• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Vector fiber Bragg gratings accelerometer based on silicone compliant cylinder for low frequency vibration monitoring

    2023-12-02 09:23:06WenyuHu胡文玉ZhuoChen陳卓JiangshanYou尤江山RuohuiWang王若暉RuiZhou周銳andXueguangQiao喬學(xué)光
    Chinese Physics B 2023年11期
    關(guān)鍵詞:周銳陳卓江山

    Wenyu Hu(胡文玉), Zhuo Chen(陳卓), Jiangshan You(尤江山), Ruohui Wang(王若暉),Rui Zhou(周銳),?, and Xueguang Qiao(喬學(xué)光),?

    1School of Physics,Northwest University,Xi’an 710127,China

    2Engineering Research Center of Optical Fiber Well Logging Technology for Oil and Gas Resources,Universities of Shaanxi Province,Xi’an 710127,China

    Keywords: fiber-optic sensor,vector accelerometer,silicone compliant cylinder,orientation recognition

    1.Introduction

    The acquisition of vibration acceleration signals has significant applications in multiple fields, such as oil and gas seismic exploration,[1–3]real-time identification of human activity,[4]structural health monitoring and damage detection,[5]on-line monitoring of airborne air duct leakage,[6]automotive, and aerospace applications.[7]However, with the development of science and technology,scalar information no longer meets the needs of real-time and accurate acceleration measurement.Therefore,vector sensing is receiving more and more widespread attention and favor in the era of big data and artificial intelligence due to its recognizability of vibration direction.

    Vector sensing is an important technology in scientific measurement and engineering applications.Vector vibration sensing has emerged as a prevalent technique in the field of oil and gas exploration and development.The technique allows for rapid and precise detection of seismic waves,which in turn enables accurate delineation of geological formations.[8,9]This approach is extremely important for advancing the oil and gas industry.Therefore, it is important to complete vector sensing to improve the accuracy of exploration monitoring while ensuring the accelerometer has high sensitivity.

    Fiber optic sensors are devices that integrate sensing and transmission capabilities, and are widely used due to their high temperature resistance,[10]small size,resistance to electromagnetic interference, and distributed detection.[11]Fiber optic sensing technology has experienced rapid development recently and has been used to acquire vibration acceleration vector signals.

    In recent years,accelerometers based on fiber Bragg gratings(FBGs)have been extensively fabricated and researched.Generally, these accelerometers are constrained to measuring acceleration along a single axis, rendering it challenging to ascertain the directionality of the actual acceleration signal,particularly when the source of vibration is obscure.They demand at least two orthogonal FBG accelerometers for vector vibration measurements,adding to the complexity of the sensing system.To obtain two-dimensional (2D) acceleration information,Liet al.integrated two vibration sensors to detect the sensitivity of accelerometer.The cantilever, which was fabricated directly onto the SMF,was utilized to measure the deviation induced by vibration.[12]Although this accelerometer is small in size and high in accuracy, it cannot directly obtain the actual vibration angle during random vibration,and the issue of acceleration vector sensing remains to be explored.Zhanget al.used 2D FBG accelerometers made by flexible hinges, which can eliminate cross interference, but have low sensitivity on small size structures,13 pm/g and 40 pm/g,respectively, which cannot be directly applied in narrow space and the orientation recognition accuracy is limited.[13,14]To develop vector accelerometers with small dimensions, different types of fiber optic gratings have been used to make accelerometers, such as cladding fiber gratings,[15]tilted fiber gratings,[16]and eccentric fiber gratings.[17]These methods take advantage of the sensitivity of the cladding mode to the direction of vibration, where the refractive index is changed,to accomplish vector vibration sensing.These sensors are small in size and high in accuracy, unfortunately, they exhibit susceptibility to the refractive index of the surrounding medium and possess demanding packaging requirements.For this problem, vector vibration sensing can be achieved using just one multicore fiber (MCF) (especially a seven-core fiber),[18]and the intermediate core can also provide temperature compensation,[19]allowing multiplexed multipoint measurements to be accomplished in confined spaces.[20]However, each core of the MCF is very close together, resulting in low sensitivity and angular resolution, and the cost of fanin/out(FIFO)device required for sensing with seven-core fiber is expensive.In addition, fusion loss and inter-core crosstalk can occur during the fusion of multi-core fiber grating and FIFO.

    In this paper, we propose and demonstrate a vector accelerometer using FBGs embedded in a unidirectional cylindrical shell.The sensor is fabricated with silicone rubber material in a single casting process, achieving size miniaturization.The sensitivity and natural frequency of the sensor is obtained by experiments, which shows that it is possible to acquire vector information of vibration acceleration directly through monitoring the wavelength shifts of FBGs.We have studied the orientation recognition capabilities of the 2D sensor by subjecting it to acceleration signals at different orientations within the range of 0?–360?.Furthermore, the natural frequency and sensitivity of the accelerometer can be optimized by adjusting the material and structural parameters of the sensor.The FBGs embedded in the compliant silicone cylinder possess the characteristics of wavelength division multiplexing, indicating the potential for cascading of the sensor.Therefore, the performance of the sensor can be greatly improved,and promoted its application in engineering,especially in narrow spaces.

