• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Structural,electronic and magnetic properties of Fe-doped strontium ruthenates

    2023-12-02 09:23:06NanLiu劉楠XiaoChaoWang王曉超andLiangSi司良
    Chinese Physics B 2023年11期

    Nan Liu(劉楠), Xiao-Chao Wang(王曉超), and Liang Si(司良),2,?

    1School of Physics,Northwest University,Xi’an 710127,China

    2Institute of Solid State Physics,TU Wien,Vienna 1040,Austria

    Keywords: first-principles calculations,double perovskites,correlation effects,dynamical mean-field theory

    1.Introduction

    Perovskites oxides[1,2]have emerged as key players in hosting a wide range of exotic physical phenomena, including high-TCsuperconductivity,[3]ferroelectricity[4,5]and Mott-insulator transition.[6,7]Among these oxides, strontium ruthenate stands out as one of the most extensively investigated strongly correlated perovskite materials due to its remarkable physical properties.[8,9]Two significant classes of ruthenates, namely (double) perovskites SrRuO3(SrRuBO6)and Ruddlesden–Popper-type layered Srn+1RunO3n+1, have recently gained prominence as promising candidates for various technological applications.The intricate interplay among crystal distortions, lattice effects, spin and orbital degrees of freedom, electronic correlations, and spin–orbital coupling in SrRuO3and Sr2RuO4gives rise to extraordinary physical states.These include anomalous Hall effects and the presence of magnetic monopoles,[10]skyrmion states,[11–14]and unconventional chiral p-wave superconductivity, along with other fascinating properties.[9,15–19]However,due to the moderately strong correlations of Ru-4d orbitals, the observability of the important physical phenomena in ruthenates is limited compared to the 3d transition metal oxides(TMOs).For instance,the ferromagnetic Curie temperature in perovskite SrRuO3is around 150 K–160 K,[8]and the critical temperature for superconductivity in Sr2RuO4is approximately 1 K.[9]

    In comparison to 4d and 5d TMOs, 3d TMOs consistently exhibit higher Curie or N′eel temperatures.Examples include Fe2O3,[20]LaFeO3,[21]and La2/3Sr(Ca)1/3MnO3.[22]Previous experimental studies have shown that incorporating chemical doping techniques with (double) perovskite structures can lead to the development of new materials with novel properties, making them highly desirable for various technological applications.[23,24]Consequently, the physical properties of both SrRuO3and Sr2RuO4have been found to be sensitive to material engineering techniques such as chemical doping,[25–28]strain,[29]and external field effects.[30,31]By manipulating these factors,modifications to the electronic structure and magnetic ordering in ruthenates can be induced.This includes the emergence of magnetic competition,[32]reshaping of electronic statesN(Ef) near the Fermi level,[33–35]occurrence of crystal orthorhombic distortion,[25,36]and positioning of the Fermi surface in closer proximity to the Van Hove singularity of theγ-band.[37]These controls allow for the fine-tuning of the electronic and magnetic properties in ruthenates,offering opportunities for tailoring materials for specific applications.

    The magnetic transition and operational temperature of 4d transition metal oxides(TMOs),such as ruthenates,can be naturally expected to be enhanced by the controlled incorporation of 3d transition metal dopants like Fe.The doping concentration can be precisely regulated by adjusting the doping amount and processing parameters.In the context of epitaxial growth of perovskite oxides,Fe doping refers to the intentional addition of iron (Fe) atoms to theB-site ofABO3perovskite oxide materials.Various methods, such as solid-state reactions and atomic layer deposition,can be employed to achieve Fe doping.Furthermore, Fe doping is anticipated to induce charge transfer phenomena[38]between Fe-3d and Ru-4d orbitals, resulting in unexpected exotic phenomena.[39]Due to the difference in electronegativity, electrons from the Ru-4d orbitals are expected to transfer to Fe-3d states,leading to the formation of Fe-3d5and Ru-4d3configurations.[40]This sets the stage for possible interactions between the possible highspin Fe and Ru sites.Therefore, conducting further investigations into the electronic and magnetic structures of heavily Fe-doped SrRuO3and Sr2RuO4holds crucial importance and offers fundamental insights into these systems.

    This study aims to investigate the structural, magnetic,and electronic properties, as well as correlation effects of heavy Fe-doping in SrRuO3and Sr2RuO4through DFT and DMFT calculations.We present a comparative analysis of the structural,electronic,and magnetic characteristics of both systems.The introduced Fe atoms are found to be distributed separately within SrRuO3and Sr2RuO4.DFT+Ucalculations reveal a weakened hybridization between Fe-3d and Ru-4d orbitals, leading to a significant charge transfer from Ru to Fe.Consequently, the Fe atoms adopt a Fe3+state while the Ru atoms adopt a Ru5+state.The presence of electronic correlations within both Fe-3d and Ru-4d orbitals results in substantial magnetic moments, giving rise to strong superexchange effect and the formation of ferrimagnetic(FIM)orders in SrFe0.5Ru0.5O3and Sr2Fe0.5Ru0.5O4.The Hund’s exchange interaction plays a crucial role in the establishment of high-spin states for both Fe3+and Ru5+ions.To account for dynamical correlation effects, DFT+DMFT calculations are further performed, demonstrating that the FIM states in SrFe0.5Ru0.5O3and Sr2Fe0.5Ru0.5O4persist even at room temperature.

