• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature-dependent photoluminescence of lead-free cesium tin halide perovskite microplates

    2023-12-02 09:29:36JiayuTan譚佳雨YixuanZhou周譯玄DeLu盧德XukunFeng馮旭坤YuqiLiu劉玉琪MengenZhang張蒙恩FangzhengyiLu盧方正一YuanyuanHuang黃媛媛andXinlongXu徐新龍
    Chinese Physics B 2023年11期
    關(guān)鍵詞:法律法規(guī)油田部門

    Jiayu Tan(譚佳雨), Yixuan Zhou(周譯玄), De Lu(盧德), Xukun Feng(馮旭坤), Yuqi Liu(劉玉琪),Mengen Zhang(張蒙恩), Fangzhengyi Lu(盧方正一), Yuanyuan Huang(黃媛媛), and Xinlong Xu(徐新龍)

    Shaanxi Joint Laboratory of Graphene,State Key Laboratory of Photon-Technology in Western China Energy,International Collaborative Center on Photoelectric Technology and Nano Functional Materials,Institute of Photonics&Photon-Technology,School of Physics,Northwest University,Xi’an 710069,China

    Keywords: cesium tin halide perovskite,temperature-dependent photoluminescence,chemical vapor deposition,microplate

    1.Introduction

    Since perovskite-type solar cells were selected as one of the ten major breakthroughs in Science in 2013,the halide perovskite materials with various components and structures have been developed significantly in the past decade in not only the photovoltaic field,[1–9]but also in optoelectronic applications,such as bright light-emitting diodes(LEDs),[10–12]lowthreshold lasers,[13,14]wireless light communication,[12,15]and high-sensitivity photodetectors.[11,16,17]Being represented by lead halide perovskites, their remarkable application performances are supported by excellent optoelectronic properties,including high optical absorption coefficient,[18]long carrier lifetimes,[19]tunable narrow-band emission,[20]high fluorescence quantum efficiency,[21]and so on.[22,23]Although the performances of lead halide perovskites are outstanding,many efforts have been devoted to exploring environmentally friendly analogues with minimized performance losses.

    The development of tin halide perovskites has been proved to be one of the most promising approaches because the replacement of Pb2+by Sn2+with a very close ionic radius can form stable perovskite structures and maintain similar electronic and band structures.[17,23–25]For example,all-inorganic cesium tin halide perovskites CsSnX3(X=Cl,Br, and I) have been reported to have excellent optoelectronic properties, such as high PL quantum efficiency,[26]tunable narrow-band PL emission,[24,27,28]high absorption coefficient,[25,29]low exciton binding energy,[24,30,31]high carrier mobility,[31]amplified spontaneous emission characteristic,[32,33]and narrower bandgaps compared with the lead analogues.[34,35]Therefore, most of the optoelectronic applications achieved by lead halide perovskites have also been demonstrated by CsSnX3, including solar cells,[23,34,36]LEDs,[30]lasers,[32]and photodetectors.[28,37]However, narrowing the performance gap between tin perovskites and their lead analogues is still challenging.In order to further improve the optoelectronic performances of CsSnX3, the most important foundation is the deep understanding of fundamental photophysical properties,which is still largely insufficient.

    Temperature-dependent photoluminescence (PL) spectroscopy provides an effective method to investigate the photophysical properties of materials, such as exciton behaviors,thermal expansion,carrier-phonon interactions,and structural phase transition.[38–41]Many essential physical parameters can be derived by fitting the temperature dependence of the PL peak position, linewidth, and integrated intensity.[30,42–48]The temperature-dependent PL properties of various halide perovskites have been studied in recent years,and some interesting findings have been reported.[24,42,43,49–51]For instance,Wrightet al.have proved that the scattering from longitudinal optical phonons governs the electron–phonon coupling in several hybrid lead halide perovskites.[42]The phase transitions of MAPbBr3single crystal are elucidated by Chenet al.[43]The splitting of the PL peaks of CsPbBr3quantum dots is investigated by Leeet al.[48]For CsSnX3nanocrystals,Maheshet al.have reported the temperature-dependent PL features and the LED application.[30]It is worth emphasizing that the preparation method for CsSnX3is also developed in recent years.Chemical vapor deposition (CVD) has been proven to be a good way to synthesize CsSnX3micro-nano structures with excellent crystalline quality.[24,32]Particularly,the thermal PL quenching of CsSnBr3at above room temperatures has been investigated by using a micro-square and a micro-pyramid prepared by CVD.[32]Considering the important micro-laser application prospect, the temperature-dependent PL study of CsSnX3microcrystals becomes an essential but unclear subject.

    In this work, high-quality CsSnBr3and CsSnI3microplates are synthesized by using the CVD method.The morphology, crystal structure, and quality of the as-prepared samples are characterized by absorption spectroscopy, xray diffraction (XRD), and scanning electron microscopy(SEM).The temperature-dependent steady-state PL spectra of CsSnBr3and CsSnI3microplates are measured in the range of 10 K–295 K.Obvious splitting of PL peaks of CsSnBr3is observed at the low-temperature region below 70 K,which could be induced by the structural phase transition to a lower symmetry phase.Otherwise, with multi-peak fittings using Gauss functions and the excitation power-dependent PL measurement, the sub-peaks of PL at low temperatures may also be attributed to free exciton emission and bound exciton emission with different energy.The variation of the PL peaks in peak position, linewidth, and integrated intensity are studied by curve fitting based on several theoretical models.From the linear blueshift of the PL peak position of CsSnI3,the thermal expansion is clarified to take the dominating role.In comparison, the PL peak of CsSnBr3exhibits blueshift only at above 160 K,and the thermal expansion weight is much lower than that of CsSnI3.From the continuous broadening of PL linewidth,as the temperature rises,the scattering of electron–phonon coupling is proved to be governed by longitudinal optical phonons.From the temperature-dependent PL intensity,the exciton binding energies of CsSnBr3and CsSnI3are derived to be 32.0 meV and 46.9 meV,respectively.