    2.Structure design and sensing principle

    2.1.Fiber sensor structure design

    Figure 1(a) shows a schematic diagram of the 2D accelerometer.The silicone compliant cylinder(SCC)is used as a cantilever beam,and the FBGs are embedded in the groove on the surface of the cylinder to sense the strain.One end of the cylinder is constrained and immobilized, while the other end is free to vibrate.When the sensor receives vibration excitation from random directions,the free end is swung in a 2D plane perpendicular to the axis of the cylinder,and the vibration signal is coupled to FBG.

    In order to enhance the sensing performance, structural optimization techniques are used to increase the transfer coefficient through stress concentration.The research focuses on the improvement of the sensing area,by analyzing it using finite element simulation.The methods to increase the natural frequency of the sensor include decreasing the length(L)of the cylinder,increasing the radius(R)of the cylinder,reducing the cylindrical radius (r) of the fluted section and increasing the length (l) of the fluted section.By optimizing the size of the accelerometer,we have determined the sensor parameters for the natural frequency.As shown in Fig.1(b),when a sine wave vibration signal is applied to the sensor perpendicularly,near the fixed end is where the maximum strain values are observed.To enhance the sensing performance, three FBGs are embedded at the location close to the fixed end as the sensing element.The specific structural parameters used in the experiment are recorded in Table 1.

    Table 1.Parameters of the FBG accelerometer.

    Fig.1.(a) Schematic diagram of the accelerometer.(b) Stress–strain simulation of the vibration response.

    2.2.Principle of orientation recognition

    During the static bending,the Bragg wavelength will occur a red shift when one side of the fiber is stretched.The Bragg wavelength shift(?λ)can be mathematically expressed as

    whereneffandΛare the effective refractive index and period of the fiber Bragg grating,respectively,andpeis the effective photoelastic coefficient, relative to the effective refractive index of fiber and the Poisson’s ratio of fiber.kis a constant describing the strain coefficient.εiis the strain variable of thei-th fiber,which can be expressed by the following formula:[20]

    whereεmis the bending strain due to the vibration(εm=d/R).As shown in the Fig.2,dis the distance between the fiber and the neutral plane,Ris the curvature radius of the fiber bending,ηis the strain transfer coefficient from the silicone compliant cylinder to the fiber,αiis the included angle between thei-th fiber and the bending strain direction(i=1,2,3),andεtis the thermal strain caused by temperature.[19]The strain of three FBGs uniformly embedded in the cylinder can be expressed as

    Therefore,the total strain caused by bending driven fiber of the silicone compliant cylinder is

    since the optical fibers are embedded at regular intervals, the temperature strain independent ofεtcan be calculated as follows:

    By combining the above formulas,the static bending orientation can be obtained as

    Actually, fiber acceleration variation is dynamic bending, the sensor should have a directional response trend similar to static bending.During the process of vibration detecting,the fiber is continuously bent in two opposite directions within a period of acceleration variation.[21]Therefore, the response period of acceleration direction includes the response period of two static bending orientations, and the vibration orientation can be represented as

    According to Eq.(7), once the initial position information is determined,the direction of the unknown vibration can be calculated as soon as the wavelength shifts of the three FBGs are obtained simultaneously.Besides, combining the precalibrated sensitivity with the wavelength shift of the respective fiber, the magnitude of the vibration acceleration can be expressed as

    whereaθrepresents the value of acceleration, ?λirepresents the Bragg wavelength shift of the FBG ini-th fiber,Sirepresents the sensitivity calibrated for thei-th fiber, andθrepresents the azimuth of the vibration acceleration.Therefore, in practical applications,real-time monitoring of the FBG wavelength shift can obtain vector information of vibration acceleration on the two-dimensional plane, including the orientation and amplitude of acceleration.

    Fig.2.Orientation recognition principle with defined parameters.

    2.3.Fabrication methods

    The main structure of the sensor is composed of SCC.As shown in Fig.3,firstly,the two-component room temperature sulfide silicone rubber is mixed in the proportion of 1:1.Then,put it into a vacuum box to discharge the bubbles.Finally,pour it into the mold coated with mold release agent (silicone oil)in advance.After 24 h curing at indoor temperature,the mold is released and the SCC shown in step 4 in Fig.3 is obtained.There are three grooves with a diameter of 1.5 mm evenly distributed on the surface of the SCC,and their cross sections are shown in Fig.3.To better transfer the strain from the SCC to the FBGs,the FBGs coated with silicone drop-glue primer(KJ-770D) are placed in the groove of the SCC.The appropriate prestress is applied,and the optical fiber inscribed with FBG is glued to the SCC with silicone glue(KJ-998-3T),and the main component of the sensor is completely fabricated by standing for 24 h at room temperature.

    Fig.3.Fabrication process of the sensor.

    3.Experimental setup and discussion

    Figure 4 shows the experimental configuration of the 2D axial fiber-optic accelerometer.To reduce the gravity effect,a dedicated clamp affixes the sensor to the shaker with horizontal excitation imparted by an exciter.A signal generator produces a signal that is amplified by a power amplifier before being transmitted to the excitation machine.By means of computer-controlled regulation, both the amplitude of the vibration stimulus acceleration and the frequency can be set.FBGs are inscribed by a femtosecond laser,and their reflection spectra are shown in Fig.5.The FBG interrogator (LUNA,SM130, USA) can measure the wavelength shift of the FBG accelerometer resulting from mechanical vibrations.

