• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bacterial turbulence in gradient confinement

    2023-12-02 09:29:14NingzheYan顏寧哲ChenliangXie謝晨亮HaoLuo羅昊YananLiu劉亞楠andGuangyinJing經(jīng)光銀
    Chinese Physics B 2023年11期

    Ningzhe Yan(顏寧哲), Chenliang Xie(謝晨亮), Hao Luo(羅昊), Yanan Liu(劉亞楠), and Guangyin Jing(經(jīng)光銀)

    School of Physics,Northwest University,Xi’an 710127,China

    Keywords: collective motion,bacterial turbulence,bacterial drop,gradient confinement

    1.Introduction

    Microorganisms can stir the surrounding medium to form disturbance flows by beating their flagella or cilium for locomotion.When these microswimmers move collectively at high density,the disturbed flows exhibit spatiotemporal chaotic vortices at a length scale much larger than the size of individual unit.[1]The spontaneous flow generated by tiny swimmers is fascinating and can be analogous to the inertial turbulence occurring at a large scale with high velocity,i.e.,high Reynolds number.[2–5]Bacterial suspension,for example,is recognized as a typical system far from equilibrium,in which the energy is continuously injected at the unit level and collective motion of coordinated individuals occurs.[3,6–9]This living turbulence plays a significant role in mixing enhancement and efficient molecular transport at low Reynolds number, and also facilitates the intracellular communications of the cells in biological systems.[10–16]From the fundamental point of view,the statistical features and laws are extremely interesting for the active flows in the systems with living microorganisms at vanishing Reynolds number.[1,17–20]

    The individual bacterium injects the energy into the surrounding fluidic medium in a disordered way, which can be however collected to form ordered moving vortices.[21]Extensive studies have been conducted to understand this phase transition from the statistical point of view.[22,23]This new class of the spontaneous flow also raises questions on whether and how this living turbulence manifests the features and universality reminiscent of energy cascades in inertial turbulence.[3–5,24,25]The isotropic hypothesis, commonly applied to well-developed inertial turbulence, is both reasonable and necessary.However, microorganisms experience heterogeneous nutrient and oxygen supplies,compelling them to dynamically adapt to their environment and inject energy in an anisotropic manner.This raises the question of whether the isotropic assumption remains valid for bacterial turbulence across all scales.Moreover, the theoretical analysis and numerical methods for three-dimensional living turbulence are difficult to be realized by direct imaging under microscope.[26–30]Instead, two-dimensional living turbulence is feasibly observed within homogeneous films or channels.[3,7,24,31–33]Dombrowskiet al.introduced the dense bacteria into a sessile drop and Hele–Shaw confinement, and reported an interesting collective behavior due to oxygen diffusion dynamics.[6]It is however unclear how or to what extent,the properties and mechanisms of non-uniform living turbulence in bacterial suspensions differ from those of uniform counterparts.

    Here,we trap dense bacteria inside sessile drops.This geometry,as a natural habitat for bacteria,generates an inevitable thickness gradient in the vicinity of the contact line.Since the characteristic size of the collective motion of the bacterial population depends on the smallest dimension of the confinement(i.e.,thickness),we,therefore,build a non-uniform living turbulence confined in the wedge at the corner of the sessile bacterial drop.Particularly,the air–liquid interface allows the diffusion of oxygen and provides a concentration variation along the radial direction of the drop due to the thickness gradient.This coupling of the thickness gradient and oxygen gradient allows a new type of heterogeneous turbulent flow in living bacterial suspension.The high activity of the motile bacteria contributes to the strong fluctuation of the living flows close to the contact line where oxygen is rich.However,the fluctuation increasingly decays due to less oxygen supply when the liquid layer gets thicker toward the drop center.Moreover, it turns out that this living turbulence is locally anisotropic at a unit scale while tends to isotropic at a scale around collective motion.The kinetic energy spectrum here exhibits geometric dependence at large wavenumber region, while a robust scalingE(k)~k1with short wavenumber.This heterogenous turbulence built herein by controlling the activity of self-propelled units,suggests the possible spatial guide for the energy transfer across vortices in living turbulence.

    2.Results and discussion

    2.1.Non-uniform living turbulence

    In our experiments,a specific region near the contact line of a sessile droplet is opted to study the collective behavior of the dense bacteria.Naturally,there is a wedge-shaped confinement between the substrate and the air–liquid interface with a gradually varying height from a few to hundreds of micrometers.A drop of bacterial suspension is transferred onto a horizontal glass slide and is kept within a closed chamber with saturated humidity to avoid the influences of evaporation and external disturbances.According to the wetting hysteresis behavior, drops with three contact anglesθ1= 10?,θ2= 22?andθ3=33?are stably controlled through the subtle experimental setup as sketched in Fig.1.An inverted microscope equipped with a high-speed camera is used to record the collective behavior of bacteria close to the drop edge, with the focal plane at the drop bottom.The visual field has a size of 696μm×695μm(with 0.34μm/pixel).As shown in the left panel of Fig.1,thexandyaxes represent the radial direction starting from the contact line and the tangential direction along the contact line,respectively.