    2.Experimental details

    2.1.Synthesis of CsSnX3 (X=Br,I)microplates

    CsSnX3(X=Br,I)microplates are prepared by the CVD method on freshly cleaved mica substrates, as indicated in Fig.1.Firstly, 26.6 mg CsBr powder (Aladdin, 99.9%) and 34.8 mg SnBr2powder(Alfa,99.9%)(or 32.5 mg CsI powder and 46.5 mg SnI2powder) are mixed in an alumina boat as the precursor and placed in the center of a quartz tube furnace.The mica substrate is positioned downstream of the quartz tube in another alumina boat which is approximately 12 cm from the precursor.High-purity Ar with a flow rate of 500 sccm is held for 3 min to eliminate air in the tube.Then, the furnace is heated to the growth temperature(310?C for CsSnBr3and 320?C for CsSnI3) for 25 min and maintained in an Ar atmosphere (20 sccm) for 30 min.At the growth temperature,CsXand SnX2can be carried downstream by Ar to synthesize CsSnX3on the mica substrate chemically.Lastly,the furnace is naturally cooled to room temperature with the protection of Ar flow to the sample.The temperature-dependent PL experiments are performed immediately after the samples are prepared.Then, a thin PMMA layer is spin-coated (PMMA solution, 4 wt.% in anisole, the rotational speed is 2000 rpm for 20 s)on the sample surface for further characterizations at room temperature to reduce the influence of oxidative deterioration.

    2.2.Characterization method

    The morphology and quality of the CsSnX3(X= Br,I) microplates are measured by the following experiments.The bonding configuration is confirmed by XRD(Bruker,D8 Advance).The microstructure is characterized by the SEM(Thermo Fisher,Apreo S).The optical absorption is tested by the UV-Vis absorption spectroscopy(R1,Ideaoptics).

    2.3.Low-temperature PL experiments

    The PL spectra are investigated by a Horiba iHR550 spectrometer with the SmartRaman confocal-micro-Raman module developed by the Institute of Semiconductors, Chinese Academy of Sciences.In the PL measurement, the CsSnX3microplates are excited by a 532 nm laser with a power of 20 mW,which is focused by a 50×objective lens(NA=0.55)to get a spot size of approximately 1.2 μm.With the help of a closed refrigeration system (Janis CCS-XG), PL measurements are performed in the 10 K–295 K temperature range in increments of 15 K.The CsSnX3microplates are fixed on the sample stage in a closed cycle cryogenic equipment (Janis-CCS-XG-M/204N,Janis Research Company,Inc).

    3.Results and discussion

    3.1.Sample characterization

    The UV-Vis absorption and PL spectra of the CsSnX3microplates are investigated at room temperature,as illustrated in Fig.1(b).According to the absorption edges,the bandgap energies of CsSnBr3and CsSnI3microplates are estimated to be 1.76 eV and 1.31 eV, respectively.Moreover, the PL spectra of these perovskite microplates show emission peaks at 1.81 eV and 1.35 eV for CsSnBr3and CsSnI3microplates,respectively.These results agree well with the previously reported bandgaps and optical bandgaps of CsSnBr3and CsSnI3samples.[24,28,30,32]

    Figure 1(c) shows the XRD patterns of the CsSnBr3and CsSnI3microplates, which are compared with those of the mica substrate and type samples.The mica substrate displays a set of diffraction peaks with nearly equal spacing at 2θ= 18.03544?, 27.06304?, 36.2852?, 45.76029?,55.56962?, and 65.71109?.In addition to the peaks of mica,the peaks observed at 15.40581?,21.79045?,26.86848?,30.93479?,36.07118?,44.32054?,and 55.30156?correspond to the diffraction planes of (100), (110), (111), (200), (210),(220), and (222) for CsSnBr3with a cubic phase (JCPDS file number: 70-1645), respectively.[24,28,30]Meanwhile, the peaks at 17.86033?, 23.93894?, 24.25168?, 25.41325?, and 40.55845?correspond to the (111), (211), (121), (022), and(232)planes of orthorhombic CsSnI3(JCPDS file number:43-1162),respectively.[24,28,30]

    3.油地工作涉及的國家政策法律法規(guī)及政府管理部門多。隨著市場經(jīng)濟(jì)的進(jìn)一步深入及各項法律法規(guī)的逐步頒布實施,油田在生產(chǎn)建設(shè)施工過程中,涉及到的相關(guān)法律法規(guī)和與之對應(yīng)的行政管理和執(zhí)法部門也愈來愈多,為油地工農(nóng)關(guān)系協(xié)調(diào)工作增加了難度。由于地方政府很多事關(guān)油田的政務(wù)分散在各個部門,這些部門分工精細(xì)、條塊分割、多頭管理,辦理起來比較繁瑣。各部門都有自己的規(guī)定和標(biāo)準(zhǔn),有一個環(huán)節(jié)不順暢,整個項目就要受阻,導(dǎo)致工作無法繼續(xù)。

    Figure 2 exhibits the SEM images of the as-prepared CsSnX3microplates with different magnifications.Figure 2(a)shows that CsSnBr3microplates with a high spatial density are synthesized uniformly on the flat mica substrate.Figure 2(b)gives an isolated high-quality CsSnBr3microplate with about 3.3 μm×2.7 μm size.Note that this microplate is similar with the one used in the temperature-dependent PL experiment.From Fig.2(c),both microplates and micro-triangles of CsSnI3can be observed on the mica substrate.These microsheets of CsSnI3have a lower density than those of CsSnBr3and a smaller average size.In the temperature-dependent PL experiment,a relatively large microplate,which is similar with the one (~2.6 μm×1.7 μm, larger than the spot size of the laser) shown in Fig.2(d), is selected and measured.Therefore, the CsSnBr3and CsSnI3microplates used in this work have high quality and similar sizes.

    3.2.Temperature-dependent PL

    For the purpose of studying the temperature-dependent PL of CsSnX3perovskites,we record the steady-state PL spectra of CsSnBr3and CsSnI3microplates from 10 K to 295 K excited by a 532 nm continuous laser.Figures 3(a)and 3(c)show the PL spectra of CsSnBr3and CsSnI3microplates at different temperatures, respectively.For a more transparent presentation, the temperature and PL photon energy-dependent mapping of PL intensity of CsSnBr3and CsSnI3microplates are given in Figs.3(b)and 3(d),respectively.