    2.Method

    DFT structural relaxations are performed to reach the ground state structures for SrFe0.5Ru0.5O3and Sr2Fe0.5Ru0.5O4.After obtaining the ground structures with lowest DFT total energy, static calculations of band, densityof-states (DOS) are performed using the VASP[41,42]and WIEN2K[43,44]codes with the Perdew–Burke–Ernzerhof version of the generalized gradient approximation (GGAPBE)[45]and a dense 11×11×11k-mesh for the 2×2×2 supercell of SrFe0.5Ru0.5O3(Figs.1(a)–1(d)),and a 6×6×3k-mesh for the√supercell of Sr2Fe0.5Ru0.5O4(Figs.1(e)–1(k)).In VASP calculations, we consider the following electron configurations as valence electrons: Sr 4s24p65s2, Ru 5s14d7, Fe 4s13d7, and O 2s22p4.Correlation effects in Fe-3d and Ru-4d orbitals are considered by employing DFT+Umethod,[46,47]the interaction parameters for Fe-3d and Ru-4d are intra-orbitalU(Fe)=5.0 eV,Hund’s exchangeJ(Fe)=0.5 eV,inter-orbitalV(Fe)=U-2J=4.0 eV;U(Ru) = 3.0 eV,J(Ru) = 0.3 eV,V(Ru) = 2.4 eV.These parameters are obtained from constrained random phase approximation (cRPA)[48]and agree with previous studies and have been proved effective for reproducing experimental observations,[49,50]e.g., the helical spin order consistent with experiments on SrFeO3.[51]

    As an input for the DMFT calculations, a low-energy effective Hamiltonian is generated by projecting the Fe-3d + Ru-4d derived DFT bands computed by WIEN2K around the Fermi level onto Wannier functions[52,53]using WIEN2WANNIER.[54,55]These are supplemented by a local density–density and Kanamori interaction, respectively.We employ the fully localized limit as a double counting correction scheme.[46]We solve the resulting manybody Hamiltonian from 100 K to 300 K within employing a continuous-time quantum Monte Carlo solver in the hybridization expansions[56]using W2DYNAMICS.[57,58]Realfrequency spectra are obtained with the ANA CONT code[59]via analytic continuation using the maximum entropy method(MaxEnt).[60,61]

    3.Results and discussion

    3.1.Structural properties

    To explore all possible structures for double-perovskite type(DP)SrFe0.5Ru0.5O3and Ruddlesden–Popper type(RP)Sr2Fe0.5Ru0.5O4,we list the possible structures in Figs.1(a)–1(k) and Table 1 provides a summary of the (non-spinpolarized) DFT total energy and the corresponding space group.As shown in Table 1, the G-type structure, where the doped Fe atoms are separated by Ru atoms, exhibits the lowest energy state for both DP SrFe0.5Ru0.5O3(Fig.1(h)) and RP Sr2Fe0.5Ru0.5O4(Fig.1(d)).These results indicate that in SrRuO3and Sr2RuO4,the doped Fe atoms tend to be separated(G-type order)rather than forming atomic clusters or exhibiting antisite disorder.[62]However, achieving a high-quality film of pure G-type double perovskites (DP) SrFe0.5Ru0.5O3or RP Sr2Fe0.5Ru0.5O4may pose challenges due to potential antisite disorder.[62]Previous experiments have indicated that Sr2FeRuO6may exhibit spin-glass behavior[63,64]or longrange room-temperature magnetism[40]when the Ru and Fe ions are randomly distributed or when a perfect double perovskite structure is synthesized.

    The relaxed in-plane lattice constants for DP SrFe0.5Ru0.5O3and RP Sr2Fe0.5Ru0.5O4are found to be 7.758 ?A (Fig.1(h)) and 5.384 ?A (Fig.1(d)), respectively.In terms of pseudocubic coordination, these correspond to 3.879 ?A and 3.807 ?A, respectively.These values are comparable to the in-plane lattice constants of SrVO3(3.890 ?A),SrTiO3(3.905 ?A), and LaAlO3(3.778 ?A).The similarity in lattice constants suggests the possibility of epitaxial growth and highlights the potential of these materials for applications in oxide devices.

    DP(GGA-PBE) A C1 C2 G Space group P4/mmm P4/mmm P42/mmc Fm-3m(123) (123) (131) (225)Energy 312.2 337.5 405.5 0 DP(GGA-PBE) D-1 D-2 D-3 –Space group P4/mmm P42/mmc Pm-3m –(123) (131) (221)Energy 294.1 415.7 318.6 –RP(GGA-PBE) A C1 C2 G Space group Pmmm(47) Ama2(40) P21/m(11) Cmmm(65)Non-Mag.325.5 144.8 142.5 0 DP(LDA) A C1 C2 G Energy 366.2 412.7 469.2 0 DP(LDA) D-1 D-2 D-3 –Energy 341.69 476.7 341.8 –RP(LDA) A C1 C2 G Non-Mag.422.56 190.6 185.2 0

    3.2.Electronic properties

    Using the DFT-optimized ground state structures of DP SrFe0.5Ru0.5O3(Fig.1(h)) and RP Sr2Fe0.5Ru0.5O4(Fig.1(d)), we proceed to calculate the (non-spin-polarized)band structure and DOS, as presented in Figs.2 and 3, respectively.In the case of DP SrFe0.5Ru0.5O3, as depicted in Fig.2(a), the Fe-d orbitals exhibit a relatively smaller crystal field splitting between thet2gandegorbitals.In comparison to Ru-4d orbitals, Fe-3d orbitals are more localized and experience less repulsion from the oxygen (O) ligands.The on-site hopping terms of Fe-t2g,Fe-eg,Ru-t2g,and Ru-eg,which are obtained from Wannier projections,are determined as-0.421 eV, 1.661 eV,-0.264 eV, and 3.052 eV, respectively.Consequently,the crystal field splitting(?)betweent2gandegfor Fe and Ru is calculated as 2.082 eV and 3.316 eV,respectively.The smaller?for Fe leads to electronic occupations ategorbitals, this results in the formation of a highspin Fe state under strong Hund’s exchangeJ.In contrast,the larger?for Ru leaves the Ru-t2gstates near the Fermi surface(Ef: 0 eV) while theegstates are located at higher energies ranging from 2.5 eV to 5.0 eV(as shown in the bottom panel of Fig.3(a)).The DOS in Fig.3(a)demonstrates hybridization between Fe-t2gand Ru-t2gorbitals,forming a hybridized peak slightly aboveEf.Additionally, a broader hybridization peak is observed between Fe-egand Ru-egorbitals within the energy range from 0 to 2 eV.The hybridization with Fe-3d effectively reduces the bandwidth of Ru-4d orbitals, as evidenced by the reduced bandwidth (~2.5 eV) of Ru-t2gcompared to~3.2 eV bandwidth in bulk SrRuO3.This reduction in bandwidth plays a crucial role in enhancing electronic correlations and resulting in significant spin-splitting, as discussed in the next section.