    Similar to the typical depiction of inertial turbulence,the formation of living turbulence within a wedge-shaped space exhibits numerous distinctive intermittent whirls and jets.To characterize this living turbulence,we perform the particle image velocimetry(PIV)analysis through the PIVlab module in MATLAB[34]to obtain the coarse-grained velocity field of the bacterial suspension,as shown in Fig.2.

    In particular, the vorticity map of the living flow shows an obvious non-uniform feature in the case ofθ2= 22?(Fig.2(b)).Note that, the thickness of the wedge-shaped liquid film reduces to several micros at very close to the edge,which suppresses the motility of the swimming bacteria.In order to understand this heterogeneity, it is then necessary to further investigate the spatial distribution of the turbulent kinetic energy.By using the conventional way, the velocity is decomposed into a time averaged velocityv(r) and fluctuation velocityv′(r,t),where (·)denotes the average over time.The mean kinetic energyEm(r) and turbulent kinetic energyEt(r),are calculated from these two velocity components as

    The distributions of turbulent kinetic energyEt(r) in three cases are shown in Figs.3(a)–3(c).It can be seen that the collective motion of bacteria is suppressed in the extremely thin liquid layer very close to the contact line,reflected by the much lower turbulent kinetic energy.Thereafter, the turbulent kinetic energy is more or less uniform distributed in the area away from the contact line in both cases of contact angleθ1=10?andθ3=33?.However, there is an obvious decay of turbulent kinetic energy in the case ofθ2,in the vicinity of 300μm away from the contact line.

    Interestingly, a remarkable peak appears in the mean kinetic energy distribution in Fig.4(b)near the position 300μm away from the drop contact line withθ2= 22?.Whereas,other distributions of mean kinetic energy are almost uniform(Figs.4(a) and 4(c)).Furthermore, we confrim that the peak value of mean kinetic energy results from the contribution of radial velocityvx, directing to the inside of the drop, as illustrated in Figs.4(d)–4(f).The gradient of the turbulent kinetic energy as ?xEtcaptures the spatial variation ofEt.This dependence suggests that there is an inward mean flow from the contact line toward the drop center.This inward mean flow requires an outward counterpart above the observation layer(i.e.,the substrate bottom in the present work)to form a global circulation,which has been observed in Ref.[35].The turbulent kinetic energy presents a non-uniform distribution along the radial direction, which is intuitively ascribed to the varying thickness of the wedge-shaped drop corner.Then,we try to fgiure out the intrinsic reason responsible for the nonuniform fluctuation of turbulent energy.It is measured that the maximum variation of turbulence occurs at the distance aboutx=300μm away from the contact line,as shown in Figs.4(b)and 4(e).We confrim that this distance is stable around the whole drop by repetitively independent experiments.This characteristic distance corresponds to the local liquid height at that position,which establishes a vertical diffusion layer for oxygen.The bottom layer of the drop experiences a limited oxygen supply, whereas the air–liquid interface benefits from a rich oxygen source.

    Considering the fact that the confined space at the drop corner can be approximately regarded as a triangle, and the thickness of the liquid filmhincreases with the distance from the contact line.It has been experimentally confirmed that persistent oxygen-consuming is needed to maintain the mobility of the bacteria and thus their collective motion.[36,37]It is also quantitatively determined for a accumulation layer of oxygenrich by combining oxygen diffusion and consumption,chemotaxis, and viscous fluid dynamics.[35]We have measured the active turbulence close to the air–liquid interface.The results show that an outward mean flux towards the contact line,which built a global circulation within this wedge-shape region close to the contact line.We believe that the increasing thickness of liquid film generates a non-uniformity of oxygen distribution,thereby affecting the activity of the bacteria.The dynamical evolution of the oxygen concentrationcwith the molecular diffusion coefficient ofDc, depends on the bacteria densityn,the consumption rateκof oxygen,and the fluid velocityvas[35]

    2.2.Local anisotropic and global isotropic

    In the inertia turbulence, it is realistic anisotropic at the typical scale of the system since the energy is injected from the boundary.While well developed flow is normally regarded as isotropic which is also the essential basis of most statistical theories.[38–40]However, most theoretical and numerical studies for living turbulence also keep this isotropic hypothesis down to the unit-scale regime.[9]It has been shown that a longwavelength hydrodynamic instability drives the transition to form active turbulence.[41–43]In living turbulence, however,the isotropy or anisotropy is of great interest for evidence.Hence, the local anisotropy of living turbulence in our system is characterized at each node in the viscous feild,through the time-averaged product of turbulent velocitiesv′x·v′y.The red and blue spots in the map shown in Fig.6(a), represent locally anisotropic with nonzero velocity products and ellipselike asymmetry with opposite signs in the insets.Although it is locally anisotropic in the living turbulence system, the injected energy can be gathered to form collective motion at a much larger scale due to bacterial interactions.We thus analyze the spatiotemporal average of the correlation function of turbulent velocities in given distances.After considering and going through every velocity point in spatial and averaging on 500 frames (time of 10 s), a dependence that changes as the distance|l| increases has been presented in Fig.6(b).We find that the correlation function is non zero at short distances showing anisotropic properties and declines to a plateau around zero near 70μm which is in the order of typical size of collective motion.The analysis above reveals that the living turbulence is locally anisotropic due to energy generation at the unit scale and global isotropic at a much larger scale.