    When the temperature increases from 10 K to 295 K,the PL spectra of CsSnBr3and CsSnI3microplates exhibit dramatically different properties,which can be analyzed from the following three aspects: PL peak position (optical bandgap),width at half maximum (FWHM), and integrated intensity.Generally, for both CsSnBr3and CsSnI3microplates, the PL intensity shows a decreasing tendency and the FWHM has a broadening tendency.However,compared with the consistent blueshift tendency of the PL peak position of CsSnI3,the optical bandgap of the CsSnBr3microplate exhibits a blueshift at above 160 K while a redshift at below 160 K.In addition,a remarkable splitting of the PL peaks at extremely low temperatures can be observed in Figs.3(a)and 3(b).In the following part,we discuss the PL properties of CsSnBr3and CsSnI3microplates by splitting the PL peaks and fitting them with some theories to clarify the PL mechanism.

    3.2.1.Splitting of the PL peaks of CsSnBr3 at low temperatures

    In the low-temperature region below 40 K, remarkable splitting of the PL peaks of the CsSnBr3microplate can be observed.In order to make the analysis easier,multi-peak fittings using Gauss functions are performed for the PL spectra below 100 K.From Fig.4(a),at least three sub-peaks can be used to fit the experiment at 10 K well.A similar three sub-peak fitting has also been used to match the experimental results below 55 K.In the region between 70 K and 100 K,the experimental PL peak can be well-fitted by two sub-peaks.Figure 4(b)exhibits the PL curve measured at 70 K as a representative.

    The possible PL mechanisms are discussed in the following part.Firstly,the dramatic change of PL peaks in this low temperature region especially between 10 K and 70 K conforms to the characteristic of structural phase transition induced PL.For example,organic halide perovskite MAPbI3has a significant shift of the PL peak at~160 K due to the structure changes from orthorhombic to tetragonal.[49]However,the reported structural transition temperatures of CsSnBr3are~270 K from orthorhombic to tetragonal and~300 K to cubic, which are far beyond this low-temperature region.[52–54]Recently, Gaoet al.have reported the appearance of several new peaks and some changes in the existing modes of Raman spectrum of CsSnBr3at below 80 K, which may be induced by the instability of orthorhombic phase.[55]They claim that there may exist a phase transition to a lower symmetry (possibly monoclinic) phase at around 60 K.This phenomenon is consistent with our result, indicating that the phase transition could be a possible explanation for the peak splitting at low temperatures below 70 K.However, before the report of more direct evidence,we cannot rule out other possible mechanisms.

    Secondly,we try to understand the PL mechanism beyond the phase transition by analyzing the temperature-dependent sub-peak properties obtained in Fig.4.Take the 10 K condition as an example(Fig.4(a)),the positions of sub-peaks are at 2.01 eV(peak 3),1.90 eV(peak 1),and 1.82 eV(peak 2),corresponding to different FWHM values of 17.5 meV,46.7 meV,and 66.2 meV, respectively.Note that peaks 1 and 2 merge into a wide peak which cannot be fitted with a single Gauss function well, while peak 3 is separated and sharp.Because the characteristic thermal energy is much lower than the exciton binding energy, these sub-peaks could be induced by the radiative recombination of free excitons and bound excitons.Compared with free exciton emission,the peaks of bound exciton emission are usually broadened by the numerous binding sites to defects.[56]Therefore, it can be speculated that peaks 1 and 2 may be largely contributed by the bound exciton emission.This assumption is confirmed by the excitation powerdependent PL measurements.Figure 4(c) shows the power dependence of the PL spectra at 40 K as a representative.The PL intensity is normalized by the maximum value of peak 3.When the excitation power increases from 1 μW to 10 μW,the PL intensity ratio of the wide peak decreases and becomes saturated, which is a typical characteristic of bound exciton emission.[43,49]Therefore, peaks 1 and 2 at below 40 K are proved to be related to the bound exciton emission, and peak 3 is not induced by bound excitons.

    Figures 4(d)–4(f) show the temperature-dependent peak position, FWHM, and integrated intensity extracted from the PL sub-peaks, respectively.From Fig.4(d), redshift is observed for all three sub-peaks,and the trend is more significant at below 70 K.Then,the separated peak 3 merges into peaks 1 and 2 at~70 K.However,the total peak is still asymmetric,so at least two sub-peaks are needed to fit the experiment at above 70 K.Here,the redshift of peak energies could be induced by the exciton–phonon interaction,[46]which is a common reason for the PL peak position shift to lower energy.However,since the redshift trend is more significant at below 70 K,where the phonon effects may be suppressed, we believe the peak shift could also be induced by the transition of bound exciton emission with a wide energy range to free exciton emission.As supported by Fig.4(e), the FWHM of peaks 1 and 2, which are attributed to bound excitons with different energies, narrows dramatically at below 70 K and become stable at higher temperatures.From Fig.4(f), the sum of integrated PL intensity of peaks 1 and 2 is much larger than that of peak 3 at 10 K, indicating that the PL is governed by bound exciton emission at very low temperatures.These results suggest that the dominant PL mechanism of CsSnBr3changes from bound exciton emission to free exciton emission as temperature increases from 10 K to 70 K.

    3.2.2.Splitting of the PL peaks of CsSnBr3 and CsSnI3

    In the range from 70 K to 295 K,temperature-dependent PL properties of the CsSnBr3microplate are analyzed, as shown in Fig.5.Splitting the PL peaks is performed by fitting with two Gaussian peaks.Compared with the low-temperature condition of 70 K(Fig.4(b)),the side peak(peak 2)exhibits a greatly reduced influence on the main peak(peak 1)at 250 K,as shown in Fig.5(a).The evolution of the PL peak positions as temperature rises is given in Fig.5(b).Peak 2 exhibits a redshift trend in the whole range.However,a remarkable transition from redshift to blueshift of peak 1 is observed,indicating a complex PL mechanism.Figure 5(c)shows the temperaturedependent FWHM of peaks 1 and 2.The former appears to have an obviously broadening tendency,while the latter is relatively stable.The integrated PL intensity of peak 1 relative to that of peak 2 is shown in Fig.5(d).The largely enhanced intensity ratio implies that the contribution from peak 2 is gradually weakened with the increase of temperature.Here, the main and the side peaks are attributed to the band-edge and defect states, respectively.The dominant PL mechanisms for the change of the main peak are discussed in the last part with curve fitting.