    Fig.4.Vibration test and signal acquisition system.

    3.1.Performance of silicone rubber

    As the main material for manufacturing accelerometers,the inherent properties of the sensor research have significant implications on its performance, particularly key indicators such as the working frequency range and sensitivity of the accelerometer.The relationship between Shore hardness and Young’s modulus is a second order polynomial.[22]Increasing the Shore hardness of a material correspondingly increases its Young’s modulus.Therefore,as the Shore hardness increases,the natural frequency of the accelerometer increases and the sensitivity decreases.In the experiment, we use the same mold to manufacture three sensors with constant dimensions ofR=7.5 mm,H=25 mm,andL=35 mm.These sensors are made of silicone rubber materials with Shore hardness of 30, 50, and 60 respectively.With the condition of maintaining the vibration acceleration excitation at 2 m/s2, frequency scanning tests are performed on the sensors.The experimental results show that the inherent frequencies of these three sensors are 42 Hz, 64 Hz, and 84 Hz, respectively.As shown in Fig.6, the working frequency range of the sensors gradually increases with the increase of the hardness of the silicone rubber.In addition,with the vibration excitation of the frequency of 22 Hz,the linear sensitivity responses of these three sensors are 34.6 pm/g, 100.2 pm/g, and 108.3 pm/g, respectively.As expected,compared with the consistent structural column,silicone rubber materials with lower hardness can provide higher sensitivity.Therefore,in practical applications,we can adjust the hardness of the sensor material (i.e., silicone rubber) to match the required operating bandwidth and sensitivity.

    3.2.Frequency response analysis

    Within the experimental system shown in Fig.4, the accelerometer is at an azimuth angle of 0?.The signal generator is adjusted to sustain the exciter acceleration at 5 m/s2.To obtain the natural frequency and flat range of the accelerometer, we conduct a frequency sweep test on the sensor ranging from 20 Hz to 110 Hz with in step of 2.5 Hz.To ensure accuracy, it is advisable to increase the step size appropriately when the frequency approaches the natural frequency.Meanwhile, the wavelength shifts of three FBGs are recorded, and the amplitude–frequency response curve of the accelerometer can be obtained as shown in Fig.7.The natural frequency of the sensor is around 85 Hz, and the working flat range is between 20 Hz to 60 Hz.Since the three FBGs are embedded in a silicone rubber compliant cylinder at 120?distributed uniformly,FBG1 is the farthest away from the neutral axis(radius distance),while FBG2 and FBG3 are relatively closer.Therefore,FBG1 has the largest wavelength shift,while FBG2 and FBG3 have smaller and equal amplitude(due to the symmetry of position).

    Fig.6.(a)Natural frequency response and(b)linear sensitivity response of the accelerometer under different Shore hardness scales.

    Fig.7.Test curve of amplitude frequency response of accelerometer at 5 m/s2.

    3.3.Linear sensitivity response test

    The installation of the accelerometer remains constant throughout the experiment.As shown in the amplitude–frequency characteristics figure, the curve tends to be flat at frequencies lower than 50 Hz, which indicates this range is the normal operating range of the accelerometer.The vibration excitation signal frequency is set to remain at 30 Hz.And the acceleration is varied in step of 0.5 m/s2from 1 m/s2to 5 m/s2.As shown in Fig.8, the linear sensitivity of the sensor is obtained by linear fitting.FBG1, which is the furthest from the neutral plane,has a sensitivity of 84.21 pm/g, while FBG2 and FBG3 at symmetric positions have sensitivities of 43.46 pm/g and 42.19 pm/g respectively, which is consistent with the previous analysis.

    Fig.8.Linear response of the accelerometer at 30 Hz.

    3.4.Orientation recognition

    The sensor accurately recognizes the vector information of acceleration, including the amplitude and, especially, the orientation of the acceleration.In the experiment, sinusoidal vibration signals are generated at 30 Hz and 5 m/s2, and the silicone compliant cylinder is rotated from 0?to 360?in increments of 10?.As shown in Fig.9,the relationship between orientation and FBG wavelength shift is obtained.Given that the wavelength shift is a function of the strain experienced by an individual FBG as a result of vibration,it is dependent on the distance between the fiber and the neutral plane.The results show that as the orientation of vibration changed,the distance between the fiber and the neutral plane changed, resulting in periodic changes in wavelength shift.As shown in Fig.9(a),the orientation recognition characteristic shows a sine curve in Cartesian coordinates, and the phase difference between adjacent fibers is 60?.This is because the acceleration undergoes continuous bending toward two opposite directions during each changing cycle,resulting in a curved phase difference of 60?and a vibration phase difference of 120?in the output of wavelength demodulation, which corresponds to the geometric angle of the three fibers embedded in the SCC.As shown in Fig.9(b),in polar coordinates,the orientation recognition feature presents an 8 shape,which is a well-known vector recognition feature.

    Fig.9.Orientation dependence of the sensitivities of the three FBGs:(a)Cartesian coordinates and(b)polar coordinates.

    Fig.10.The input and measured orientation values obtained by orientation angle reconstruction.