    2.3.Energy spectrum and scaling

    The structure of the swirling flow generated by the bacterial collective motion can be characterized by the velocity correlation functions which are calculated and plotted in Fig.7.The characteristic size and persistence time of the vortices are calculated to be~50 μm and~2 s as the order of magnitude,respectively.Turbulence exhibits a remarkable dynamical complexity characterized by vortices of varying sizes and random velocity fluctuations.Beneath the chaotic-like velocity field,a universal law called Kolmogorov-5/3 scaling has been found to govern the energy cascade in inertial turbulence.

    Here, for the 2D living turbulence, the energy spectrumE(k)can be calculated by

    whereRrepresents the position vector between two considered points andkis the scalar wavenumber with a value ofkldefined by the size of a single bacteria.〈·〉r,t,ψrepresents the average on the spatiotemporal domain and over the unit circle in wavenumber,respectively.Since the energy is injected in an anisotropic way from individual units,we thus check the onedimensional spectrum from the velocity componentsv′xandv′y,as explained in detail in the method section.We find that the 2D energy spectra of the turbulences can be roughly used for simplification as the overall energy spectra of the non-uniform living turbulence.Thek/kl~1 donates the typical length scale of the unit for the energy injection, which is transferred into large vortices with the size of~50μm(Fig.7)at a peak in the energy spectrum in Fig.8.In this region of large wavenumber,the averaged scaling varies from-1/5 to-1, depending on the geometric confinement of the systems.It seems that injected energy can be transferred with different efficiency into the vortices with the characteristic lengthλr~50 μm due to collective motion,therefore showing herein different decaying slopes in the energy spectra.The sharper decrease (i.e.,k-1)in strong confinement (i.e.,θ=10?) shows higher efficiency due to stronger bacterial alignment to form collective motion,than that in loose confniement (i.e.,θ=33?).A robust scaling ofk1at the small wavenumber is found to be independent of detailed geometric confniement, which is consistent with result in Ref.[24].Note that the upper limit of the wavenumber is determined by the typical size of the individual bacteria(λl), which is not sufficiently smaller than the characteristic coherent length(λr)of the collective motion.Thus,as shown in Fig.8, calculating the energy scaling in the large range of wavenumber can not be across orders of magnitude.

    3.Conclusion

    We construct spatial confinements featuring varying thickness gradients by manipulating the contact angle of sessile drops containing dense bacterial suspension.The diffusion-limited layer of oxygen from the air–liquid interface to the bottom of the drop creates a non-uniform oxygen concentration.The approximate cut-off distance of 100μm is estimated along the height direction,causing the heterogeneous distribution of bacterial activity along the radial direction of drop.The velocity fluctuation shows a large value close to the contact line where the oxygen is rich, while decays inward to the drop center where oxygen supply is significantly reduced due to the diffusion-limited regime across the thick liquid layer.Therefore non-uniform living turbulence is produced.Interestingly,energy is injected in a locally anisotropic way at the unit scale, but generates the isotropic feature at a much larger scale with energy spreading.The heterogeneous turbulence here is governed by the bacterial activity, thereby regulating a global flux of mean kinetic energy.This flux exhibits a linear dependence on the gradient of turbulent energy,analogous to the diffusion law.The bacterial activity can be controlled by the wedge-shaped geometry at the corner of a sessile drop.This natural non-uniform thickness of the liquid layer can tune the balance betweenExyand?zwith a monotonic dependence by varying the contact angles of the bacterial drops.And the fniding suggests a potential strategy for controlling energy transfer through the deliberate design of non-uniform living turbulence.Furthermore, we perform a detailed analysis of the energy spectra, revealing a distinct scaling behavior for large wavenumbers ranging fromk-1/5tok-1.This scaling variation clearly demonstrates a pronounced dependence on the geometric confinement presents within the bacteria drops.We also characterize the energy spectra and show that the scaling for large wavenumber varies fromk-1/5tok-1, and this scaling behavior indicates a significant correlation with the geometric confinement presents within the bacterial drops.