    In comparison, the temperature-dependent PL peaks of the CsSnI3microplate in the range from 10 K to 295 K are given in Fig.6.Because the PL spectra of CsSnI3also exhibit asymmetry, especially at near room temperatures, the experiments are fitted by the sum of two Gaussian peaks.For example, the splitting of the PL peak at 10 K is given in Fig.6(a).Moreover, the temperature-dependent PL peak position, FWHM of peaks, and integrated PL intensity ratio of peak 1/peak 2 are shown in Figs.6(b)–6(d), respectively.Here, the CsSnI3microplate shows quite different temperature-dependence of the PL properties.(i) In the lowtemperature region between 10 K to 100 K, the side peak is extremely weak and no obvious broadening of peak 1 is observed, indicating no significant bound exciton emission like in CsSnBr3.(ii) The peak energy of peak 2 is larger than that of the main peak, which is opposite to the condition of CsSnBr3.Moreover, only blueshift of peak 1 is obtained for CsSnI3as the rise of temperature,suggesting a different dominant mechanism.(iii) The broaden tendency of the FWHM of peak 1 is much weaker than that of CsSnBr3, implying a reduced electron–phonon coupling.(iv)The PL intensity ratio of peak 1/peak 2 reduces gradually, resulting in an enhanced asymmetry at near-room temperatures.Similar phenomena have also been covered in other reports.[45,57,58]Therefore,the PL mechanism of the side peak of CsSnI3should be different from that of CsSnBr3.According to Yu’s report,this asymmetric broadening may be caused by factors such as composition fluctuations and granular boundaries.[45]The changing mechanism of the main PL peak is discussed in the following part.

    3.2.3.Fitting of temperature-dependent PL peaks

    As shown in Fig.7, the temperature dependence of the PL peak energy,FWHM,and integrated intensity of the main peaks of CsSnBr3and CsSnI3microplates are studied by curve fitting based on some widely acknowledged theory models.As a result, many critical physical parameters are calculated, as given in Table 1.The detailed fitting processes and mechanism discussions are as follows.

    Sample Eb (meV) E0 (eV) Γ0 (meV) γLO (meV) ELO (meV)CsSnBr3 32.0 1.79 56.2 166.0 35.1 CsSnI3 46.9 1.31 96.3 18.0 31.2

    Firstly, the temperature-dependent shift of the PL peak position is discussed.Figure 7(a) shows that redshift and blueshift tendencies of the CsSnBr3microplate can be observed in temperature regions below and above 160 K,respectively.For the CsSnI3microplate, a consistent blueshift tendency of the PL peak position can be observed in Fig.7(b).For conventional semiconductors, the PL peak energyEgis usually described by an empirical relation asEg(T)=E0-αT2/(T+β),[40]whereE0is the unrenormalized bandgap,αandβare fitting parameters.This relation reveals a decrease in bandgap as temperature increases, which is usually influenced by electron–phonon interactions.However, this tendency is inconsistent with the blueshift of our perovskite samples.Meanwhile,the blueshift phenomena have been reported by many other lead-based perovskites,[42,45,48,51]in which the temperature-dependent bandgap is attributed to the following two factors: change of the lattice constant induced by thermal expansion;renormalization of the bandgap energies driven by electron–phonon interactions.[38,59–61]The former arises from the anharmonicity of the inter-atomic potentials.The latter consists of Fan[39]and Debye–Waller[62,63]terms, describing the virtual phonon emission/absorption processes and the interactions of an electron with two phonons with opposite wave vectors at the branchj, respectively.Therefore, the temperature dependence of the bandgap can be estimated by two terms[45]

    wherenj,qis the phonon mode number at the branchjwith wave vectorqand follows the Bose–Einstein distribution.This equation can be further simplified based on the oneoscillator model as[45,46,51]

    Secondly,the temperature dependence of the FWHM and the underlying mechanism is discussed.From Figs.7(c) and 7(d),the FWHM of CsSnBr3and CsSnI3microplates broadens with increasing temperature.Generally, this PL broadening is related to the electron–phonon coupling in inorganic semiconductors,such as the different scattering processes between charge carriers and phonons (or impurities), which have different dependencies on temperature.[38,41,64,65]According to the report by Wrightet al.,[42]the temperature-dependent PL linewidthΓcan be given as

    whereΓ0is a temperature-independent inhomogeneous broadening term induced by scattering of disorder and imperfections;γacis defined as the coupling strength between charge carriers and acoustic phonons;γLOis the coupling strength between charge carriers and longitudinal optical phonons;ELOis the energy of longitudinal optical phonons;γimpis attributed to the scattering of impurities;Eimpis the average binding energy of impurities.In the fitting of both CsSnBr3and CsSnI3,theγacandγimpterms are set as zero according to the citation,[42]and the calculated lines agree well with the experiments, as shown in Figs.7(c) and 7(d).This result suggests that the electron–phonon coupling in CsSnX3microplates is dominated by the interaction between charge carriers and longitudinal optical phonons,which is consistent with the conclusion obtained in MAPbX3and FAPbX3perovskites.[42]Moreover, the fitting parameters of the CsSnBr3microplate areΓ0=56.2 meV,γLO=166.0 meV,andELO=35.1 meV,and of the CsSnI3microplate areΓ0=96.3 meV,γLO=18.0 meV,andELO=31.2 meV.Compared with CsSnI3, the coupling strength in the CsSnBr3microplate appears much more robust,which could be induced by the smaller high-frequency value of the dielectric function in CsSnBr3than in CsSnI3.[42]