    According to Eq.(7),the orientation of the vibration signal can be directly identified by concurrently monitoring the wavelength shift of the FBGs.As shown in Fig.10, the orientation identification result under sinusoidal vibration excitation signals at 30 Hz and 5 m/s2is displayed.The results show that the measured orientation values have a good linear relationship with the set values, with a correlationR2of 0.9998.Experimental deviations may have occurred due to errors caused by uneven fiber embedding during the packaging process of the sensor.The quasi-periodic deviation of the measurement orientation over the input, which is mainly due to errors in the position of the fiber embedded.If this experimental process is more precisely controlled,the deviation between the measured and input values could be reduced and the quasi-periodic deviation would be reduced.

    3.5.Cross interference characteristics

    In addition to recognizing vector information of acceleration, the anti-interference capability is a crucial metric for assessing the performance of accelerometers.During testing,place the SCC vertically on the vibration excitation, and the direction of excitation is in the vertical direction (z-axis).A sinusoidal excitation signal is applied to the sensor,and the response of thez-axis and thex–yplane is compared,as shown in the Fig.11.The inserted figure shows the acceleration response curves of the sensor in the orthogonal direction at 30 Hz.It can be observed that the sensitivity of the sensor in the flat area of thex–yplane is 84.2 pm/g and is less than 1.2 pm/g in thez-axis direction.Consequently,the anti-lateral interference level of the sensor is below 3%, indicating excellent anti-interference capability, which is better applied to obtain vector vibration information.

    Fig.11.Cross interference test (a) physical picture and (b) amplitude–frequency response results.

    3.6.Long term stability

    In seismic wave detection applications, the stability of sensors is crucial, which requires that the output data of sensors have a stable response relative to changes in their input parameters or environmental conditions.High-quality accelerometers can maintain the same sensitivity over long-term application, and the range of frequency errors for measuring vibration signals will not change significantly over time.To test the stability of accelerometers, the amplitude–frequency response and linear sensitivity are tested on the first day, the 30th day, and the 60th day, respectively.As shown in the Fig.12, the flat area of FBG1 has been maintained at 20 Hz to 50 Hz,and the sensitivity of multiple sensor measurements has been maintained near 85 pm/g, except a slight deviation occurs in the natural frequency.The deviations in the experimental data may be attributed to two factors: the changes in performance caused by the aging of the silicone rubber material, and the variations in the position of the sensors during testing.The results show that the performance of the sensor did not change obviously during the two-month period,proving its good stability and reliability.

    Fig.12.Stability of time variation: (a)test curve of amplitude frequency response of accelerometer at 5 m/s2;(b)linear response of the accelerometer output versus applied acceleration at 30 Hz on the first day,the 30th day and the 60th day.

    4.Conclusion

    This paper presents a fiber-optic vector accelerometer based on a SCC for low-frequency monitoring.The study conducts experiments to explore the material properties, frequency response, linear sensitivity, orientation recognition ability, anti-interference characteristics, and long-term stability of the sensor.Experimental results show that the working frequency range of the sensor gradually increases with the increase in the hardness of the silicon rubber, and the silicon rubber material with lower hardness provides higher sensitivity.The natural frequency of the sensor is around 85 Hz,and the working flat zone is from 20 Hz to 60 Hz.Within the working range,the FBG1 situated at the greatest distance from the neutral surface exhibits a sensitivity of 84.21 pm/g.In addition, the accelerometer is capable of detecting the orientation of random vibration within a range of 0?–360?,thereby obtaining vector vibration information directly.The anti-interference degree is less than 3%.Additionally, it exhibits favorable long-term stability.Therefore, the accelerometer uses FBGs sensing embedded in an SCC, has a simple structure, easy packaging and can accurately obtain the vector information of low-frequency acceleration.This research provides a new approach for monitoring of narrow space low-frequency vector vibration.With its excellent performance,fiber optic vector accelerometers have broadened application prospects in the field of seismic wave detection.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China (Grant Nos.61927812, 61735014, and 62105261).