    4.Materials and method

    4.1.Bacteria

    The wild-type bacillus subtilis(strain 168)was used in all experiments.The bacteria were cultured using a standard protocol.In brief, the bacteria was taken out from a frozen tube stored at-20?C,and then transferred into the Luria–Bertani broth (LB) medium in a plastic tube for overnight growth at 30?C.Thereafter,a controlled volume of this bacterial suspension was picked and introduced to the new LB medium with a volume of 20 mL in a normal centrifugation tube, in order to keep the final optical density OD≈0.05 measured under the optical wavelength of 600 nm.Then the tube with the mixture of bacteria and medium was kept on a shaker at 30?C with a shaking speed of 200 rpm for about 6 h.All the culture medium here of LB was made before the experiment from the components of tryptone 1.0%(w/v), yeast extract 0.5%(w/v),and NaCl 1.0%(w/v).The bacterial growth was stopped at the mid of the exponential phase.Then they were harvested and concentrated by centrifugation with the acceleration of 1500 g for 5 mins.After centrifugation, the clear upper supernatant was removed, and then the bacterial pellet was re-suspended into the motility buffer(MB).The MB medium was prepared with 0.01 M potassium phosphate, 0.067 M NaCl, and 10 M EDTA, and was adjusted to pH=7.0.The suspension was then washed twice by MB and diluted to the expected volume fractionφ(here~7%, only accounting for volume occupation by the bacterial head body).The bacteria body length and radius were measured as≈4.0μm and≈0.5μm,respectively.Note that the volume fraction of bacteria was roughly calibrated asφ=0.001 corresponding to the bacterial number density ofn0=8×108cells/mL or OD600=1.0.

    4.2.Experimental setup

    We deposited 5 μL bacteria suspension onto a microscope quartz coverslip by a needle with inner diameter of 0.11 mm, to form a sessile drop.The coverslip and bacterial drop were together enclosed in an acrylic chamber loaded on the stage of the microscopy with saturated humidity and at room temperature (~25?C) to avoid the influence of evaporation as well as external disturbance.Images were recorded 3 min later than transfer process, in order that a steady state was sufficiently developed within the bacterial drop.An inverted microscope (Nikon Ti2-E, Japan) equipped with high speed camera(Hamamatsu,ORCA-Flash4.0 V3)was used for imaging in the bright-field mode.Two objective lens 20×(NA = 0.45) and 60× (NA = 1.2) were used to obtain the view-filed with size about 696μm×695μm(0.34μm/pixel)and 225μm×225μm,respectively.The frame rate was fixed to be 50 fps with resolution of 2048 pixels×2044 pixels.All snapshots and video stacks were focused on the bottom of the coverslip, which was defined asx–yplane in our coordinate system.No evaporation flow was observed in our experiments.The observation window was located in the region near the contact line of the bacterial drop.

    4.3.Image processing and data analysis

    The continuous image sequences taken by bright-field microscopy,stored the signal intensity of the whole field,which reflected the movement of the coarse-grained flow generated by dense swimming bacteria.The imaging here was difficult for particle-resolved tracking but favored the measurement of the velocity field.This velocity field could be obtained by the analysis routines of PIVlabs in MATLAB based on the raw videos.The key parameters, window size and step size,were set as 128 pixels and 32 pixels respectively for all of our PIV processes.Then, the optimal interrogation window size was calibrated as 43.52 μm by 43.52 μm, for each pair of neighboring frames.Other parameters were set to be default values.The minimum lattice spacing of the velocity field was 10.88μm.The velocity field in Fig.1 shows the velocity vectors at each lattice.To verify the accuracy of PIV measurements,we also carried out particle tracking velocimetry(PTV)by adding passive colloidal tracers (1 micrometer of diameter, red fluorescence-labeled, Fluoro–Max, thermo scientifci)in bacterial suspensions.The radial velocity distributionvxshows similar results by using both PIV and PTV(Fig.9),displaying a maximum velocity band located aroundx=300μm.

    The energy spectraE(k)quantify the energy distribution over different length scalesλ=2π/k, wherekis the wave number.Here, the energy spectrum is obtained by calculating the Fourier transform of the two-point velocity correlation function〈v(r0)·v(r0+δr)〉,averaging over the spatiotemporal domain and the unit circle in wavenumber space.Here,we check the one-dimensional energy spectra in separate directions except for energy distribution with respect to the scalar wavenumber by averaging around the unit circle.We calculate the turbulent velocity componentsv′xandv′yalongxandyaxes as〈v′x(x)·v′x(x+δx)〉,〈v′x(y)·v′x(y+δy)〉,〈v′y(x)·v′y(x+δx)〉and〈v′y(y)·v′y(y+δy)〉,as shown in Fig.10.We can see that scaling of radial velocity along the radial direction,has the same scaling as that of the total spectrum with scalar wavenumber calculated from 2D velocity.Therefore, the 2D energy spectra of the turbulences can be roughly used for simplification as the overall energy spectra of the non-uniform living turbulence.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.12174306 and 12004308)and the Natural Science Basic Research Program of Shaanxi (Grant No.2023-JC-JQ-02).The authors also thank D.Saintillan,A.Lindner,and X.Shi for useful discussions and contributive suggestions.