    Lastly, the temperature dependence of the integrated PL intensity of CsSnBr3and CsSnI3microplates are discussed according to the experimental data plotted in Figs.7(e) and 7(f), respectively.Here, a continuous decreasing trend is observed for both CsSnBr3and CsSnI3as the temperature rises.According to the literature, the relationship between the integrated PL intensityIand temperatureTcan be described by the Arrhenius equation as[44,47,48,51,66–69]

    whereI0is the integrated PL intensity at 0 K,Ais the preexponential coefficient,Ebis the exciton binding energy, andkis the Boltzmann constant.From Figs.7(a)and 7(b),the red fitting lines agree well with the experiments, indicating that theEbvalues are estimated to be 32.0 meV and 46.9 meV for CsSnBr3and CsSnI3microplates, respectively.The continuous decrease of the PL intensity suggests that the radiative recombination is gradually suppressed by the thermal activation of exciton dissociation or non-radiative relaxation.The exciton binding energy of the CsSnBr3microplate is lower than that of the CsSnI3microplate.

    4.Conclusion

    High-quality CsSnX3(X= Br, I) microplates are prepared by CVD and characterized by XRD,SEM,and absorption spectroscopy.The temperature-dependent steady-state PL spectra of the samples are investigated in the range of 10 K–295 K.At the low-temperature region,the remarkable splitting of PL peaks of the CsSnBr3microplate is speculated to be induced by structural phase transition or the coexistence of free exciton emission and bound exciton emission with different energies.The temperature-dependent characteristics of PL intensity decline, peak position shift, and linewidth broadening are analyzed by curve fitting using several theoretical models.Moreover, several important physical parameters, such as exciton binding energy, unrenormalized bandgap, and coupling strength of longitudinal optical phonons,have been estimated from the fitting.Compared with the obvious linear blueshift of the PL peak energy of CsSnI3,the slight blueshift takes the leading role at above~160 K in the PL of CsSnBr3, indicating that the thermal expansion weight is much stronger in CsSnI3than in CsSnBr3.The scattering of longitudinal optical phonons is proved to dominate the electron–phonon coupling in CsSnBr3and CsSnI3,but the coupling strength in CsSnBr3is more significant than that in CsSnI3.This research provides an insight into the photophysical properties of CsSnX3microplates, which is essential for tin perovskite-based optoelectronic applications,especially for developing micro-lasers.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.11974279,12074311,12004310,and 12261141662).