    猜你喜歡
    周銳陳卓江山
    怕不怕疼
    精神的指引
    ——陳卓書(shū)法篆刻作品選
    好看的書(shū)
    《整式的乘法與因式分解》鞏固練習(xí)
    如詩(shī)如畫(huà)的江山
    理發(fā)獅和被理發(fā)獅
    醉了江山醉了我
    青年歌聲(2020年10期)2020-10-23 09:55:56
    捐雞毛
    仙人掌的刺
    女友(2016年3期)2016-09-13 13:08:18
    繪一紙江山,醉一場(chǎng)迷夢(mèng)
    美女脱内裤让男人舔精品视频| 精品亚洲乱码少妇综合久久| 免费少妇av软件| 又大又爽又粗| 午夜福利一区二区在线看| 日韩欧美国产一区二区入口| 色婷婷久久久亚洲欧美| 国产成人免费观看mmmm| 成人亚洲精品一区在线观看| 国产高清视频在线播放一区 | 在线看a的网站| 国产av精品麻豆| 三上悠亚av全集在线观看| 国产精品免费视频内射| 亚洲国产精品一区三区| 欧美国产精品一级二级三级| 精品熟女少妇八av免费久了| 这个男人来自地球电影免费观看| 午夜福利在线免费观看网站| 亚洲精品一区蜜桃| 看免费av毛片| 久久午夜综合久久蜜桃| a在线观看视频网站| 黑人巨大精品欧美一区二区蜜桃| av福利片在线| videosex国产| 国产日韩欧美视频二区| 欧美日韩国产mv在线观看视频| 操出白浆在线播放| 91精品三级在线观看| 一区二区三区精品91| 欧美xxⅹ黑人| 捣出白浆h1v1| 亚洲精品久久成人aⅴ小说| 国产精品一区二区精品视频观看| 亚洲情色 制服丝袜| 亚洲免费av在线视频| 日韩大码丰满熟妇| 欧美黄色片欧美黄色片| 啦啦啦免费观看视频1| 免费黄频网站在线观看国产| 欧美亚洲日本最大视频资源| 精品国产超薄肉色丝袜足j| 亚洲av成人一区二区三| 丰满迷人的少妇在线观看| 成人国产av品久久久| 天堂俺去俺来也www色官网| 黄色毛片三级朝国网站| 久久久久视频综合| 亚洲精品自拍成人| 人成视频在线观看免费观看| 国产91精品成人一区二区三区 | 国产精品九九99| 亚洲国产欧美日韩在线播放| 午夜福利视频精品| 欧美另类一区| 亚洲精品国产一区二区精华液| 亚洲精品日韩在线中文字幕| 国产伦理片在线播放av一区| 久久久国产欧美日韩av| av在线播放精品| 夫妻午夜视频| 中亚洲国语对白在线视频| 色精品久久人妻99蜜桃| 嫁个100分男人电影在线观看| 成年人黄色毛片网站| 欧美亚洲 丝袜 人妻 在线| 18在线观看网站| 国产av又大| 在线天堂中文资源库| 成人免费观看视频高清| 精品一品国产午夜福利视频| 涩涩av久久男人的天堂| 黄网站色视频无遮挡免费观看| 亚洲成人免费电影在线观看| 国产精品熟女久久久久浪| 国产成人欧美在线观看 | 亚洲 欧美一区二区三区| 69精品国产乱码久久久| 18禁黄网站禁片午夜丰满| bbb黄色大片| 精品免费久久久久久久清纯 | 黑人欧美特级aaaaaa片| 男女国产视频网站| 欧美另类一区| 免费av中文字幕在线| 一本—道久久a久久精品蜜桃钙片| 亚洲黑人精品在线| 美女高潮到喷水免费观看| 色94色欧美一区二区| 欧美97在线视频| 亚洲欧美精品综合一区二区三区| 午夜免费鲁丝| av又黄又爽大尺度在线免费看| 亚洲精品中文字幕一二三四区 | 免费在线观看影片大全网站| 亚洲va日本ⅴa欧美va伊人久久 | 久久青草综合色| 中文字幕人妻熟女乱码| 中亚洲国语对白在线视频| 免费观看人在逋| 国产欧美日韩精品亚洲av| 国产欧美亚洲国产| 波多野结衣av一区二区av| 成年av动漫网址| 纯流量卡能插随身wifi吗| 婷婷色av中文字幕| 精品国产国语对白av| 欧美久久黑人一区二区| 丰满迷人的少妇在线观看| 精品少妇久久久久久888优播| bbb黄色大片| 一区二区三区乱码不卡18| 午夜激情久久久久久久| 波多野结衣一区麻豆| 国产精品成人在线| 成在线人永久免费视频| 日本精品一区二区三区蜜桃| 人人妻人人爽人人添夜夜欢视频| 9热在线视频观看99| 国产精品久久久久久精品电影小说| 91九色精品人成在线观看| 又黄又粗又硬又大视频| 超碰成人久久| 亚洲国产精品成人久久小说| 手机成人av网站| 一区二区三区激情视频| 亚洲专区中文字幕在线| 国产成人a∨麻豆精品| 50天的宝宝边吃奶边哭怎么回事| 国产精品免费大片| 汤姆久久久久久久影院中文字幕| 欧美日韩成人在线一区二区| 国产欧美日韩精品亚洲av| 欧美老熟妇乱子伦牲交| 十八禁网站网址无遮挡| 成年人免费黄色播放视频| kizo精华| 久久亚洲国产成人精品v| 精品少妇黑人巨大在线播放| 