    久久性视频一级片| 日本成人三级电影网站| 91老司机精品| 久久人妻av系列| 两个人看的免费小视频| 国产欧美日韩精品一区二区| 久久精品国产综合久久久| 夜夜看夜夜爽夜夜摸| 日韩成人在线观看一区二区三区| 舔av片在线| 在线观看免费午夜福利视频| 啦啦啦韩国在线观看视频| 成年版毛片免费区| 2021天堂中文幕一二区在线观| 成年女人永久免费观看视频| 久9热在线精品视频| www.熟女人妻精品国产| 欧美日韩综合久久久久久 | 禁无遮挡网站| 怎么达到女性高潮| 精品电影一区二区在线| 精品久久久久久久毛片微露脸| 成人av在线播放网站| 久久国产精品人妻蜜桃| 国产一级毛片七仙女欲春2| 香蕉av资源在线| 亚洲五月天丁香| 婷婷丁香在线五月| 国产精品99久久久久久久久| 久久国产乱子伦精品免费另类| a级毛片a级免费在线| 麻豆成人午夜福利视频| 精品国内亚洲2022精品成人| 国产高清视频在线播放一区| 综合色av麻豆| 桃色一区二区三区在线观看| 香蕉久久夜色| 搡老岳熟女国产| 免费大片18禁| 日本黄色片子视频| 日本熟妇午夜| 一区福利在线观看| 性色avwww在线观看| 欧美国产日韩亚洲一区| 在线观看免费视频日本深夜| 在线免费观看的www视频| 18美女黄网站色大片免费观看| 欧美极品一区二区三区四区| 亚洲欧美精品综合一区二区三区| 久久精品aⅴ一区二区三区四区| 国产成人精品无人区| 欧美一级毛片孕妇| 亚洲欧美精品综合一区二区三区| 国产精品一及| 国产欧美日韩一区二区精品| 国产在线精品亚洲第一网站| 久久精品91蜜桃| 国产精品免费一区二区三区在线| 欧美乱妇无乱码| 日本一本二区三区精品| 18禁观看日本| 色综合站精品国产| 欧美3d第一页| 欧美不卡视频在线免费观看| 国产私拍福利视频在线观看| 欧美日韩福利视频一区二区| 久久精品国产综合久久久| 精品人妻1区二区| 噜噜噜噜噜久久久久久91| x7x7x7水蜜桃| 成人国产综合亚洲| 国产精品一及| 国产美女午夜福利| 一个人看视频在线观看www免费 | 亚洲精品久久国产高清桃花| 天堂网av新在线| 九九在线视频观看精品| 国产午夜精品久久久久久| 久久性视频一级片| 国产亚洲欧美98| 成人鲁丝片一二三区免费| 色视频www国产| 成年女人毛片免费观看观看9| 国产69精品久久久久777片 | 精品99又大又爽又粗少妇毛片 | 亚洲成人免费电影在线观看| 国产极品精品免费视频能看的| 一进一出抽搐gif免费好疼| 日本五十路高清| avwww免费| 啪啪无遮挡十八禁网站| 真实男女啪啪啪动态图| 久久精品人妻少妇| 51午夜福利影视在线观看| 精品久久蜜臀av无| 国产黄片美女视频| 亚洲国产欧洲综合997久久,| 18禁黄网站禁片午夜丰满| 欧美高清成人免费视频www| 午夜免费成人在线视频| cao死你这个sao货| 国产综合懂色| 老汉色∧v一级毛片| 国产精品日韩av在线免费观看| 热99re8久久精品国产| 亚洲国产日韩欧美精品在线观看 | 日韩欧美免费精品| 国产激情久久老熟女| av福利片在线观看| 女生性感内裤真人,穿戴方法视频| 久久这里只有精品19| 国产亚洲精品一区二区www| 国产av在哪里看| 少妇裸体淫交视频免费看高清| 欧美一级毛片孕妇| 午夜两性在线视频| 亚洲狠狠婷婷综合久久图片| 日韩欧美在线二视频| 日韩中文字幕欧美一区二区| 日韩三级视频一区二区三区| 国产成人欧美在线观看| 黄色成人免费大全| 成年女人永久免费观看视频| 久久久久国产一级毛片高清牌| 国产精品一区二区精品视频观看| 日韩三级视频一区二区三区| 精品日产1卡2卡| 在线观看66精品国产| 国产成年人精品一区二区| 熟女人妻精品中文字幕| 欧美乱色亚洲激情| 国产精品久久久久久精品电影| 成年人黄色毛片网站| 日日摸夜夜添夜夜添小说| 久久久国产欧美日韩av| 日本一二三区视频观看| 欧美日韩国产亚洲二区| 国产精品一及| 国产97色在线日韩免费| 小说图片视频综合网站| 国产精品av久久久久免费| 欧美另类亚洲清纯唯美| 久久久久久九九精品二区国产| 亚洲狠狠婷婷综合久久图片| 色尼玛亚洲综合影院| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩精品亚洲av| 日本撒尿小便嘘嘘汇集6| 不卡av一区二区三区| 国产91精品成人一区二区三区| 真人一进一出gif抽搐免费| 亚洲午夜理论影院| 黄片小视频在线播放| 成人性生交大片免费视频hd| 国产精品亚洲美女久久久| 国产伦精品一区二区三区视频9 | 