• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Low-lying electronic states of osmium monoxide OsO

    2023-12-02 09:29:58WenYan嚴(yán)汶andWenliZou鄒文利
    Chinese Physics B 2023年11期

    Wen Yan(嚴(yán)汶) and Wenli Zou(鄒文利),?

    1Institute of Modern Physics,Northwest University,Xi’an 710127,China

    2Shaanxi Key Laboratory for Theoretical Physics Frontiers,Xi’an 710127,China

    Keywords: transition dipole moment, multi-reference second-order perturbation theory, spin–orbit coupling,exact two-component

    1.Introduction

    Transition metal-containing small molecules are known to pose challenges to spectral assignments.In addition to the strong spin–orbit coupling (SOC) effects, the abundance electronic configurations, the dense distribution of electronic states, and the high angular quantum numbers make the assignment of electronic spectra rather complicated.In this respect, the high-precision theoretical calculations by multireference methods play crucial roles in assisting experimental assignments.However, the multi-reference methods are not black-box tools,which hinders their widespread applications.In a recent paper[1]we studied the low-lying electronic states of the osmium monoxide cation (OsO+), and in the present work,we focus on the neutral OsO molecule because its emission spectra measured nearly 40 years ago[2]have not been assigned until now.

    Both experimental and theoretical studies of OsO are scarce.Gattereret al.[3]and Raziunaset al.[4]reported the earliest emission spectra of OsO in 1957 and in 1965, respectively, but no analyses were made.Weltner suggested a possible ground state5Σ in a review published in 1978.[5]In 1984,Balfour and Ram[2]photographed the emission spectra of OsO in the region 405 nm–875 nm, in which many bands had been observed.However, they could not determine the spectral term of the ground state.The candidate ground states of OsO were theoretically studied only at the density functional theory (DFT) level of theory without considering the SOC effects, which could be either3Φ or5Σ+depending on the functionals.[6–8]Due to the fact that the first-order SOC constant of5Σ+is zero,one may speculate that the ground ?state of OsO comes probably from3Φ.However, this is not true according to our results in this study.On the whole, the ground state and the assignments of the experimental emission bands of OsO are still not known.

    This paper is structured as follows.Some computational details are given first.In the subsequent section, the lowlying Λ–S and ? states of OsO have been studied by highprecision multi-reference calculations, which are used to assign the emission bands.Important findings of this work are summarized in the Conclusion section.

    2.Theoretical method

    The scalar relativistic effects are taken into account via the exact two-component(X2C)Hamiltonian,[9,10]which is combined with the relativistically contracted 4-ζquality ANO-R3 basis set[11,12]and the finite size nuclear model.Totally 43 low-lying Λ–S states of OsO below 3×104cm-1are calculated using SA-CASSCF (state-averaged complete active space self-consistent field)with theC2vpoint group symmetry, including fourteen singlet, twenty triplet, eight quintet, and one septet ones (see Table 1).Based on the SACASSCF wavefunctions, two multi-reference methods have been used in this study to take dynamic correlations into account,i.e.,RMS-CASPT2(rotated multi-state complete active space second-order perturbation theory)[13]and MS-NEVPT2(multi-state partially contractedn-electron valence state second order perturbation theory).[14]The active space consists of 12 electrons in 9 molecular orbitals(MOs),i.e.CAS(12e,9o),corresponding to the 5d6s shells of Os and the 2p shell of O.All the occupied MOs below the active space are relaxed in the SA-CASSCF calculations,whereas in the RMS-CASPT2 and MS-NEVPT2 calculations the 24 electrons in the MOs corresponding to O 2s and semi-core shells Os 4f5s5p are also correlated.The resulted total number of configurations for singlet, triplet, and quintet states are approximately 9×109,18×109, and 3×109, respectively.Since CASPT2 suffers from the intruder state problem,an imaginary level shift[15]of 0.25 a.u.(atomic unit)and an IPEA level shift[16]of 0.25 a.u.are used together, which lead to the weights of the reference states being about 81%.

    The SOC effects are considered via the biorthonormal state-interaction (SI) approach[17]with the one-center atomic mean field integral (AMFI) approximation[18]for one- and two-electron spin–orbit integrals.The perturbatively modified CASSCF (PM-CASSCF) wavefunctions by RMS-CASPT2 are adopted to construct the spin–orbit matrix, where the diagonal elements are replaced by the corresponding RMSCASPT2 or MS-NEVPT2 energies calculated above.More technical details about SOC calculations may be found in Ref.[19].