    猜你喜歡
    法律法規(guī)油田部門
    碳中和油田的未來之路
    7月起將施行新的法律法規(guī)
    我國海上油田新發(fā)現(xiàn)
    法律法規(guī)與民生新聞
    新聞傳播(2018年21期)2019-01-31 02:41:58
    海外房屋出租市場法律法規(guī)
    上海建材(2018年2期)2018-06-26 08:50:58
    最新安全生產(chǎn)法律法規(guī) 文件提要
    哪些是煤電部門的“落后產(chǎn)能”?
    能源(2017年9期)2017-10-18 00:48:28
    掘金油田環(huán)保
    能源(2016年1期)2016-12-01 05:10:06
    醫(yī)改成功需打破部門藩籬
    7部門
    欧美日韩亚洲综合一区二区三区_| 真人一进一出gif抽搐免费| 狂野欧美激情性xxxx| 精品国产乱子伦一区二区三区| 欧美性长视频在线观看| 村上凉子中文字幕在线| 国产精品日韩av在线免费观看| 亚洲国产欧美一区二区综合| 日本三级黄在线观看| 日韩国内少妇激情av| 久久精品人妻少妇| videosex国产| 亚洲成人久久爱视频| 国产在线精品亚洲第一网站| 精品少妇一区二区三区视频日本电影| 日韩欧美一区二区三区在线观看| 18美女黄网站色大片免费观看| 精品欧美一区二区三区在线| 国产午夜精品论理片| 久久久久久九九精品二区国产 | 欧美人与性动交α欧美精品济南到| 伦理电影免费视频| 熟女电影av网| 中文字幕人妻丝袜一区二区| 成年人黄色毛片网站| 最新美女视频免费是黄的| 欧美日韩精品网址| 国产高清激情床上av| 亚洲欧美一区二区三区黑人| 蜜桃久久精品国产亚洲av| 特级一级黄色大片| 国产亚洲精品第一综合不卡| 在线观看美女被高潮喷水网站 | 99在线人妻在线中文字幕| 一个人观看的视频www高清免费观看 | 亚洲av日韩精品久久久久久密| 麻豆国产av国片精品| 欧美久久黑人一区二区| 999精品在线视频| 男女床上黄色一级片免费看| 禁无遮挡网站| 天堂av国产一区二区熟女人妻 | 麻豆av在线久日| 亚洲精品国产一区二区精华液| 免费在线观看视频国产中文字幕亚洲| 亚洲国产看品久久| 久久精品成人免费网站| 国产av一区在线观看免费| 黑人欧美特级aaaaaa片| 亚洲av成人一区二区三| 婷婷亚洲欧美| 欧美一区二区精品小视频在线| 日韩精品免费视频一区二区三区| 国产成年人精品一区二区| 成在线人永久免费视频| 亚洲性夜色夜夜综合| 欧美成人午夜精品| 成人永久免费在线观看视频| 欧美性长视频在线观看| 老熟妇乱子伦视频在线观看| 欧美精品亚洲一区二区| 欧美精品亚洲一区二区| 久久香蕉精品热| 精品一区二区三区视频在线观看免费| 99久久久亚洲精品蜜臀av| 国产三级中文精品| 亚洲欧美日韩无卡精品| 亚洲成人中文字幕在线播放| 国产欧美日韩一区二区三| 欧美性长视频在线观看| 国产精品久久久久久久电影 | 全区人妻精品视频| 欧美三级亚洲精品| 91字幕亚洲| 人人妻,人人澡人人爽秒播| 熟妇人妻久久中文字幕3abv| 国产高清视频在线播放一区| 久久99热这里只有精品18| 久久精品国产亚洲av高清一级| xxxwww97欧美| 久久人妻av系列| netflix在线观看网站| 中文资源天堂在线| 看黄色毛片网站| 少妇熟女aⅴ在线视频| 欧美精品亚洲一区二区| 身体一侧抽搐| 午夜福利18| 在线永久观看黄色视频| 免费在线观看完整版高清| 亚洲av电影在线进入| 欧美zozozo另类| 18禁裸乳无遮挡免费网站照片| 欧美色欧美亚洲另类二区| 亚洲成av人片在线播放无| 亚洲美女黄片视频| 亚洲黑人精品在线| 亚洲欧美日韩高清在线视频| 99国产极品粉嫩在线观看| 丝袜美腿诱惑在线| 午夜福利成人在线免费观看| 国产一区二区三区视频了| 久久精品影院6| 国产麻豆成人av免费视频| 亚洲中文日韩欧美视频| 欧美黑人精品巨大| 1024手机看黄色片| 成人永久免费在线观看视频| 欧美黑人精品巨大| 在线观看免费日韩欧美大片| 亚洲av片天天在线观看| 国产野战对白在线观看| 久久久久国内视频| 亚洲av成人精品一区久久| 两个人的视频大全免费| 精品国产乱码久久久久久男人| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| 精品乱码久久久久久99久播| 午夜精品久久久久久毛片777| 99国产精品99久久久久| av在线播放免费不卡| 中国美女看黄片| 91老司机精品| 久久人人精品亚洲av| 搡老妇女老女人老熟妇| 精品第一国产精品| 村上凉子中文字幕在线| 国产亚洲av嫩草精品影院| 一级毛片女人18水好多| 日韩欧美精品v在线| 99国产精品一区二区蜜桃av| 夜夜躁狠狠躁天天躁| 91字幕亚洲| 日本免费a在线| 亚洲精品国产一区二区精华液| 国产乱人伦免费视频| 欧美日本亚洲视频在线播放| 久久精品人妻少妇| 国产成人精品久久二区二区免费| 久久精品亚洲精品国产色婷小说| 亚洲欧美日韩东京热| 身体一侧抽搐| 国产精品久久久久久亚洲av鲁大| 国产真人三级小视频在线观看| 亚洲熟妇中文字幕五十中出| 国产伦人伦偷精品视频| 99精品久久久久人妻精品| 日韩欧美国产在线观看| 国产精品亚洲美女久久久| 亚洲专区国产一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 美女高潮喷水抽搐中文字幕| 人成视频在线观看免费观看| 免费在线观看亚洲国产| 精品一区二区三区av网在线观看| 小说图片视频综合网站| 巨乳人妻的诱惑在线观看| 俄罗斯特黄特色一大片| 成年女人毛片免费观看观看9| 老司机在亚洲福利影院| av有码第一页| 亚洲第一电影网av| 2021天堂中文幕一二区在线观| 亚洲国产精品成人综合色| 两个人看的免费小视频| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 欧美一级a爱片免费观看看 | 三级毛片av免费| 岛国在线观看网站| www.999成人在线观看| 很黄的视频免费| 手机成人av网站| 国产精品一区二区三区四区久久| 国产区一区二久久| 亚洲一区二区三区色噜噜| 露出奶头的视频| 成人三级做爰电影| 男人舔奶头视频| 亚洲aⅴ乱码一区二区在线播放 | 性色av乱码一区二区三区2| 黄色丝袜av网址大全| 少妇粗大呻吟视频| 亚洲五月天丁香| 免费一级毛片在线播放高清视频| 午夜福利欧美成人| 国产成人一区二区三区免费视频网站| 小说图片视频综合网站| 国产黄色小视频在线观看| 亚洲欧洲精品一区二区精品久久久| 少妇粗大呻吟视频| 久久精品成人免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 狂野欧美白嫩少妇大欣赏| 欧美绝顶高潮抽搐喷水| 久久久久久国产a免费观看| 亚洲av电影不卡..