欧洲精品卡2卡3卡4卡5卡区| 国产乱人视频| 成人无遮挡网站| 99热精品在线国产| 97人妻精品一区二区三区麻豆| 日本 欧美在线| 午夜精品一区二区三区免费看| 好男人电影高清在线观看| 最近最新中文字幕大全免费视频| 日韩欧美国产在线观看| 神马国产精品三级电影在线观看| 桃红色精品国产亚洲av| 一个人看视频在线观看www免费 | 热99re8久久精品国产| www日本在线高清视频| 一进一出好大好爽视频| 成年免费大片在线观看| 欧美日韩精品网址| 一个人免费在线观看的高清视频| 中文在线观看免费www的网站| 精品电影一区二区在线| 99riav亚洲国产免费| 丁香六月欧美| 一进一出好大好爽视频| 国产成人av教育| 又黄又爽又免费观看的视频| 久久久久久大精品| 制服人妻中文乱码| 丁香欧美五月| 精品熟女少妇八av免费久了| 国产精品98久久久久久宅男小说| 中文字幕熟女人妻在线| 成人18禁在线播放| 欧美av亚洲av综合av国产av| 成人性生交大片免费视频hd| 黑人巨大精品欧美一区二区mp4| 综合色av麻豆| 午夜精品一区二区三区免费看| 亚洲欧美日韩无卡精品| 在线观看免费午夜福利视频| 国产亚洲精品久久久久久毛片| 淫秽高清视频在线观看| 亚洲国产中文字幕在线视频| 国产野战对白在线观看| 一级作爱视频免费观看| 黄色日韩在线| 淫秽高清视频在线观看| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| 给我免费播放毛片高清在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| 亚洲欧洲精品一区二区精品久久久| www.自偷自拍.com| av视频在线观看入口| 亚洲欧美激情综合另类| 男插女下体视频免费在线播放| 五月玫瑰六月丁香| 国产亚洲精品久久久com| 亚洲精品乱码久久久v下载方式 | 国产精品亚洲美女久久久| 最好的美女福利视频网| 国产一区二区在线av高清观看| 久久久久九九精品影院| 精品久久蜜臀av无| 啪啪无遮挡十八禁网站| 伊人久久大香线蕉亚洲五| 亚洲美女视频黄频| 欧美日韩中文字幕国产精品一区二区三区| 老鸭窝网址在线观看| 特大巨黑吊av在线直播| 国产熟女xx| 精品电影一区二区在线| 亚洲熟妇中文字幕五十中出| 午夜精品在线福利| 日本三级黄在线观看| 搞女人的毛片| avwww免费| cao死你这个sao货| 99久久精品国产亚洲精品| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区视频9 | 色视频www国产| 国产99白浆流出| 国产成人精品无人区| 精品久久久久久久人妻蜜臀av| 久久精品aⅴ一区二区三区四区| 久久这里只有精品19| 亚洲中文字幕日韩| 少妇裸体淫交视频免费看高清| 怎么达到女性高潮| 国产主播在线观看一区二区| 91麻豆av在线| 亚洲乱码一区二区免费版| tocl精华| 九九在线视频观看精品| 最近最新免费中文字幕在线| 在线十欧美十亚洲十日本专区| 国产成人福利小说| 国产在线精品亚洲第一网站| 久久天堂一区二区三区四区| 国产精品 欧美亚洲| 久久久久亚洲av毛片大全| 丝袜人妻中文字幕| 不卡av一区二区三区| 久久精品综合一区二区三区| 欧美大码av| 国产真人三级小视频在线观看| 在线观看免费午夜福利视频| 两个人的视频大全免费| 99riav亚洲国产免费| 在线十欧美十亚洲十日本专区| 亚洲av日韩精品久久久久久密| 国产 一区 欧美 日韩| 18禁黄网站禁片免费观看直播| 女警被强在线播放| 国产高清视频在线播放一区| 一本一本综合久久| 亚洲欧美精品综合一区二区三区| 免费人成视频x8x8入口观看| 成人高潮视频无遮挡免费网站| 一个人免费在线观看的高清视频| 真人做人爱边吃奶动态| 麻豆国产97在线/欧美| www.熟女人妻精品国产| 亚洲国产看品久久| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 非洲黑人性xxxx精品又粗又长| 国内精品美女久久久久久| 啪啪无遮挡十八禁网站| 欧美不卡视频在线免费观看| 69av精品久久久久久| 小蜜桃在线观看免费完整版高清| 97超视频在线观看视频| 国产精品 欧美亚洲| 色在线成人网| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| 母亲3免费完整高清在线观看| 亚洲无线观看免费| 亚洲九九香蕉| 一区二区三区国产精品乱码| 亚洲熟妇中文字幕五十中出| 