    Please note that in the non-spin-polarized DOS of the Gtype DP SrFe0.5Ru0.5O3(Fig.3(a)),theegorbitals of both Fe and Ru are mostly unoccupied,and no significant charge transfer is observed.This indicates that both Ru and Fe are close to their nominal d4state.The DOS of DP SrFe0.5Ru0.5O3exhibits similarities with Sr2CrRuO6,[62]with the only difference being that the Cr-d orbitals are occupied by three electrons instead of five in Fe-d orbitals.

    In the case of G-type RP Sr2Fe0.5Ru0.5O4,the inter-layer hopping along thez-direction is eliminated due to the layered crystal structure of Ruddlesden–Popper phase.This is evidenced by the DOS of Fe-dz2and Ru-dz2shown in the bottom panel of Fig.3(b).For RP Sr2Fe0.5Ru0.5O4,the bandwidth of dxz/dyzand dz2orbitals for both Fe and Ru is significantly reduced compared to that of DP SrFe0.5Ru0.5O3,resulting from the layered structure of the material.

    3.3.Magnetic properties

    We proceed to investigate the magnetic properties of DP SrFe0.5Ru0.5O3and RP Sr2Fe0.5Ru0.5O4by calculating the spin-polarized DFT+U(U: Coulomb interaction) total energies for all possible magnetic orders.Figures 4(a)–4(d)and 4(e)–4(h)depict the potential magnetic states of DP SrFe0.5Ru0.5O3and RP Sr2Fe0.5Ru0.5O4, respectively.The DFT+Utotal energies of all magnetic orders are presented in Table 2.In the case of DP SrFe0.5Ru0.5O3,the A-type(AFMA)and C-type(AFM-C)antiferromagnetic orders converge to non-magnetic states during self-consistent DFT+Uiterations,indicating their instability.However, the ferromagnetic (FM)and G-type (AFM-G) states successfully converge.It is important to note that since the magnetic moments on Ru and Fe are not equal,approximately 5μB/Fe and 3μB/Ru,the AFM-G state is essentially a ferrimagnetic(FIM)state with a net magnetic moment of(5-3)/2=1.0μBper SrFe0.5Ru0.5O3.

    Table 2 reveals that the FIM state(Fig.4(d))is the ground state with the lowest energy while the FM state (Fig.4(a)) is a metastable state with an energy 151.1 meV higher than the FIM state.By fitting the total energies of the FM and FIM states into a simple 3D Heisenberg model,we estimate that the nearest exchange energy (Jinter-site) between Ru and Fe is approximately 13 meV.This suggests a potentially high magnetic transition (N′eel) temperature in the range of several hundred Kelvin.These findings for DP SrFe0.5Ru0.5O3,specifically the FIM magnetic state, align with experimental results reported in Ref.[40],which reported a room-temperature FIM state in the double perovskite Sr2FeRuO6that is isochemically identical to DP SrFe0.5Ru0.5O3.Additionally,both the FM and FIM states exhibit an insulating behavior with a non-zero band gap.It is expected that an external magnetic field could induce a spin flip from the antiferromagnetically coupled Ru and Fe to ferromagnetically coupled pairs,leading to a reduction in electric resistance.Therefore, DP SrFe0.5Ru0.5O3holds promise for exhibiting the magnetoresistance effect.

    In the case of RP Sr2Fe0.5Ru0.5O4, we categorize the possible magnetic orders based on the intra-layer AFM/FM and intra-layer FM/AFM couplings: FM (intra-layer FM+inter-layer FM), FIM (intra-layer AFM+inter-layer FM),AFM-A (intra-layer FM+inter-layer AFM), and AFM-G(intra-layer AFM+inter-layer AFM).By performing spinpolarized DFT+Ucalculations,we find that the ground state is the FIM state (its energy is set as 0) while the metastable state is the AFM-G state with an energy of 2.2 meV.This indicates that the magnetism of RP Sr2Fe0.5Ru0.5O4is primarily governed by a strong intra-layer AFM coupling between Fe and Ru (Jinter-site~7 meV), along with a much weaker inter-layer coupling(Jinter-layer~1 meV).The reduced value ofJinter-site can be attributed to the cutting-off of hopping interactions along the out-of-plane direction (z).In DP SrFe0.5Ru0.5O3, theJinter-site value is approximately 13 meV,which is stronger due to its three-dimensional (3D) nature.In contrast, in RP Sr2Fe0.5Ru0.5O4, the hopping along thezdirection is hindered by the layered structure, resulting in aJinter-site value of roughly half of DP SrFe0.5Ru0.5O3,approximately 7 meV.

    The negligible inter-layer coupling withJinter-layer approximately 1 meV corresponds to a temperature of only around 11 K.This suggests that the coexistence of the FIM and AFMG states is possible, where local strain or crystal disorder in realistic samples could locally stabilize one state in certain regions.Additionally, the application of an external magnetic field is expected to facilitate the transformation from the AFMG to the FIM state.Consequently,the resistance can be effectively reduced, similar to DP SrFe0.5Ru0.5O3.Therefore, RP Sr2Fe0.5Ru0.5O4holds promise as a candidate for magnetoresistance effects.

    We also perform similar magnetic order calculations including spin–orbital coupling (SOC) in calculations.With SOC, non-collinear magnetic order setups are allowed and they might lead to lower energy compared with the collinear magnetic order as shown in Figs.4(d) and 4(h).We test different combinations by changing the magnetic orientations of Fe- and Ru-moment, e.g., by allowing their magnetic moment along (001), (010), (001), (110), (111) and other possible directions.However,our DFT+U+SOC results demonstrate that collinear G-type orders with both Fe- and Rumoment alongz(001) direction are ground states for both SrFe0.5Ru0.5O3and Sr2Fe0.5Ru0.5O4, as shown in Figs.4(d)and 4(h).