    The BDF quantum chemistry program package[20]is used for the quadratically convergent SA-CASSCF calculations,whereas the MS-NEVPT2 calculations are carried out using the Xi’an-CI program package[21]that interfaces with BDF.The transformed SA-CASSCF wavefunctions are also passed to the OpenMolcas program package[22,23]to perform the RMS-CASPT2 and subsequent SI calculations.Since the double group symmetry is not implemented in the SI approach of OpenMolcas, the in-house Fortran90 program OmSym-II is used to identify the ? states.Based on the potential energy curves(PECs)of Λ–S or ? states,the spectroscopic constants are fitted by numerically solving the one-dimensional Schr¨odinger equation using Le Roy’s LEVEL program,[24]including the adiabatic excitation energy (Te), the equilibrium bond length(Re),the vibrational frequency(ωe),and the rotational constant(Be).

    3.Results and discussion

    3.1.Λ–S states of OsO

    The PECs of the Λ–S states by MS-NEVPT2 are plotted in Fig.1.The fitted spectroscopic constants are collected in Table 1,and are compared with the ones by RMS-CASPT2.

    Both the RMS-CASPT2 and MS-NEVPT2 results show that the ground Λ–S state of OsO is the closed-shell [1]1Σ+whereas the first excited state [1]3Π is only one or two hundred wavenumbers higher in energy, thus the other candidate ground states [1]3Φ and [1]5Σ+in early DFT studies[6–8]are completely denied.The excitation energies of the higher Λ–S states by RMS-CASPT2 and MS-NEVPT2 are basically coincident, but the energy differences can be 0.2 eV (about 1600 cm-1)or even larger in some states,for example,[1]3Φ and[1]5Σ+.To verify those inconsistent results,the more accurate SDSCI+P (static-dynamic-static multi-reference configuration interaction with Pople’s cluster corrections)[25,26]calculations are performed at the bond distance of 1.66 ?A with the same active space and frozen core electrons, and the results compare well with the MS-NEVPT2 ones with the maximum error of about 500 cm-1.By comparisons, the RMSCASPT2 underestimates the energies of [1]3Φ and [1]5Σ+by about 800 cm-1and 2200 cm-1, respectively.Consequently,only the MS-NEVPT2/SI results are reported in the following subsection.

    a (A)RMS-CASPT2;(B)MS-NEVPT2.b 1σ: O 2pσ,2σ: Os 5dσ6s,3σ: Os 5dσ6s+O 2pσ,1π: O 2pπ+Os 5dπ,2π: Os 5dπ+O 2pπ,1δ: Os 5dδ.

    Using the SA-CASSCF wavefunctions,the Wiberg bond indices (WBIs) in the NAO (natural atomic orbital) basis[27]are calculated for the lowest five Λ–S states below 3000 cm-1.It is found that the OsO molecule has a double bond in[1]1Σ+(WBI=1.9), a one and a half bond in [1]3Π and[1]3Φ (WBI=1.5), and a single bond in [1]5Σ+and [1]5?(WBI=1.2).The bond strengthnis also reflected in the equilibrium bond length through an approximate Badger relationshipn=|a|r-|b|e(although there are some counter examples in the literatures[28,29]).Among the lowest five Λ-S states,the bond orders may be confirmed further by the qualitatively consistent bond lengths: [1]1Σ+has the shortest bond length of about 1.60 ?A, [1]3Π and [1]3Φ present the medium bond length of about 1.66 ?A, whereas the longest bond length of about 1.70 ?A exists in the two quintet states[1]5Σ+and[1]5?.

    3.2.? states of OsO

    At the MS-NEVPT2/SI level of theory, the PECs of the low-lying ? states below 2.5×104cm-1are shown in Fig.2,and the spectroscopic constants are summarized in Table 2.The ? states higher than 2.5×104cm-1are expected to be unreliable due to insufficient auxiliary Λ–S states in the spin–orbit matrix and therefore are not reported.

    Fig.2.The PECs of low-lying ? states of OsO by MS-NEVPT2/SI.

    After including SOC,the lowest five Λ–S states aforementioned lead to the fifteen ? states below 9×103cm-1(i.e.{1-3}0+,{1}0-,{1-3}1,{1-4}2,{1-2}3,and{1-2}4)as well as two additional ? states{2-3}0-.Since the ground Λ–S state[1]1Σ+does not split,the ?=2 branch of the first excited Λ–S state[1]3Π becomes the ground ? state.Accordingly the bond order of OsO in its ground state decreases from a double bond to a one and a half bond.In addition to{1}2,the[1]3Π state also splits into the first ?=0+, 0-, and 1 sub-states, but in the former two sub-states some of the other Λ–S states also make significant contributions.

