑人精品在线| 淫妇啪啪啪对白视频 | 精品国产一区二区三区久久久樱花| 首页视频小说图片口味搜索| 一二三四在线观看免费中文在| 黄片小视频在线播放| 免费在线观看黄色视频的| 国产成人免费无遮挡视频| 十八禁高潮呻吟视频| 51午夜福利影视在线观看| av网站在线播放免费| 国产日韩欧美视频二区| 亚洲第一青青草原| 日本一区二区免费在线视频| 在线观看舔阴道视频| 亚洲国产看品久久| 欧美精品一区二区免费开放| 日日摸夜夜添夜夜添小说| 女人高潮潮喷娇喘18禁视频| 欧美精品一区二区大全| 中文字幕最新亚洲高清| 伊人久久大香线蕉亚洲五| 日韩欧美免费精品| 亚洲avbb在线观看| 亚洲三区欧美一区| 女人久久www免费人成看片| 亚洲精品乱久久久久久| 亚洲欧美日韩另类电影网站| 免费在线观看完整版高清| 极品人妻少妇av视频| 不卡av一区二区三区| 国产伦理片在线播放av一区| 美女主播在线视频| 国产精品熟女久久久久浪| 午夜福利,免费看| 日本vs欧美在线观看视频| 美女国产高潮福利片在线看| 他把我摸到了高潮在线观看 | 成人黄色视频免费在线看| 午夜福利视频精品| 国产精品久久久av美女十八| a在线观看视频网站| 丁香六月欧美| 国产真人三级小视频在线观看| 中文欧美无线码| 午夜福利视频精品| 欧美在线黄色| 亚洲天堂av无毛| 咕卡用的链子| 91麻豆精品激情在线观看国产 | 欧美大码av| 嫩草影视91久久| 国产福利在线免费观看视频| 亚洲国产精品一区三区| 老熟女久久久| av网站免费在线观看视频| 50天的宝宝边吃奶边哭怎么回事| 欧美+亚洲+日韩+国产| 欧美xxⅹ黑人| 精品少妇久久久久久888优播| 极品少妇高潮喷水抽搐| 人成视频在线观看免费观看| 精品一区二区三区av网在线观看 | 久久精品亚洲熟妇少妇任你| 人妻一区二区av| 亚洲精品乱久久久久久| 国产日韩欧美视频二区| 国产免费现黄频在线看| 2018国产大陆天天弄谢| 秋霞在线观看毛片| 人人妻人人澡人人爽人人夜夜| 法律面前人人平等表现在哪些方面 | 欧美97在线视频| 成人黄色视频免费在线看| 老司机影院成人| 亚洲精品国产精品久久久不卡| 一级片'在线观看视频| 12—13女人毛片做爰片一| 午夜福利免费观看在线| 黑人猛操日本美女一级片| 韩国精品一区二区三区| 人成视频在线观看免费观看| 亚洲欧美日韩高清在线视频 | 久久毛片免费看一区二区三区| 国产麻豆69| 日韩 亚洲 欧美在线| 视频区欧美日本亚洲| 国产男女内射视频| 久久久久久人人人人人| 美女大奶头黄色视频| 午夜日韩欧美国产| 午夜免费观看性视频| 精品国产一区二区久久| 国产精品久久久久久精品电影小说| 国产在线免费精品| 2018国产大陆天天弄谢| 飞空精品影院首页| 欧美精品人与动牲交sv欧美| 国产成人免费无遮挡视频| h视频一区二区三区| 69精品国产乱码久久久| 欧美激情久久久久久爽电影 | 九色亚洲精品在线播放| 亚洲精品粉嫩美女一区| 各种免费的搞黄视频| 超碰97精品在线观看| 国产福利在线免费观看视频| 中文字幕av电影在线播放| 两个人免费观看高清视频| 欧美日韩一级在线毛片| 九色亚洲精品在线播放| 大陆偷拍与自拍| av天堂久久9| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 男人爽女人下面视频在线观看| 国产精品.久久久| 丰满迷人的少妇在线观看| 一个人免费看片子| 一区在线观看完整版| 黄片大片在线免费观看| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一区蜜桃| 两性夫妻黄色片| 老司机影院成人| 99国产综合亚洲精品| 丰满迷人的少妇在线观看| 国产在线观看jvid| 精品一区二区三区四区五区乱码| 999久久久精品免费观看国产| 久久99一区二区三区| 9191精品国产免费久久| 亚洲国产精品999| 国产亚洲欧美精品永久| 国产日韩欧美亚洲二区| 免费观看a级毛片全部| 欧美精品亚洲一区二区| 国产男女超爽视频在线观看| 人人妻人人添人人爽欧美一区卜| 丝袜喷水一区| 后天国语完整版免费观看| 欧美日韩精品网址| 叶爱在线成人免费视频播放| 99国产精品99久久久久| 亚洲久久久国产精品| 亚洲精品国产一区二区精华液| 嫩草影视91久久| 亚洲色图 男人天堂 中文字幕| 老熟妇乱子伦视频在线观看 | 十分钟在线观看高清视频www| 欧美+亚洲+日韩+国产| 亚洲色图 