    Our findings reveal the following: (i)DP SrFe0.5Ru0.5O3exhibits a robust G-type structure and a semiconducting state with a FIM order.(ii) RP Sr2Fe0.5Ru0.5O4possesses a Gtype structure with a strong intra-layer FIM order and a weak intra-layer coupling of approximately 1 meV.This suggests that the FIM and AFM-G configurations have similar energies,indicating a significant magnetic competition among various magnetic states.This competition may give rise to phenomena such as spin-glass behavior,[66]spin-density waves,[27]or commensurate/incommensurate magnetic ordering.[28]Moreover,this could explain the experimentally observed uncertain magnetism in Fe-doped ruthenates.[27,28,66]

    We proceed with the calculation of the spin-polarized DOS for DP SrFe0.5Ru0.5O3and RP Sr2Fe0.5Ru0.5O4.Figures 5(a) and 5(b) illustrate the DOS of DP SrFe0.5Ru0.5O3and RP Sr2Fe0.5Ru0.5O4, respectively.In the case of DP SrFe0.5Ru0.5O3, the Fe dopant atoms are in the Fe3+state with a 3d5electronic configuration, as indicated by the fully occupied spin-majority Fe-t2gandegorbitals (middle panel of Fig.5(a)).The full spin polarization at Fe and the Fe3+valence states are consistent with those observed in Sr2FeMoO6.[67]

    It is worth noting that in the spin-polarized DOS of both compounds (Figs.5(a) and 5(b)), the states near the Fermi level(Ef)are not predominantly composed of hybridized states between Fe and Ru.This suggests a weaker hybridization compared to the non-spin-polarized DOS shown in Figs.3(a)and 3(b).Fe exhibits a strong spin splitting of approximately 8 eV, which is significantly larger than the values of around 2.5 eV for Fe in Sr2FeMnO6,[67]3.5 eV for Cr in Sr2CrRuO6,[62]and 2.0 eV for Cr in Sr2CrMoO6.[68]Additionally, the spin splitting of Ru-t2gin DP SrFe0.5Ru0.5O3is approximately 7 eV,almost three times larger than that in bulk SrRuO3, which is around 2 eV.[48]This indicates that the reduced electronic hoppings and decreased itinerancy make both Fe and Ru more localized compared to their bulk states in SrFeO3and SrRuO3.Consequently, a larger intrinsic magnetic moment develops at the Fe and Ru sites.Due to the weaker hybridization between Fe and Ru in the spin-polarized state,the superexchange interaction between the magnetic Fe and Ru ions is enhanced because it is proportional to the spin moment on Fe and Ru.Along with the half-metallic state exhibited in DP SrFe0.5Ru0.5O3, the superexchange mechanism consequently appears to play an essential role in stabilizing the FIM order.

    The DOS of RP Sr2Fe0.5Ru0.5O4exhibits notable similarities to that of DP SrFe0.5Ru0.5O3.For example, the spin-up Fe-t2gstates are located around-7 eV, while the spin-down Fe-t2gstates are at approximately 2 eV.Similarly,the spin-up Ru-dyz/dxzstates are observed around-6 eV, and the spindown states are found at around 1 eV.The layered structure of RP Sr2Fe0.5Ru0.5O4leads to a splitting between the degeneratet2gandegorbitals.These findings suggest that Fedoped ruthenates share similarities with Sr2CrMoO6,[68]such as weakened 3d–4d hybridization and the significant role of superexchange in stabilizing the FIM order.

    3.4.Dynamical correlation effects

    To investigate the temperature effect, we employ the DMFT method, as DFT is a zero-temperature theory.We consider two different Hamiltonians, Kanamori and density–density interactions, at temperatures of 200 K and 300 K.The DMFT calculations confirm the presence of FIM order in DP SrFe0.5Ru0.5O3and RP Sr2Fe0.5Ru0.5O4, respectively,consistent with the results obtained from DFT+Ucalculations.Figure 6 displays the Kanamori DMFT spectra of DP SrFe0.5Ru0.5O3and RP Sr2Fe0.5Ru0.5O4at room temperature(T=300 K).In DP SrFe0.5Ru0.5O3,the Fe and Ru atoms are antiferromagnetically coupled, with the spin-majority channel being spin-up for Fe and spin-down for Ru.The spinupt2gandegorbitals of Fe are fully occupied while the spin-downt2gandegorbitals are only slightly occupied, indicating a high-spin Fe3+(3d5) state.As for Ru, the spindownt2gorbitals are occupied while the spin-downegorbital and other states in the spin-up channel are all empty,indicating a high-spin Ru5+(4d3) state.The magnetic moment per SrFe0.5Ru0.5O3in the DP phase is approximately 1μBat 300 K.In RP Sr2Fe0.5Ru0.5O4, the DMFT spectra exhibit remarkable similarities to those of DP SrFe0.5Ru0.5O3,with the only difference being the degeneracy splitting within thet2gandegorbitals.Specifically, the dxy(dx2-y2)orbital is not symmetric to the dyzand dz2orbitals as observed in DP SrFe0.5Ru0.5O3.These DMFT results indicate that the magnetism in both systems is expected to persist even at room temperature.To make summary, the magnetic exchange parameters from DFT+U,and N′eel that is estimated from magnetic exchange parametersJand computed from DMFT as shown in Table 3,one can see that the values from DMFT are definitely higher than the estimated values fromJ, indicating possible important roles of correlation effects in Fe-doped ruthenates.Additionally,we also compute the net magnetic moments using the density–density interactions,and it is found that the net moments of both systems increased by 10%, highlighting the significance of Hund’s exchange interaction(J).