国内精品久久久久精免费| 精品国产美女av久久久久小说| 精品日产1卡2卡| 人人妻人人澡欧美一区二区| 桃色一区二区三区在线观看| 男女午夜视频在线观看| 日本黄色片子视频| 亚洲成人精品中文字幕电影| www国产在线视频色| 97碰自拍视频| 免费在线观看成人毛片| 神马国产精品三级电影在线观看| 非洲黑人性xxxx精品又粗又长| 12—13女人毛片做爰片一| 一本久久中文字幕| 国产视频一区二区在线看| 国产成人精品无人区| 又黄又粗又硬又大视频| 制服丝袜大香蕉在线| 成人精品一区二区免费| 琪琪午夜伦伦电影理论片6080| 99热这里只有是精品50| 久久久久久久久久黄片| 天堂网av新在线| 他把我摸到了高潮在线观看| 天堂影院成人在线观看| 国产精品一及| 精品久久久久久久久久免费视频| www.999成人在线观看| 中文在线观看免费www的网站| 国产高清激情床上av| 午夜福利成人在线免费观看| 91av网一区二区| 日本黄色片子视频| 成人三级黄色视频| 成熟少妇高潮喷水视频| 国内揄拍国产精品人妻在线| 日韩欧美在线二视频| 男人舔女人下体高潮全视频| 校园春色视频在线观看| 国产高清激情床上av| 校园春色视频在线观看| 九九久久精品国产亚洲av麻豆 | 无遮挡黄片免费观看| 久久久久性生活片| 欧美日本亚洲视频在线播放| 免费看日本二区| 亚洲自拍偷在线| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 特大巨黑吊av在线直播| 国产精品av视频在线免费观看| 精品99又大又爽又粗少妇毛片 | 欧美最黄视频在线播放免费| 琪琪午夜伦伦电影理论片6080| 国产激情欧美一区二区| 成人特级av手机在线观看| 国产伦精品一区二区三区四那| 变态另类丝袜制服| 中文字幕av在线有码专区| 国产精品日韩av在线免费观看| 丁香六月欧美| 中文字幕熟女人妻在线| 亚洲自偷自拍图片 自拍| 久久中文字幕一级| 久久久久国产精品人妻aⅴ院| 国产伦人伦偷精品视频| 激情在线观看视频在线高清| 欧美黑人巨大hd| 白带黄色成豆腐渣| 日本 欧美在线| av天堂中文字幕网| 两性夫妻黄色片| 国产午夜福利久久久久久| 欧美乱妇无乱码| 麻豆久久精品国产亚洲av| 精品欧美国产一区二区三| 欧美日韩黄片免| 两性夫妻黄色片| av在线蜜桃| 亚洲人成电影免费在线| 伊人久久大香线蕉亚洲五| 午夜激情福利司机影院| 无遮挡黄片免费观看| 精品久久蜜臀av无| 草草在线视频免费看| 色尼玛亚洲综合影院| 午夜免费观看网址| 久久久久久久久免费视频了| 国产精品一区二区三区四区久久| 蜜桃久久精品国产亚洲av| 男人舔女人的私密视频| а√天堂www在线а√下载| 国产人伦9x9x在线观看| 嫩草影视91久久| 久久精品91无色码中文字幕| netflix在线观看网站| 1024香蕉在线观看| 黄色丝袜av网址大全| 亚洲成人精品中文字幕电影| tocl精华| 免费av不卡在线播放| 俄罗斯特黄特色一大片| 黑人欧美特级aaaaaa片| www日本黄色视频网| 亚洲成人久久爱视频| 免费无遮挡裸体视频| 欧美性猛交╳xxx乱大交人| 一级毛片女人18水好多| 国产欧美日韩一区二区三| 成熟少妇高潮喷水视频| 99国产极品粉嫩在线观看| 18禁裸乳无遮挡免费网站照片| 一本综合久久免费| www.999成人在线观看| 人妻丰满熟妇av一区二区三区| 国产一区二区在线av高清观看| 亚洲中文日韩欧美视频| 精品免费久久久久久久清纯| 一个人看的www免费观看视频| 性色avwww在线观看| 999久久久精品免费观看国产| 真人一进一出gif抽搐免费| 日韩人妻高清精品专区| 又爽又黄无遮挡网站| avwww免费| 中文在线观看免费www的网站| 欧美黑人欧美精品刺激| 一区二区三区国产精品乱码| 亚洲欧美一区二区三区黑人| 国产精品99久久99久久久不卡| 国模一区二区三区四区视频 | 国内精品久久久久久久电影| www日本黄色视频网| 国产av一区在线观看免费| 岛国视频午夜一区免费看| 精品久久蜜臀av无| 91麻豆精品激情在线观看国产| 午夜精品一区二区三区免费看| 视频区欧美日本亚洲| 久久久久免费精品人妻一区二区| av视频在线观看入口| 精品不卡国产一区二区三区| 1024手机看黄色片| 男女午夜视频在线观看| 国产精品 欧美亚洲| 亚洲精品色激情综合| 真人做人爱边吃奶动态| 91在线精品国自产拍蜜月 | 免费电影在线观看免费观看| 99精品在免费线老司机午夜| 国产精品精品国产色婷婷| 国产毛片a区久久久久| 一本久久中文字幕| 男人舔奶头视频| 99久国产av精品| 久久婷婷人人爽人人干人人爱| 最新美女视频免费是黄的| 久久久水蜜桃国产精品网| 久久精品国产综合久久久| 久久久久久久精品吃奶| 日本黄大片高清| 国内精品久久久久久久电影| 亚洲片人在线观看| 一级毛片女人18水好多| 观看美女的网站| 三级男女做爰猛烈吃奶摸视频| 后天国语完整版免费观看| 人人妻,人人澡人人爽秒播| 亚洲av电影不卡..