免费少妇av软件| 少妇被粗大的猛进出69影院| 久久国产精品大桥未久av| 久久精品人人爽人人爽视色| 欧美激情极品国产一区二区三区| 日本黄色日本黄色录像| av在线app专区| 丰满饥渴人妻一区二区三| 在线 av 中文字幕| 色老头精品视频在线观看| 99久久综合免费| 王馨瑶露胸无遮挡在线观看| 不卡av一区二区三区| 一区二区三区激情视频| 热re99久久精品国产66热6| 国产野战对白在线观看| 男女床上黄色一级片免费看| 热99久久久久精品小说推荐| 日韩 欧美 亚洲 中文字幕| 蜜桃国产av成人99| 亚洲国产成人一精品久久久| 国产精品久久久av美女十八| 一个人免费看片子| 成人av一区二区三区在线看 | 欧美黄色片欧美黄色片| 免费观看人在逋| 91精品三级在线观看| 岛国毛片在线播放| 91麻豆精品激情在线观看国产 | 妹子高潮喷水视频| 亚洲欧美精品综合一区二区三区| 久久国产精品影院| 超碰97精品在线观看| 久久久久国产精品人妻一区二区| 老司机影院成人| 精品一区在线观看国产| xxxhd国产人妻xxx| 极品人妻少妇av视频| 久久久国产成人免费| 亚洲国产欧美一区二区综合| 亚洲第一青青草原| 国产在线视频一区二区| 久久久久精品人妻al黑| 成年美女黄网站色视频大全免费| 一本一本久久a久久精品综合妖精| 一区二区日韩欧美中文字幕| 一个人免费看片子| 人妻 亚洲 视频| 亚洲av美国av| 国产真人三级小视频在线观看| 久久精品国产a三级三级三级| 久久精品熟女亚洲av麻豆精品| 午夜福利一区二区在线看| 在线天堂中文资源库| 久久久久精品人妻al黑| 国产有黄有色有爽视频| 欧美日韩成人在线一区二区| 国产精品 国内视频| 最新的欧美精品一区二区| 18禁黄网站禁片午夜丰满| 亚洲免费av在线视频| 免费高清在线观看视频在线观看| 男女边摸边吃奶| 黄频高清免费视频| 1024视频免费在线观看| 视频区欧美日本亚洲| 日韩视频一区二区在线观看| 搡老熟女国产l中国老女人| 亚洲精品国产av成人精品| 搡老熟女国产l中国老女人| 免费av中文字幕在线| 精品一区二区三区av网在线观看 | 欧美在线一区亚洲| 日本一区二区免费在线视频| 国产精品一区二区免费欧美 | 国产成人系列免费观看| 一区福利在线观看| 99国产综合亚洲精品| 美女主播在线视频| 亚洲精品日韩在线中文字幕| 国产一区二区三区av在线| 久久久久精品国产欧美久久久 | 国产精品影院久久| av欧美777| 19禁男女啪啪无遮挡网站| 汤姆久久久久久久影院中文字幕| 嫁个100分男人电影在线观看| 成人亚洲精品一区在线观看| 纵有疾风起免费观看全集完整版| 国产av又大| 国产成人一区二区三区免费视频网站| 2018国产大陆天天弄谢| 大片免费播放器 马上看| 国产老妇伦熟女老妇高清| 国产无遮挡羞羞视频在线观看| 一个人免费看片子| 亚洲av电影在线进入| 亚洲国产av影院在线观看| 国精品久久久久久国模美| 王馨瑶露胸无遮挡在线观看| 亚洲午夜精品一区,二区,三区| 在线观看www视频免费| 久久久久久久大尺度免费视频| h视频一区二区三区| 精品人妻在线不人妻| 久久久水蜜桃国产精品网| 麻豆国产av国片精品| 午夜福利视频精品| 国产成人欧美| 精品人妻一区二区三区麻豆| 国产又爽黄色视频| 久久中文看片网| 香蕉丝袜av| 亚洲精华国产精华精| 欧美一级毛片孕妇| 精品久久久精品久久久| 久久热在线av| 在线十欧美十亚洲十日本专区| 久久精品亚洲熟妇少妇任你| 亚洲国产欧美日韩在线播放| 精品人妻一区二区三区麻豆| 90打野战视频偷拍视频| 久久毛片免费看一区二区三区| 欧美日本中文国产一区发布| 99国产精品一区二区蜜桃av | 女人爽到高潮嗷嗷叫在线视频| 国产亚洲av高清不卡| 亚洲欧美色中文字幕在线| 亚洲av日韩精品久久久久久密| 国产国语露脸激情在线看| 一本色道久久久久久精品综合| 我的亚洲天堂| 丰满饥渴人妻一区二区三| 中文字幕人妻丝袜一区二区| 国产有黄有色有爽视频| 两性夫妻黄色片| 国产精品亚洲av一区麻豆| 青春草亚洲视频在线观看| 正在播放国产对白刺激| 久久99热这里只频精品6学生| 久久久久国产精品人妻一区二区| 妹子高潮喷水视频| 极品少妇高潮喷水抽搐| 亚洲第一青青草原| 交换朋友夫妻互换小说| 日韩欧美免费精品| 久久精品久久久久久噜噜老黄| www.精华液| 国产精品熟女久久久久浪| 老熟妇仑乱视频hdxx| www.自偷自拍.com| 午夜福利,免费看| 视频区欧美日本亚洲| 在线观看免费日韩欧美大片| 精品一区二区三区av网在线观看 | 十八禁网站网址无遮挡| 国产精品.