    –Exchange N′eel N′eel parameters(meV) (exchange parameters) (DMFT)DP FIM Jinter-site: 13 ~151 K >500 K RP AFM-G(FIM) Jinter-site: 7 ~81 K >300 K–Jinter-layer: 1––

    Note that the ruthenates we have studied in this paper are all at exactly 50%Fe-doping,however,crystal and lattice defects, as well as inter-atomic mixing, and even the formation of oxygen vacancies, are usually unavoidable in practical experiments.For oxides, the above types of crystal defects, as well as oxygen vacancies, are expected to induce doping of electrons or holes.Any additional electron or hole doping will close to the Mott band gap,leading to the formation of metallic phases.Moreover, this will, to some extent, increase the double-exchange interaction of the system,and we expect that a moderate amount of hole or electron doping will enhance the double-exchange interaction while decreasing the strong electronic correlation effects at Ru and Fe as well as the superexchange interaction, which will likely lead to the transition of both the Fe-doped ruthenates from FIM to FM state.[69–71]

    4.Conclusion

    Motivated by the potential for exotic physical properties induced by Fe-doping in ruthenates, we conducted a comprehensive study on the structural, electronic, and magnetic properties of Fe-doped double perovskite SrRuO3and Ruddlesden–Popper Sr2RuO4, specifically SrFe0.5Ru0.5O3and Sr2Fe0.5Ru0.5O4.TMOs with 3d electrons often exhibited remarkable magnetic properties around room temperature,and thus, we anticipated that Fe-doping would enhance the magnetic performance of SrRuO3and Sr2RuO4by raising the Curie or N′eel temperatures.

    Our investigations reveal that the Fe atoms tend to segregate,leading to the formation of G-type structure with Fe and Ru atoms in both SrFe0.5Ru0.5O3and Sr2Fe0.5Ru0.5O4.These compounds adopt a double-perovskite-type three-dimensional(3D) and two-dimensional (2D) structure, respectively.The interplay between weakened 3d–4d hybridization, enlarged spin-splitting, and enhanced correlation effects results in a substantial charge transfer from Ru to Fe,resulting in Fe3+and Ru5+states.The superexchange interaction between Fe3+and Ru5+ions gives rise to a robust FIM semiconducting ground state in both systems.By considering dynamical correlation effects,band gaps of up to 2 eV are observed.

    Due to their FIM ground states, significant spin-flip behavior is expected under the influence of a strong external magnetic field, implying the potential for remarkable magnetoresistance effects.To investigate the survival of the FIM states in SrFe0.5Ru0.5O3and Sr2Fe0.5Ru0.5O4at higher temperatures,we perform temperature-dependent DMFT calculations.The results demonstrate that the FIM states persist even at elevated temperatures,including room temperature(300 K).The ability to stabilize semiconducting FIM states through Fe doping in SrRuO3and Sr2RuO4renders Fe doping a promising strategy for overcoming the limitations of working and operating temperatures in 4d transition metal oxides such as ruthenates.

    Acknowledgments

    Project supported by the starting funds from Northwest University.We thank Paul Worm and Karsten Held for fruitful discussion and support of computational resources.Calculations have been mainly done on the Vienna Scientific Clusters(VSC)and supercomputer at the School of Physics of Northwest University.