    Table 2.Spectroscopic constants of ? states of 192Os16O by MS-NEVPT2/SI.

    {9}2 16683 1.714 926 0.3856 0.012 0.002 0.160 [2]3?(27)+[1]3?(25)+[1]1?(23){10}2 20879 1.748 842 0.3744 0.032 0.021 [1]7Σ+ (45)+[2]5Π(25)+[4]3?(12){11}2 21417 1.727 985 0.3791 0.007 0.005 0.007 [1]5Φ(46)+[4]3?(11)+[1]7Σ+ (10){12}2 22412 1.704 923 0.3844 0.001 0.017 [3]3?(59)+[1]1?(17){13}2 23087 1.730 898 0.3817 0.012 0.008 0.002 [2]1?(47)+[3]1?(10){14}2 24299 1.722 823 0.3835 0.002 0.009 0.046 [2]5Π(49)+[1]7Σ+ (15)+[4]3?(11){15}2 24365 1.740 915 0.3783 0.013 [4]3?(40)+[5]3?(12)+[1]5Φ(12){1}3 2459 1.676 969 0.4048 0.009 [1]3Φ(41)+[1]5?(23)+[1]1Φ(15){2}3 4972 1.674 1067 0.4056 0.015 0.081 [1]5?(58)+[1]3Φ(24){3}3 9802 1.705 951 0.3885 0.167 0.001 0.037 [1]3?(52)+[1]5Π(17)+[1]5?(14){4}3 13566 1.723 900 0.3805 0.111 0.035 0.010 [1]5Π(56)+[1]3?(18)+[2]3?(12){5}3 14635 1.666 1223 0.3924 0.068 0.005 0.006 [1]1Φ(57)+[1]3Φ(20){6}3 16531 1.721 920 0.3837 0.011 0.002 0.148 [2]3?(59)+[1]1Φ(16){7}3 17606 1.711.724.733 976 0.3919 0.004 0.004 [1]3Γ(77){8}3 19139 1870 0.3834 0.023 0.006 0.027 [3]3?(65)+[4]3?(11){9}3 19793 1881 0.3782 0.024 0.001 0.020 [4]3?(26)+[1]5Φ(22)+[1]7Σ+ (18){10}3 20791 1.737 897 0.3776 0.002 0.003 [1]5Φ(29)+[1]7Σ+ (28)+[2]5Π(20){11}3 21501 1.719 992 0.3842 0.008 [2]3Γ(54)+[2]5Π(10)+[1]7Σ+ (10){12}3 22746 1.718 939 0.3900 0.007 0.002 [4]3?(36)+[1]5Φ(29)+[2]3Γ(17){13}3 24464 1.764 742 0.3682 0.016 0.001 [2]5Π(54)+[1]7Σ+ (36){1}4 3298 1.680 1024 0.4025 [1]5?(72)+[1]3Φ(26){2}4 5709 1.667 1037 0.4084 0.076 [1]3Φ(62)+[1]5?(33){3}4 13873 1.713 958 0.3879 0.098 0.006 [1]3Γ(86){4}4 19214 1.706 939 0.3879 0.050 [2]3Γ(70)+[1]1Γ(20){5}4 20424 1.732 896 0.3803 0.005 [1]5Φ(68)+[2]3Φ(19){6}4 24416 1.710 913 0.3895 0.003 0.001 [1]1Γ(69)+[2]3Γ(23){1}5 10860 1.717 940 0.3848 0.078 [1]3Γ(91){2}5 20230 1.714 898 0.3853 0.033 [2]3Γ(84)+[1]5Φ(12){3}5 21408 1.732 886 0.3804 0.019 [1]5Φ(75)+[2]3Γ(21){1}6 23848 1.723 926 0.3842 [1]1I(100)

    The dominant components of the higher ? states are more complicated duo to strong SOC effects,and there is not a dominant Λ–S component with the weight lager than 70%except for{7}3 and ? = 4,5, and 6 states.Considering the lack of reliable experimental spectroscopic constants for comparison, we will discuss them below combined with the assignment of the experimental emission bands.However, due to the high density of ? states distributed in the energy range of 1.5×104cm-1–2.5×104cm-1,it is a tough work to identify the experimental emission bands as the calculated upper and lower ? states.Transition probability is a necessary indicator to distinguish the allowed transitions by selection rule.At 1.66 ?A, the squares of total transition dipole moments (|μ|2)between the lowest five({1}2,{1}3,{1}0+,{1}4,and{1}1)and the higher excited ? states are listed in Table 2, which are proportional to the absorption intensity via the relationshipIabs∝N′′?e|μ|2withN′′being the population on the lower ?state due to Boltzmann distribution[30]and?ebeing the energy difference between two ? states.Similarly the emission intensity isIems∝N′?4e|μ|2whereN′is the population on the upper state depending on experimental conditions as well as radiative and nonradiative processes.[30]For a given wavelength range,?emay be looked on as a constant, and thereforeIabs(Iems)depends mainly onN′′(N′) and|μ|2.For emission intensity,however,the absolute value of|μ|2is not significant due to the uncertainty ofN′,unless two emissions come from a common upper ? state.