久久久| 日韩有码中文字幕| 啦啦啦在线免费观看视频4| 久久久久久人人人人人| 日韩,欧美,国产一区二区三区| 在线观看免费午夜福利视频| 欧美激情极品国产一区二区三区| 满18在线观看网站| 操美女的视频在线观看| 免费日韩欧美在线观看| 蜜桃在线观看..| 久久久精品国产亚洲av高清涩受| tocl精华| 天天躁日日躁夜夜躁夜夜| 日韩电影二区| 大香蕉久久网| 亚洲第一欧美日韩一区二区三区 | 亚洲免费av在线视频| 国产成人一区二区三区免费视频网站| 国产高清国产精品国产三级| 亚洲欧美激情在线| 午夜免费观看性视频| 国产一卡二卡三卡精品| 久久精品人人爽人人爽视色| 成人三级做爰电影| 少妇粗大呻吟视频| 亚洲精品久久成人aⅴ小说| 国产成人影院久久av| 桃花免费在线播放| 老司机深夜福利视频在线观看 | 老鸭窝网址在线观看| av超薄肉色丝袜交足视频| 亚洲国产中文字幕在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 曰老女人黄片| 97精品久久久久久久久久精品| 亚洲欧美激情在线| 欧美精品高潮呻吟av久久| 高清黄色对白视频在线免费看| 亚洲免费av在线视频| 国产成人a∨麻豆精品| 久热爱精品视频在线9| 美女午夜性视频免费| 一区二区三区精品91| 两个人看的免费小视频| 美国免费a级毛片| 美女国产高潮福利片在线看| 国产高清国产精品国产三级| 亚洲国产精品一区三区| 国产无遮挡羞羞视频在线观看| 久久亚洲国产成人精品v| 免费在线观看黄色视频的| 搡老熟女国产l中国老女人| 新久久久久国产一级毛片| 美女大奶头黄色视频| 可以免费在线观看a视频的电影网站| 亚洲精品一卡2卡三卡4卡5卡 | 日本五十路高清| 美国免费a级毛片| 91国产中文字幕| 脱女人内裤的视频| 国产精品久久久久久精品古装| 亚洲国产精品999| 日本wwww免费看| 亚洲精品成人av观看孕妇| kizo精华| 日本wwww免费看| 在线 av 中文字幕| 久久精品国产亚洲av香蕉五月 | 欧美中文综合在线视频| 真人做人爱边吃奶动态| 亚洲全国av大片| 天天操日日干夜夜撸| 亚洲人成电影免费在线| 久久综合国产亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 免费高清在线观看日韩| 中文欧美无线码| 久久综合国产亚洲精品| 精品人妻一区二区三区麻豆| 亚洲av国产av综合av卡| 日本av手机在线免费观看| 国产在线观看jvid| 久久免费观看电影| 国产免费一区二区三区四区乱码| 美女午夜性视频免费| 一区在线观看完整版| 中文字幕av电影在线播放| 在线永久观看黄色视频| 久久性视频一级片| 国产日韩一区二区三区精品不卡| 免费在线观看影片大全网站| 男女床上黄色一级片免费看| 老司机影院毛片| 99热网站在线观看| 下体分泌物呈黄色| 岛国毛片在线播放| 高清av免费在线| 亚洲中文字幕日韩| 十八禁网站网址无遮挡| 69精品国产乱码久久久| 女人爽到高潮嗷嗷叫在线视频| 国产成人系列免费观看| 亚洲精华国产精华精| 日韩中文字幕视频在线看片| 亚洲午夜精品一区,二区,三区| 国产野战对白在线观看| 欧美在线一区亚洲| 精品一区在线观看国产| 国产免费一区二区三区四区乱码| 欧美av亚洲av综合av国产av| av网站免费在线观看视频| 法律面前人人平等表现在哪些方面 | 天天躁日日躁夜夜躁夜夜| 久久久国产欧美日韩av| 中国美女看黄片| 欧美国产精品一级二级三级| 啦啦啦啦在线视频资源| 国产亚洲欧美在线一区二区| 一级片'在线观看视频| 国产精品久久久久成人av| 91精品三级在线观看| 极品人妻少妇av视频| 狂野欧美激情性bbbbbb| 国产精品二区激情视频| 国产黄频视频在线观看| 99国产精品99久久久久| 好男人电影高清在线观看| 免费观看人在逋| 日日夜夜操网爽| 国产精品久久久人人做人人爽| 久久九九热精品免费| 王馨瑶露胸无遮挡在线观看| 美女高潮喷水抽搐中文字幕| 久久久精品94久久精品| 国产在线观看jvid| 久久久精品国产亚洲av高清涩受| 999精品在线视频| 亚洲欧美精品自产自拍| 国产1区2区3区精品| 国产深夜福利视频在线观看| 亚洲黑人精品在线| 欧美乱码精品一区二区三区| 日韩三级视频一区二区三区| 精品国产乱码久久久久久小说| 99国产综合亚洲精品| 高清在线国产一区| 波多野结衣av一区二区av| 亚洲色图 男人天堂 中文字幕| 色播在线永久视频| 国产欧美日韩一区二区三 | 男女国产视频网站| 人人妻,人人澡人人爽秒播| 精品福利永久在线观看| 少妇猛男粗大的猛烈进出视频| 国产一卡二卡三卡精品| 亚洲成国产人片在线观看| 亚洲国产欧美日韩在线播放| 电影成人av| 