    日韩电影二区| 美女xxoo啪啪120秒动态图| 黑人高潮一二区| av福利片在线| 日日啪夜夜爽| 亚洲国产精品成人久久小说| 大香蕉97超碰在线| 热99国产精品久久久久久7| av不卡在线播放| 少妇 在线观看| 国产精品伦人一区二区| 欧美 日韩 精品 国产| 欧美成人午夜免费资源| 精品人妻一区二区三区麻豆| 少妇精品久久久久久久| 91精品一卡2卡3卡4卡| 色94色欧美一区二区| 亚洲av日韩在线播放| 国产精品福利在线免费观看| 成人漫画全彩无遮挡| a 毛片基地| 亚洲人成网站在线播| 日韩欧美一区视频在线观看 | 精品少妇内射三级| 精品亚洲乱码少妇综合久久| 色网站视频免费| 日韩伦理黄色片| 青青草视频在线视频观看| 美女cb高潮喷水在线观看| 欧美成人午夜免费资源| 美女脱内裤让男人舔精品视频| 最新中文字幕久久久久| 亚洲国产最新在线播放| tube8黄色片| 欧美区成人在线视频| 少妇人妻 视频| 91久久精品国产一区二区成人| 亚洲av综合色区一区| 中国美白少妇内射xxxbb| 精品人妻偷拍中文字幕| 亚洲av电影在线观看一区二区三区| 熟女人妻精品中文字幕| 91精品一卡2卡3卡4卡| freevideosex欧美| 欧美日韩视频高清一区二区三区二| 久久精品夜色国产| 亚洲性久久影院| 免费高清在线观看视频在线观看| 久久久久人妻精品一区果冻| 久热久热在线精品观看| 少妇高潮的动态图| 亚洲综合色惰| 国产精品熟女久久久久浪| 久久久国产欧美日韩av| 男女免费视频国产| 精品一区在线观看国产| 妹子高潮喷水视频| 亚洲在久久综合| 国产一区二区三区av在线| 亚洲av电影在线观看一区二区三区| 99热全是精品| 欧美激情极品国产一区二区三区 | 欧美精品人与动牲交sv欧美| 国产精品免费大片| 亚洲欧美日韩另类电影网站| 精品人妻熟女毛片av久久网站| 欧美日韩在线观看h| 青青草视频在线视频观看| 超碰97精品在线观看| 亚洲,欧美,日韩| 久久99精品国语久久久| 久久97久久精品| 国产欧美日韩一区二区三区在线 | 99久久精品国产国产毛片| 超碰97精品在线观看| 内射极品少妇av片p| 街头女战士在线观看网站| 丰满迷人的少妇在线观看| 久久久久国产精品人妻一区二区| 精品人妻熟女毛片av久久网站| 亚洲熟女精品中文字幕| 精品少妇内射三级| 久久狼人影院| 国产真实伦视频高清在线观看| 少妇裸体淫交视频免费看高清| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频 | a 毛片基地| 男人添女人高潮全过程视频| 久久免费观看电影| 日本av手机在线免费观看| 国产日韩欧美视频二区| 性高湖久久久久久久久免费观看| 97超视频在线观看视频| 中文字幕精品免费在线观看视频 | 在线观看www视频免费| 人人妻人人看人人澡| 亚洲精品久久久久久婷婷小说| 成人18禁高潮啪啪吃奶动态图 | 黑人巨大精品欧美一区二区蜜桃 | 亚洲,欧美,日韩| 精华霜和精华液先用哪个| 亚洲,一卡二卡三卡| 狠狠精品人妻久久久久久综合| 看十八女毛片水多多多| 一本色道久久久久久精品综合| 亚洲四区av| 久久国产精品男人的天堂亚洲 | 久久久国产精品麻豆| 少妇人妻久久综合中文| 欧美精品亚洲一区二区| 少妇高潮的动态图| 九色成人免费人妻av| 欧美精品亚洲一区二区| 亚洲在久久综合| 搡女人真爽免费视频火全软件| 精品久久久精品久久久| 赤兔流量卡办理| 免费高清在线观看视频在线观看| 99九九在线精品视频 | 99九九线精品视频在线观看视频| 免费看av在线观看网站| 日本91视频免费播放| 国产成人aa在线观看| 亚洲精品久久午夜乱码| 亚洲国产精品一区三区| 最近手机中文字幕大全| 天堂俺去俺来也www色官网| 日本欧美视频一区| av有码第一页| 免费人妻精品一区二区三区视频| 国产成人精品无人区| 2022亚洲国产成人精品| 肉色欧美久久久久久久蜜桃| 亚洲av欧美aⅴ国产| 欧美另类一区| 香蕉精品网在线| 欧美最新免费一区二区三区| 爱豆传媒免费全集在线观看| 欧美3d第一页| 国产精品久久久久久久电影| 成人18禁高潮啪啪吃奶动态图 | 自线自在国产av| 色网站视频免费| 2018国产大陆天天弄谢| 国产无遮挡羞羞视频在线观看| 国产成人一区二区在线| 七月丁香在线播放| 久久人人爽人人片av| 高清视频免费观看一区二区| 七月丁香在线播放| 欧美精品亚洲一区二区| 黑丝袜美女国产一区| av免费在线看不卡| 丰满饥渴人妻一区二区三| 黄色配什么色好看| 高清av免费在线| a级毛色黄片| 国产欧美亚洲国产| 国产国拍精品亚洲av在线观看| 少妇熟女欧美另类| 欧美日韩综合久久久久久| 大码成人一级视频| 18禁动态无遮挡网站| 在线天堂最新版资源| 精品久久国产蜜桃| 九九爱精品视频在线观看| 肉色欧美久久久久久久蜜桃| 嫩草影院新地址| 亚洲精品一区蜜桃| 久久久亚洲精品成人影院| 青青草视频在线视频观看| 久久精品国产a三级三级三级| 永久免费av网站大全| 久久人人爽av亚洲精品天堂| 老女人水多毛片| 男的添女的下面高潮视频| 欧美性感艳星| tube8黄色片| 只有这里有精品99| 美女cb高潮喷水在线观看| kizo精华| 中文精品一卡2卡3卡4更新| 久久人人爽人人片av| 性高湖久久久久久久久免费观看| 久久久久人妻精品一区果冻| 国产日韩欧美在线精品| 免费播放大片免费观看视频在线观看| 99热全是精品| 亚洲第一区二区三区不卡| 夫妻午夜视频| av在线app专区| 亚洲av国产av综合av卡| 美女内射精品一级片tv| 熟女av电影| 亚洲av成人精品一二三区| 在线 av 中文字幕| 五月开心婷婷网| 久久久国产一区二区| 免费看日本二区| 日本-黄色视频高清免费观看| 9色porny在线观看| 久久狼人影院| 日日撸夜夜添| 