男人天堂 中文字幕| 九色亚洲精品在线播放| 精品免费久久久久久久清纯 | 又大又爽又粗| 色婷婷久久久亚洲欧美| 色94色欧美一区二区| av在线播放精品| 男女床上黄色一级片免费看| 欧美国产精品一级二级三级| 欧美av亚洲av综合av国产av| 一本—道久久a久久精品蜜桃钙片| 亚洲伊人色综图| 国产国语露脸激情在线看| 欧美日韩亚洲高清精品| 日韩人妻精品一区2区三区| 欧美国产精品va在线观看不卡| 国产精品自产拍在线观看55亚洲 | 亚洲一码二码三码区别大吗| 亚洲成人手机| 日韩,欧美,国产一区二区三区| 久久国产精品人妻蜜桃| 人妻 亚洲 视频| 一级片'在线观看视频| 一个人免费看片子| 在线观看免费午夜福利视频| 在线亚洲精品国产二区图片欧美| 久久精品亚洲av国产电影网| 777久久人妻少妇嫩草av网站| 美女大奶头黄色视频| 五月天丁香电影| 满18在线观看网站| 国产精品熟女久久久久浪| 国产成人精品无人区| 岛国在线观看网站| 成年美女黄网站色视频大全免费| 搡老熟女国产l中国老女人| 午夜福利免费观看在线| 亚洲 欧美一区二区三区| 国产精品二区激情视频| 国产高清国产精品国产三级| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9 | 亚洲av日韩在线播放| 超碰成人久久| 国产亚洲精品久久久久5区| 9191精品国产免费久久| 老司机影院毛片| 女人爽到高潮嗷嗷叫在线视频| 成人免费观看视频高清| 午夜福利视频精品| 女人久久www免费人成看片| 色视频在线一区二区三区| 亚洲av美国av| 久久ye,这里只有精品| 午夜免费观看性视频| 法律面前人人平等表现在哪些方面 | 美女高潮到喷水免费观看| 国产99久久九九免费精品| 精品少妇黑人巨大在线播放| 天堂8中文在线网| 亚洲成人国产一区在线观看| 国产精品一区二区在线不卡| 1024香蕉在线观看| 久久午夜综合久久蜜桃| 欧美午夜高清在线| 成人影院久久| 久久av网站| 国产高清videossex| 久久毛片免费看一区二区三区| 伦理电影免费视频| 宅男免费午夜| 黄片播放在线免费| 一二三四社区在线视频社区8| 精品国内亚洲2022精品成人 | 男女高潮啪啪啪动态图| 考比视频在线观看| www.熟女人妻精品国产| 蜜桃在线观看..| 黄片播放在线免费| 久久久久精品人妻al黑| 久久99热这里只频精品6学生| 亚洲精品美女久久av网站| 久久影院123| 精品人妻熟女毛片av久久网站| 精品国产乱子伦一区二区三区 | 中文字幕av电影在线播放| av有码第一页| 国产免费视频播放在线视频| 五月开心婷婷网| 精品少妇内射三级| 精品国产一区二区三区久久久樱花| 黑人操中国人逼视频| 99国产综合亚洲精品| 无限看片的www在线观看| 亚洲av日韩在线播放| 国产老妇伦熟女老妇高清| av超薄肉色丝袜交足视频| 亚洲欧美激情在线| 日本av免费视频播放| 午夜精品国产一区二区电影| 99香蕉大伊视频| 97在线人人人人妻| 日韩大片免费观看网站| 午夜影院在线不卡| 自拍欧美九色日韩亚洲蝌蚪91| 欧美97在线视频| 国产男女内射视频| 国产免费av片在线观看野外av| 中文字幕最新亚洲高清| 亚洲,欧美精品.| 亚洲色图综合在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 自线自在国产av| 一本色道久久久久久精品综合| 午夜福利乱码中文字幕| av天堂久久9| 男女床上黄色一级片免费看| 日本av手机在线免费观看| 黄色视频不卡| 91九色精品人成在线观看| 国产伦人伦偷精品视频| 精品福利观看| 色精品久久人妻99蜜桃| 日韩中文字幕欧美一区二区| 久久香蕉激情| videos熟女内射| 婷婷丁香在线五月| 欧美变态另类bdsm刘玥| 精品一区二区三区av网在线观看 | 免费少妇av软件| 男女国产视频网站| 人妻一区二区av| 中文字幕高清在线视频| 欧美日韩中文字幕国产精品一区二区三区 | 在线亚洲精品国产二区图片欧美| 精品一区二区三区四区五区乱码| av在线老鸭窝| 国产成人啪精品午夜网站| 黄片小视频在线播放| 久久 成人 亚洲| 亚洲欧美一区二区三区黑人| 精品少妇一区二区三区视频日本电影| 国产色视频综合| 亚洲av成人不卡在线观看播放网 | 亚洲欧美色中文字幕在线| 欧美国产精品一级二级三级| 深夜精品福利| 黑人操中国人逼视频| 交换朋友夫妻互换小说| 韩国高清视频一区二区三区|