在线观看| 丰满人妻一区二区三区视频av | 手机成人av网站| 国产亚洲精品久久久com| 此物有八面人人有两片| www.精华液| 一二三四社区在线视频社区8| 中文资源天堂在线| 免费看十八禁软件| 又粗又爽又猛毛片免费看| 少妇的丰满在线观看| 国产精品久久久人人做人人爽| 免费观看精品视频网站| 免费大片18禁| 久久香蕉精品热| 三级毛片av免费| 国产不卡一卡二| 久久人妻av系列| 精品久久久久久久毛片微露脸| 成年版毛片免费区| 成人av在线播放网站| 国产成人系列免费观看| 黑人欧美特级aaaaaa片| 亚洲九九香蕉| 中文亚洲av片在线观看爽| 中文字幕精品亚洲无线码一区| 美女午夜性视频免费| 淫妇啪啪啪对白视频| 一个人免费在线观看的高清视频| 国产精品99久久99久久久不卡| av女优亚洲男人天堂 | 国产精品一区二区免费欧美| 亚洲九九香蕉| 夜夜看夜夜爽夜夜摸| 午夜激情福利司机影院| 国产伦精品一区二区三区视频9 | 精品福利观看| 亚洲成人久久爱视频| 亚洲国产看品久久| 成人一区二区视频在线观看| 51午夜福利影视在线观看| 成年女人看的毛片在线观看| 国产日本99.免费观看| 久久99热这里只有精品18| 日日夜夜操网爽| 亚洲av熟女| 999精品在线视频| 美女高潮的动态| 黄片小视频在线播放| 中文资源天堂在线| 男人的好看免费观看在线视频| 午夜福利在线在线| 成人18禁在线播放| 亚洲av电影在线进入| 一级黄色大片毛片| 国内精品久久久久久久电影| 国产欧美日韩一区二区三| 亚洲国产欧美网| 成人无遮挡网站| 亚洲精品在线观看二区| 久久午夜综合久久蜜桃| 偷拍熟女少妇极品色| 夜夜看夜夜爽夜夜摸| 欧美黄色淫秽网站| 国产精品免费一区二区三区在线| 成人永久免费在线观看视频| 久久性视频一级片| 97人妻精品一区二区三区麻豆| 亚洲在线自拍视频| 91在线精品国自产拍蜜月 | 琪琪午夜伦伦电影理论片6080| 老熟妇乱子伦视频在线观看| 99久久国产精品久久久| 在线永久观看黄色视频| 欧美乱码精品一区二区三区| 又大又爽又粗| 久久久国产欧美日韩av| 亚洲av成人精品一区久久| 18禁美女被吸乳视频| 999久久久精品免费观看国产| 中出人妻视频一区二区| 变态另类丝袜制服| 国语自产精品视频在线第100页| 午夜激情欧美在线| 91麻豆精品激情在线观看国产| 欧美日韩国产亚洲二区| tocl精华| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av中文字字幕乱码综合| 国模一区二区三区四区视频 | av黄色大香蕉| 亚洲九九香蕉| av在线蜜桃| 99热这里只有精品一区 | 久久久久久久久免费视频了| 亚洲精品中文字幕一二三四区| 午夜视频精品福利| 国产精品永久免费网站| 俄罗斯特黄特色一大片| 日本黄大片高清| 欧美另类亚洲清纯唯美| 淫秽高清视频在线观看| 亚洲国产高清在线一区二区三| 久久草成人影院| 久久香蕉国产精品| 麻豆成人av在线观看| 无人区码免费观看不卡| 免费电影在线观看免费观看| 亚洲无线观看免费| 1024手机看黄色片| 亚洲美女视频黄频| 国产午夜精品论理片| 久久九九热精品免费| 午夜福利欧美成人| 亚洲国产欧美网| 毛片女人毛片| av欧美777| 欧美日本视频| 亚洲成av人片免费观看| 男女下面进入的视频免费午夜| 真实男女啪啪啪动态图| 亚洲国产欧洲综合997久久,| 看黄色毛片网站| 免费大片18禁| 欧美日韩精品网址| 香蕉国产在线看| 国产男靠女视频免费网站| 精品久久蜜臀av无| 国产精品av视频在线免费观看| 中文字幕久久专区| 亚洲精华国产精华精| 亚洲真实伦在线观看| 欧美成人一区二区免费高清观看 | 性欧美人与动物交配| 一二三四社区在线视频社区8| 国产精品99久久99久久久不卡| 日本黄色片子视频| 国产午夜精品久久久久久| 国产精品亚洲一级av第二区| 欧美一级毛片孕妇| 90打野战视频偷拍视频| 亚洲中文字幕日韩| 熟女少妇亚洲综合色aaa.| 久久久精品欧美日韩精品| 我的老师免费观看完整版| 精品久久久久久久久久久久久|