亚洲精品国产av成人精品| www.av在线官网国产| 91大片在线观看| 纯流量卡能插随身wifi吗| 丝袜人妻中文字幕| 国产精品熟女久久久久浪| 女人久久www免费人成看片| √禁漫天堂资源中文www| 精品人妻一区二区三区麻豆| 99香蕉大伊视频| 午夜两性在线视频| 国产伦人伦偷精品视频| 我的亚洲天堂| 巨乳人妻的诱惑在线观看| av福利片在线| 亚洲五月色婷婷综合| 中文字幕人妻丝袜制服| 美女福利国产在线| 十八禁网站网址无遮挡| 9色porny在线观看| 久久精品国产亚洲av香蕉五月 | 麻豆乱淫一区二区| 国产免费现黄频在线看| 人人妻人人添人人爽欧美一区卜| 亚洲欧美色中文字幕在线| 99精品久久久久人妻精品| 亚洲熟女毛片儿| 欧美日韩亚洲综合一区二区三区_| 伦理电影免费视频| 狠狠精品人妻久久久久久综合| 狠狠婷婷综合久久久久久88av| 中文字幕av电影在线播放| 韩国精品一区二区三区| 少妇裸体淫交视频免费看高清 | 一级毛片电影观看| 午夜精品国产一区二区电影| 最新的欧美精品一区二区| 亚洲自偷自拍图片 自拍| 人人妻人人澡人人爽人人夜夜| 久久影院123| 巨乳人妻的诱惑在线观看| 一区二区av电影网| 国产欧美日韩一区二区三区在线| 久久香蕉激情| 亚洲va日本ⅴa欧美va伊人久久 | 欧美黑人欧美精品刺激| 久久久国产成人免费| 久热爱精品视频在线9| 狠狠狠狠99中文字幕| 美国免费a级毛片| 女性生殖器流出的白浆| 日日夜夜操网爽| 亚洲精品国产精品久久久不卡| 久久久久久久精品精品| 久久久水蜜桃国产精品网| 国产高清国产精品国产三级| 天天影视国产精品| 十分钟在线观看高清视频www| 欧美日韩黄片免| 久久免费观看电影| av不卡在线播放| 国产精品av久久久久免费| 国产精品一区二区在线不卡| 人妻 亚洲 视频| 国产激情久久老熟女| 亚洲第一av免费看| av片东京热男人的天堂| 亚洲精品在线美女| 久久久久久久久久久久大奶| 午夜日韩欧美国产| 日韩,欧美,国产一区二区三区| 国产99久久九九免费精品| 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 悠悠久久av| 欧美日韩视频精品一区| 国产日韩欧美视频二区| 这个男人来自地球电影免费观看| 少妇猛男粗大的猛烈进出视频| 欧美黑人欧美精品刺激| 高清在线国产一区| 青春草视频在线免费观看| 大码成人一级视频| 韩国精品一区二区三区| 免费在线观看黄色视频的| 悠悠久久av| 欧美精品一区二区免费开放| 老司机影院成人| 日韩欧美免费精品| 午夜福利影视在线免费观看| 91成年电影在线观看| 久久精品国产综合久久久| www.av在线官网国产| 午夜免费鲁丝| 亚洲国产精品999| 搡老乐熟女国产| 日韩精品免费视频一区二区三区| 欧美另类亚洲清纯唯美| 巨乳人妻的诱惑在线观看| 操美女的视频在线观看| 在线观看人妻少妇| 一本色道久久久久久精品综合| 少妇精品久久久久久久| 精品欧美一区二区三区在线| 搡老岳熟女国产| 免费久久久久久久精品成人欧美视频| 久久国产精品男人的天堂亚洲| 老司机福利观看| 人妻 亚洲 视频| 亚洲精品国产色婷婷电影| 国产免费av片在线观看野外av| 欧美精品av麻豆av| 国产伦理片在线播放av一区| 9色porny在线观看| 女性生殖器流出的白浆| 一区二区三区乱码不卡18| 国产男女超爽视频在线观看| 91九色精品人成在线观看| 国产亚洲精品久久久久5区| 中文字幕精品免费在线观看视频| 久久人妻福利社区极品人妻图片| 欧美 亚洲 国产 日韩一| cao死你这个sao货| 侵犯人妻中文字幕一二三四区| 男人操女人黄网站| 十八禁高潮呻吟视频| 欧美日韩亚洲国产一区二区在线观看 | 欧美+亚洲+日韩+国产| 99久久精品国产亚洲精品| 免费黄频网站在线观看国产| 777米奇影视久久| 国产欧美日韩一区二区三 | 免费在线观看影片大全网站| 菩萨蛮人人尽说江南好唐韦庄| 啦啦啦免费观看视频1| 中文精品一卡2卡3卡4更新| 80岁老熟妇乱子伦牲交| 成人影院久久| 日本精品一区二区三区蜜桃| 国精品久久久久久国模美| 狠狠婷婷综合久久久久久88av| 国产精品1区2区在线观看. | 亚洲av电影在线观看一区二区三区| 男女床上黄色一级片免费看| 男男h啪啪无遮挡| 中文字幕人妻丝袜制服| 精品福利观看| 欧美亚洲 丝袜 人妻 在线| 悠悠久久av| 老司机午夜十八禁免费视频| 免费少妇av软件| 国产精品 欧美亚洲| 黄片小视频在线播放| xxxhd国产人妻xxx| av有码第一页| 岛国在线观看网站| 欧美在线一区亚洲| 在线观看www视频免费| 最近最新免费中文字幕在线| 国产精品免费视频内射|