在线观看| 久久久久性生活片| 色哟哟哟哟哟哟| 香蕉丝袜av| 亚洲欧洲精品一区二区精品久久久| 久久精品人妻少妇| 国产亚洲av嫩草精品影院| 久久精品亚洲精品国产色婷小说| 波多野结衣高清作品| 欧美丝袜亚洲另类 | 男人舔女人下体高潮全视频| 热99re8久久精品国产| 国产精品99久久99久久久不卡| 免费高清视频大片| 正在播放国产对白刺激| 成人三级黄色视频| 三级毛片av免费| 又紧又爽又黄一区二区| 国产精品日韩av在线免费观看| 精品久久久久久成人av| 神马国产精品三级电影在线观看 | 99久久久亚洲精品蜜臀av| 最近最新中文字幕大全免费视频| 男男h啪啪无遮挡| av欧美777| 别揉我奶头~嗯~啊~动态视频| 欧美性长视频在线观看| 变态另类丝袜制服| 丰满人妻熟妇乱又伦精品不卡| www.自偷自拍.com| 久久久久国内视频| 国产熟女xx| 国产私拍福利视频在线观看| 色av中文字幕| 午夜福利18| 亚洲色图 男人天堂 中文字幕| 日本熟妇午夜| 麻豆国产97在线/欧美 | 成人三级黄色视频| 午夜激情福利司机影院| 精品不卡国产一区二区三区| 欧美性猛交╳xxx乱大交人| 欧美久久黑人一区二区| 99久久精品热视频| 精品午夜福利视频在线观看一区| 此物有八面人人有两片| 日本一二三区视频观看| 老司机在亚洲福利影院| 精品国产乱码久久久久久男人| 欧美一级a爱片免费观看看 | 国产99久久九九免费精品| avwww免费| 亚洲人与动物交配视频| 国产午夜福利久久久久久| 日本免费a在线| 成人一区二区视频在线观看| 国产91精品成人一区二区三区| 欧美黄色淫秽网站| 日韩欧美国产一区二区入口| 真人一进一出gif抽搐免费| 老熟妇乱子伦视频在线观看| 中文字幕熟女人妻在线| 窝窝影院91人妻| 欧美黑人精品巨大| 成人三级做爰电影| 国产成人系列免费观看| aaaaa片日本免费| 亚洲中文字幕一区二区三区有码在线看 | 一级片免费观看大全| 99国产精品99久久久久| 波多野结衣高清作品| www.精华液| 午夜影院日韩av| 国产熟女午夜一区二区三区| 亚洲 欧美 日韩 在线 免费| 久久天躁狠狠躁夜夜2o2o| 亚洲专区字幕在线| 欧美性猛交╳xxx乱大交人| 国内精品久久久久精免费| 亚洲美女视频黄频| 色综合欧美亚洲国产小说| 身体一侧抽搐| 成人手机av| 国语自产精品视频在线第100页| 亚洲狠狠婷婷综合久久图片| 黄色毛片三级朝国网站| 一进一出好大好爽视频| 成人18禁在线播放| 在线视频色国产色| 亚洲欧美激情综合另类| 波多野结衣高清无吗| 国产精华一区二区三区| 全区人妻精品视频| 十八禁人妻一区二区| 亚洲最大成人中文| 一个人免费在线观看的高清视频| 亚洲 欧美一区二区三区| 亚洲国产看品久久| 老司机福利观看| 波多野结衣高清无吗| 精品欧美国产一区二区三| 免费无遮挡裸体视频| 成在线人永久免费视频| 国产亚洲精品综合一区在线观看 | 久久精品亚洲精品国产色婷小说| 听说在线观看完整版免费高清| 夜夜躁狠狠躁天天躁| 黄色女人牲交| svipshipincom国产片| 久久久国产欧美日韩av| 99久久精品国产亚洲精品| 日韩欧美 国产精品| 黄片大片在线免费观看| 精品不卡国产一区二区三区| 国模一区二区三区四区视频 | 国产主播在线观看一区二区| 欧美极品一区二区三区四区| 美女大奶头视频| 久久久精品国产亚洲av高清涩受| 日韩精品青青久久久久久| 精品欧美国产一区二区三| 国产亚洲av高清不卡| 亚洲一码二码三码区别大吗| 两性午夜刺激爽爽歪歪视频在线观看 | 国产高清videossex| 丁香欧美五月| 精品欧美一区二区三区在线| 精华霜和精华液先用哪个| aaaaa片日本免费| 久久精品人妻少妇| 99热6这里只有精品| 国产爱豆传媒在线观看 | 无遮挡黄片免费观看| 久久这里只有精品19| 我的老师免费观看完整版| 亚洲精品久久国产高清桃花| 三级男女做爰猛烈吃奶摸视频| 国产成人精品无人区| 国产熟女xx| 露出奶头的视频| 国产激情偷乱视频一区二区| 亚洲av日韩精品久久久久久密| 久久国产精品人妻蜜桃| 99国产极品粉嫩在线观看| a级毛片在线看网站| 午夜福利18| 欧美成人性av电影在线观看| 成熟少妇高潮喷水视频| 麻豆成人av在线观看| 国产精品av久久久久免费| 亚洲天堂国产精品一区在线| 免费看a级黄色片| 青草久久国产| 国产熟女xx| 男女下面进入的视频免费午夜| 欧美人与性动交α欧美精品济南到| 亚洲专区字幕在线| 亚洲成人国产一区在线观看| 久久精品国产99精品国产亚洲性色| 色哟哟哟哟哟哟| 亚洲九九香蕉| 久久草成人影院| 国产亚洲av高清不卡| 国产熟女xx| 日本五十路高清| 精品久久久久久久末码| 夜夜躁狠狠躁天天躁| 亚洲成人精品中文字幕电影| 免费看十八禁软件| 9191精品国产免费久久| 99re在线观看精品视频| 国产av又大| 国产亚洲精品一区二区www| 日韩欧美一区二区三区在线观看| 欧美乱妇无乱码| 香蕉久久夜色| 国产免费av片在线观看野外av| 日本一区二区免费在线视频| 亚洲自偷自拍图片 自拍| 亚洲,欧美精品.