亚洲精品456在线播放app| 三级国产精品欧美在线观看| 免费观看性生交大片5| 亚洲第一av免费看| 精品国产一区二区久久| 天堂俺去俺来也www色官网| 插逼视频在线观看| 亚洲色图综合在线观看| 国产成人午夜福利电影在线观看| av免费在线看不卡| 亚洲精品国产av蜜桃| 交换朋友夫妻互换小说| 一区二区三区免费毛片| 国产毛片在线视频| 九色成人免费人妻av| 狠狠精品人妻久久久久久综合| 日韩欧美 国产精品| 人人妻人人添人人爽欧美一区卜| 在线观看免费视频网站a站| 日本午夜av视频| 国产精品熟女久久久久浪| 精品人妻熟女毛片av久久网站| 中文精品一卡2卡3卡4更新| 欧美成人精品欧美一级黄| 日本黄大片高清| 嫩草影院新地址| 日韩电影二区| 18禁裸乳无遮挡动漫免费视频| 国产无遮挡羞羞视频在线观看| 日本黄大片高清| 狂野欧美激情性xxxx在线观看| 亚洲精品第二区| 日日摸夜夜添夜夜添av毛片| 日韩在线高清观看一区二区三区| 久久久久久久久久久免费av| 男女边摸边吃奶| 色哟哟·www| 秋霞在线观看毛片| 日日摸夜夜添夜夜添av毛片| 黄片无遮挡物在线观看| 色视频在线一区二区三区| 亚洲国产欧美日韩在线播放 | 成人漫画全彩无遮挡| 香蕉精品网在线| 亚洲成色77777| 爱豆传媒免费全集在线观看| 丝袜脚勾引网站| 97超碰精品成人国产| av在线观看视频网站免费| 亚洲精品国产成人久久av| 极品教师在线视频| 色网站视频免费| 日本vs欧美在线观看视频 | 亚洲在久久综合| 亚洲真实伦在线观看| 有码 亚洲区| 欧美xxxx性猛交bbbb| 久久狼人影院| 伊人亚洲综合成人网| √禁漫天堂资源中文www| 色婷婷久久久亚洲欧美| 亚洲精品乱码久久久v下载方式| 熟女av电影| 男人舔奶头视频| 国产精品女同一区二区软件| 熟女人妻精品中文字幕| 黄色配什么色好看| 我的女老师完整版在线观看| 婷婷色综合www| 国产精品国产av在线观看| 免费人妻精品一区二区三区视频| av国产精品久久久久影院| 欧美成人精品欧美一级黄| 日韩成人伦理影院| 日韩欧美 国产精品| 搡老乐熟女国产| 欧美日韩亚洲高清精品| 亚洲成人av在线免费| 国产亚洲91精品色在线| 狂野欧美白嫩少妇大欣赏| 亚洲久久久国产精品| 亚洲美女视频黄频| av不卡在线播放| 少妇被粗大的猛进出69影院 | 老司机亚洲免费影院| 午夜影院在线不卡| 少妇人妻久久综合中文| 99热这里只有精品一区| 日本色播在线视频| 国产精品一二三区在线看| 亚洲av欧美aⅴ国产| 最近手机中文字幕大全| 国产有黄有色有爽视频| 性色avwww在线观看| 大香蕉久久网| 嫩草影院新地址| 亚洲精华国产精华液的使用体验| 日本猛色少妇xxxxx猛交久久| 老熟女久久久| 国产一区二区在线观看av| 如何舔出高潮| av免费观看日本| 少妇人妻精品综合一区二区| 久久免费观看电影| 国产黄色视频一区二区在线观看| 我的老师免费观看完整版| 精品少妇内射三级| 国产精品一区二区在线观看99| 亚洲精品久久午夜乱码| 国产一区二区三区综合在线观看 | 一边亲一边摸免费视频| 男人添女人高潮全过程视频| 国产亚洲欧美精品永久| 久久精品熟女亚洲av麻豆精品| 国产成人免费观看mmmm| 国产乱人偷精品视频| 日韩中字成人| 久久久久久久国产电影| 视频区图区小说| 热re99久久精品国产66热6| 日韩人妻高清精品专区| 99久国产av精品国产电影| 免费av不卡在线播放| 久久99热这里只频精品6学生| a级一级毛片免费在线观看| 久久久国产一区二区| 欧美精品高潮呻吟av久久| 亚洲伊人久久精品综合| 亚洲国产精品国产精品| 一级毛片 在线播放| 亚洲美女搞黄在线观看| 国内揄拍国产精品人妻在线| 午夜精品国产一区二区电影| 日韩伦理黄色片| 亚洲国产欧美日韩在线播放 | av在线app专区| av免费观看日本| 妹子高潮喷水视频| 久久久久久久久久久久大奶| 51国产日韩欧美| 久久99一区二区三区| 插阴视频在线观看视频| 久久人妻熟女aⅴ| 午夜福利影视在线免费观看| 天堂中文最新版在线下载| 一区二区三区免费毛片| 国产有黄有色有爽视频| 日本欧美国产在线视频| 亚洲国产精品一区二区三区在线| 色婷婷久久久亚洲欧美| 欧美精品人与动牲交sv欧美| 免费黄色在线免费观看| 婷婷色麻豆天堂久久| 乱系列少妇在线播放| 欧美精品人与动牲交sv欧美| 亚洲精品第二区| 亚洲av中文av极速乱| 欧美精品亚洲一区二区| 精品人妻熟女av久视频| 一级毛片黄色毛片免费观看视频| 日本欧美国产在线视频| 中文天堂在线官网| 狂野欧美激情性bbbbbb| 只有这里有精品99| 国产精品久久久久久久久免| 亚洲欧美成人综合另类久久久| 中文字幕免费在线视频6| 国产极品粉嫩免费观看在线 | 又黄又爽又刺激的免费视频.| 亚洲国产精品专区欧美| 亚洲av成人精品一区久久| 亚州av有码| 亚洲国产毛片av蜜桃av| 国产成人精品婷婷| 少妇被粗大的猛进出69影院 | 久久99精品国语久久久| 美女视频免费永久观看网站| 日韩精品有码人妻一区| 欧美日韩亚洲高清精品| 精品久久久久久电影网| 久久久久久久亚洲中文字幕| 在线观看三级黄色| 99久久精品一区二区三区| 夫妻午夜视频| 国产毛片在线视频| 中文字幕av电影在线播放| 国产成人精品福利久久| 18禁在线无遮挡免费观看视频| 久久久久久久久久久免费av| 国语对白做爰xxxⅹ性视频网站| 国产高清不卡午夜福利| 热99国产精品久久久久久7| 国产成人精品无人区| 国产 精品1| 亚洲精品乱码久久久久久按摩| 99热6这里只有精品| av在线观看视频网站免费| 另类精品久久| 看非洲黑人一级黄片| 成年av动漫网址| www.