| 成年免费大片在线观看| 动漫黄色视频在线观看| 香蕉丝袜av| 国内精品久久久久精免费| 啦啦啦免费观看视频1| 亚洲人成电影免费在线| 亚洲专区国产一区二区| 丝袜美腿诱惑在线| 窝窝影院91人妻| 久久天堂一区二区三区四区| 欧美丝袜亚洲另类 | 蜜桃久久精品国产亚洲av| 日韩 欧美 亚洲 中文字幕| 欧美3d第一页| 99re在线观看精品视频| 亚洲第一电影网av| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| 女生性感内裤真人,穿戴方法视频| 一级毛片精品| 亚洲av电影在线进入| 亚洲av片天天在线观看| 男女之事视频高清在线观看| 国产精品99久久99久久久不卡| 午夜福利在线观看吧| 精品不卡国产一区二区三区| 真人一进一出gif抽搐免费| 少妇粗大呻吟视频| 日本撒尿小便嘘嘘汇集6| 国产亚洲精品第一综合不卡| 校园春色视频在线观看| 丰满的人妻完整版| 人妻丰满熟妇av一区二区三区| 床上黄色一级片| 亚洲av片天天在线观看| 日日干狠狠操夜夜爽| 国产乱人伦免费视频| 久久久久国内视频| 日韩欧美 国产精品| 99久久国产精品久久久| 久久人人精品亚洲av| 婷婷丁香在线五月| 1024香蕉在线观看| 脱女人内裤的视频| 最近视频中文字幕2019在线8| 成人永久免费在线观看视频| 夜夜爽天天搞| 国产一区二区三区视频了| 免费在线观看黄色视频的| 欧美又色又爽又黄视频| 老司机午夜福利在线观看视频| www日本黄色视频网| 蜜桃久久精品国产亚洲av| 香蕉av资源在线| 精品久久久久久久久久免费视频| 琪琪午夜伦伦电影理论片6080| 韩国av一区二区三区四区| 欧美成人性av电影在线观看| 国产亚洲av高清不卡| 午夜精品在线福利| 人人妻,人人澡人人爽秒播| 国产单亲对白刺激| 免费av毛片视频| 国产成人av激情在线播放| 亚洲精品国产精品久久久不卡| 亚洲av成人一区二区三| 亚洲aⅴ乱码一区二区在线播放 | 亚洲五月婷婷丁香| 无限看片的www在线观看| 啪啪无遮挡十八禁网站| 999久久久精品免费观看国产| 欧美日韩福利视频一区二区| 在线视频色国产色| 国产高清videossex| 一二三四社区在线视频社区8| 久久 成人 亚洲| 免费看美女性在线毛片视频| av免费在线观看网站| 两性夫妻黄色片| 亚洲av成人不卡在线观看播放网| 91麻豆av在线| 岛国视频午夜一区免费看| 国产1区2区3区精品| 极品教师在线免费播放| av免费在线观看网站| 精品欧美国产一区二区三| 国产精品久久久久久亚洲av鲁大| 欧美极品一区二区三区四区| 亚洲精品色激情综合| 在线国产一区二区在线| 久久久久久久精品吃奶| 精品国产超薄肉色丝袜足j| 美女 人体艺术 gogo| 欧美av亚洲av综合av国产av| 久久午夜综合久久蜜桃| 淫秽高清视频在线观看| 欧美日韩瑟瑟在线播放| 亚洲成av人片免费观看| 亚洲精品在线观看二区| 日本三级黄在线观看| 十八禁网站免费在线| 在线国产一区二区在线| 久久亚洲真实| 每晚都被弄得嗷嗷叫到高潮| 成人国语在线视频| 国产精品久久久人人做人人爽| 久久久精品大字幕| 久久中文字幕人妻熟女| 精品少妇一区二区三区视频日本电影| 亚洲人与动物交配视频| 男人舔女人下体高潮全视频| 精品国产乱子伦一区二区三区| 听说在线观看完整版免费高清| 亚洲av五月六月丁香网| 一级作爱视频免费观看| 成人三级黄色视频| 亚洲av成人精品一区久久| 嫩草影院精品99| 国语自产精品视频在线第100页| 最近在线观看免费完整版| 国产av在哪里看| 成人18禁在线播放| 视频区欧美日本亚洲| 婷婷亚洲欧美| 成人av在线播放网站| 久久国产乱子伦精品免费另类| 丰满人妻熟妇乱又伦精品不卡| 国产黄a三级三级三级人| 特级一级黄色大片| 91国产中文字幕| 最好的美女福利视频网| 一本精品99久久精品77| 最近视频中文字幕2019在线8| 国产精品98久久久久久宅男小说| 国产成人aa在线观看| 国产精品久久久av美女十八| 91老司机精品| 国产伦人伦偷精品视频| 国产一级毛片七仙女欲春2| 久久久久久亚洲精品国产蜜桃av| 久久中文看片网| 亚洲av片天天在线观看| 久久精品成人免费网站| 国产精品影院久久| 高清在线国产一区| 亚洲狠狠婷婷综合久久图片| 麻豆成人av在线观看| 久久久精品国产亚洲av高清涩受| 两个人免费观看高清视频| 麻豆一二三区av精品| 69av精品久久久久久| 999精品在线视频| 国产成人欧美在线观看| 亚洲精品色激情综合| 国产伦在线观看视频一区| 又大又爽又粗| 精品人妻1区二区| 亚洲第一电影网av| 亚洲av电影在线进入| 三级男女做爰猛烈吃奶摸视频| 中文字幕精品亚洲无线码一区| 久久婷婷人人爽人人干人人爱| 真人做人爱边吃奶动态| 色精品久久人妻99蜜桃| 男人舔女人的私密视频| 美女扒开内裤让男人捅视频| 国产欧美日韩精品亚洲av| 757午夜福利合集在线观看| 99在线视频只有这里精品首页| 五月伊人婷婷丁香| 亚洲 欧美一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 婷婷丁香在线五月| 国产黄a三级三级三级人| 色哟哟哟哟哟哟| 欧美中文日本在线观看视频| 精品乱码久久久久久99久播| 国产免费男女视频| 欧美人与性动交α欧美精品济南到| 美女午夜性视频免费| 亚洲精品av麻豆狂野| 大型av网站在线播放| 大型黄色视频在线免费观看| svipshipincom国产片| a级毛片a级免费在线| 黑人巨大精品欧美一区二区mp4| 欧美色欧美亚洲另类二区| 国产精品,欧美在线| 欧美日韩国产亚洲二区| 一本一本综合久久| 男人舔女人下体高潮全视频| 波多野结衣巨乳人妻| 一边摸一边抽搐一进一小说| 日本五十路高清| 久久久久久久久免费视频了| 国产高清有码在线观看视频 | 久久久国产精品麻豆| 一本综合久久免费| 久久精品91无色码中文字幕| 人人妻,人人澡人人爽秒播| 制服人妻中文乱码| 精品国产乱码久久久久久男人| 身体一侧抽搐| 日韩欧美在线二视频| 国产精品自产拍在线观看55亚洲| 亚洲人成网站在线播放欧美日韩| 欧美中文日本在线观看视频| 国产黄a三级三级三级人| av免费在线观看网站| 国产亚洲欧美98| 中文字幕人妻丝袜一区二区| 亚洲av五月六月丁香网| x7x7x7水蜜桃| 中文字幕人妻丝袜一区二区| 一级毛片精品| 亚洲九九香蕉| 老司机在亚洲福利影院| 亚洲五月婷婷丁香| 人妻夜夜爽99麻豆av| 国产精品美女特级片免费视频播放器 | 亚洲欧洲精品一区二区精品久久久| 国产成年人精品一区二区| 窝窝影院91人妻| 免费观看人在逋| 国产精品亚洲一级av第二区| 日本一二三区视频观看| 少妇粗大呻吟视频| x7x7x7水蜜桃| 国产一区二区在线观看日韩 | 97碰自拍视频| 色综合欧美亚洲国产小说| 午夜免费观看网址| 国产精品一区二区免费欧美| 变态另类丝袜制服| 午夜日韩欧美国产| 黄频高清免费视频| 色哟哟哟哟哟哟| 久久久久国产一级毛片高清牌|