色视频.com| av在线老鸭窝| 黑人猛操日本美女一级片| 日韩在线高清观看一区二区三区| 最近中文字幕高清免费大全6| 国产欧美亚洲国产| 午夜福利视频精品| 人体艺术视频欧美日本| 曰老女人黄片| 自拍偷自拍亚洲精品老妇| 亚洲av综合色区一区| 日韩伦理黄色片| 国产在线一区二区三区精| 亚洲综合色惰| 免费人成在线观看视频色| 国产精品三级大全| 欧美人与善性xxx| 久久人人爽av亚洲精品天堂| 性高湖久久久久久久久免费观看| 亚洲精品国产av成人精品| 亚洲国产精品一区二区三区在线| 亚洲精品第二区| 国产精品无大码| 中文字幕免费在线视频6| 国产成人91sexporn| 十八禁高潮呻吟视频 | 人妻一区二区av| 亚洲色图综合在线观看| 国产有黄有色有爽视频| 欧美精品亚洲一区二区| 少妇人妻一区二区三区视频| 精品亚洲乱码少妇综合久久| 久久人人爽人人爽人人片va| 免费看不卡的av| 9色porny在线观看| 久久女婷五月综合色啪小说| 亚洲精品日本国产第一区| 男人舔奶头视频| 国产精品久久久久久精品古装| 欧美bdsm另类| av在线老鸭窝| 亚洲欧洲精品一区二区精品久久久 | 精品亚洲成a人片在线观看| 国产精品一区二区在线观看99| 精品少妇久久久久久888优播| 亚洲三级黄色毛片| 各种免费的搞黄视频| 丝瓜视频免费看黄片| 欧美日韩视频精品一区| 久久精品国产亚洲网站| 两个人的视频大全免费| 2021少妇久久久久久久久久久| 久久精品国产亚洲av涩爱| 成人18禁高潮啪啪吃奶动态图 | 婷婷色av中文字幕| freevideosex欧美| 日韩 亚洲 欧美在线| 日本免费在线观看一区| 好男人视频免费观看在线| 国产探花极品一区二区| 人人妻人人澡人人爽人人夜夜| 日本wwww免费看| 亚洲国产成人一精品久久久| 国产精品福利在线免费观看| 婷婷色av中文字幕| 少妇人妻一区二区三区视频| 极品教师在线视频| 少妇被粗大猛烈的视频| 久久精品国产亚洲av天美| 搡女人真爽免费视频火全软件| 又爽又黄a免费视频| 我的女老师完整版在线观看| 国产高清三级在线| 国产精品人妻久久久影院| 国产淫语在线视频| 精品久久久久久久久av| 午夜免费观看性视频| 中国三级夫妇交换| 午夜影院在线不卡| 亚洲精品色激情综合| 精品久久久噜噜| 一本色道久久久久久精品综合| av黄色大香蕉| av福利片在线| 久热久热在线精品观看| 深夜a级毛片| 99热这里只有是精品在线观看| 成人毛片a级毛片在线播放| 美女cb高潮喷水在线观看| 国产av码专区亚洲av| 欧美日韩国产mv在线观看视频| 插逼视频在线观看| 五月天丁香电影| 亚洲欧美精品自产自拍| 2021少妇久久久久久久久久久| av.在线天堂| videossex国产| 色94色欧美一区二区| 精品少妇内射三级| 久久女婷五月综合色啪小说| 热re99久久国产66热| 亚洲经典国产精华液单| av卡一久久| 亚洲成色77777| 成人无遮挡网站| 国产高清不卡午夜福利| 一区二区三区乱码不卡18| 色网站视频免费| 精品一区二区三区视频在线| 日本午夜av视频| 亚洲第一av免费看| 久久久久久久精品精品| 亚洲电影在线观看av| 天堂俺去俺来也www色官网| 色婷婷av一区二区三区视频| 久热这里只有精品99| 国产成人免费无遮挡视频| 成人毛片60女人毛片免费| 91精品国产九色| 大码成人一级视频| 国产在线视频一区二区| 大香蕉97超碰在线| 如日韩欧美国产精品一区二区三区 | 一本久久精品| 国产黄频视频在线观看| 精品人妻一区二区三区麻豆| 久久影院123| 99视频精品全部免费 在线| 在线免费观看不下载黄p国产| 欧美bdsm另类| 国产伦精品一区二区三区四那| 国产成人免费无遮挡视频| av网站免费在线观看视频| 国产91av在线免费观看| 日本猛色少妇xxxxx猛交久久| 国产在线免费精品| 熟女人妻精品中文字幕| 国产精品秋霞免费鲁丝片| 少妇的逼水好多| av国产久精品久网站免费入址| 男女边摸边吃奶| 国产在线一区二区三区精| 久久久精品94久久精品| 免费av不卡在线播放| 秋霞在线观看毛片| 色吧在线观看| 91成人精品电影| 久久久精品94久久精品| 成人亚洲欧美一区二区av| 国产日韩欧美视频二区| 亚洲一级一片aⅴ在线观看| 麻豆成人av视频| 春色校园在线视频观看| 少妇人妻一区二区三区视频| 成人综合一区亚洲| 久久精品久久精品一区二区三区| 高清黄色对白视频在线免费看 | 国产欧美另类精品又又久久亚洲欧美| 亚洲在久久综合| 中文乱码字字幕精品一区二区三区| 精品久久久久久久久亚洲| 秋霞伦理黄片| 亚洲高清免费不卡视频| 日产精品乱码卡一卡2卡三| 一个人免费看片子| 91在线精品国自产拍蜜月| 男的添女的下面高潮视频| 国产深夜福利视频在线观看| 国产视频首页在线观看| 插逼视频在线观看| 国产精品伦人一区二区| 日本猛色少妇xxxxx猛交久久| 色94色欧美一区二区| 人妻系列 视频| 黑人高潮一二区| 岛国毛片在线播放| 欧美精品亚洲一区二区| 亚洲综合色惰| 亚洲久久久国产精品| 国产精品久久久久久精品电影小说| 如日韩欧美国产精品一区二区三区 | 香蕉精品网在线| 亚洲欧洲日产国产| 精品国产一区二区三区久久久樱花| 欧美丝袜亚洲另类| 国产成人精品婷婷| 黄色日韩在线| 丰满饥渴人妻一区二区三| 午夜激情久久久久久久| 国产精品一区二区三区四区免费观看| 日韩 亚洲 欧美在线| 色吧在线观看| 免费大片黄手机在线观看| 在线免费观看不下载黄p国产| 一本—道久久a久久精品蜜桃钙片| 久久精品国产亚洲av涩爱| 国产美女午夜福利| 十分钟在线观看高清视频www | 一级毛片电影观看| 国产精品久久久久久久电影| 亚洲国产成人一精品久久久| 国产视频首页在线观看| 日本-黄色视频高清免费观看| 三上悠亚av全集在线观看 | 免费av不卡在线播放| 婷婷色av中文字幕| 国产精品欧美亚洲77777| 你懂的网址亚洲精品在线观看| 性色av一级| 少妇的逼好多水| 99视频精品全部免费 在线|