    Seven emission bands of OsO have been recorded experimentally by Balfour and Ram,[2]called the 449-nm,455-nm,513-nm,614-nm,754-nm,825-nm,and 874-nm systems,respectively, according to the wavelengths (cf.Table I in Ref.[2]), but none of them were assigned.In Table 3, we make preliminary assignments for the(0,0)band heads.

    In the 449-nm system with ?? = 0, Balfour and Ram speculated the lower state to be the ground ? state of OsO,[2]which has a rotational constant of 0.4023 cm-1and a bond length of 1.685 ?A.However,in our theoretical results of{1}2,the rotational constant is 0.0136 cm-1larger whereas the bond length is 0.032 ?A shorter(see Table 2),exceeding the expected error range of theoretical calculations.Therefore, the lower state should be the other ? states.In fact,{1}3 and{1}4 are good candidates with consistent rotational constants and bond lengths.With the aid of the quite small rotational constant(B0)of 0.3657 cm-1,the upper state of the emission band may be easily assigned as{13}3, and the lower state must be{1}3 because of ??=0.However, the transition dipole moment of{13}3-{1}3 is very small,showing the complexity in the transition mechanism.

    Table 3.Assignment of experimental emission bands of 192Os16O a.

    a Values in parentheses in the Te,ωe,and Be columns are the experimental T0,?G1/2,and B0,respectively,from Ref.[2].b Estimated from the 513-nm band system.[2]

    The 825-nm system with ??=±1 has the same lower state as in the above 449-nm system,[2]i.e.{1}3.According to the experimental excitation energy of 12119 cm-1and the rotational constant (B0) of 0.3845 cm-1, the upper state may be assigned as{8}2,which comes mainly from[1]5Π.

    In the 455-,513-,and 874-nm systems,nothing is known except excitation energies and ??=0.The allowed candidate transitions are{19}1→{1}1,{12}2→{1}2, and{6}4→{1}4 for the 455-nm band system.The other possible transitions are{16}1→{1}1 and{12}3→{1}3 for the 513-nm system,and{6}0+→{1}0+,{5}2→{1}2,and{4}3→{1}3 for the 874-nm system.The{8}1→{1}1 transition lies also in the region 874 nm but it is forbidden and therefore may be excluded.

    The 614-nm and 754-nm systems are the transitions with ?? =±1.Due to the lack of experimental rotational constants for comparison, there are more possibilities of allowed candidate transitions.The 614-nm system may be assigned to{12}1→{1}0+,{9}0+/{10}2→{1}1,

    {9}1/{10}1/{6}3→{1}2,{4}4→{1}3, or{9}3/{2}5→{1}4, whereas the 754-nm system can be{7}0+/{9}2→{1}1 or{6}1/{7}1/{4}3→{1}2.

    4.Conclusion

    In this paper,the potential energy curves of low-lying Λ–S states of OsO have been calculated by X2C/MS-NEVPT2,and the fitted spectroscopic constants are compared with the ones by X2C/RMS-CASPT2 and the more accurate X2C/SDSCI+P.The SOC effects are also considered via X2C/MS-NEVPT2/SI to get ? states.Roos and Malmqvist[19]have shown that the scalar relativistic multi-reference perturbation theory plus SI is applicable to not onlyd-block elements but also actinides, and therefore may be the most feasible scheme for studying the electronic spectra of uranium monoxide.[31]

    Theoretical results show that the ground Λ–S and ? states of OsO are1Σ+and3Π2, respectively.Based on the theoretical spectroscopic constants and transition dipole moments between ? states,seven emission bands have been preliminarily assigned.Our results should be useful for guiding future measurements and assignments of near-infrared and visibleultraviolet spectra of OsO.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.22073072) and the Double First-Class University Construction Project of Northwest University.

    赤兔流量卡办理| 高清在线视频一区二区三区 | 亚洲成人精品中文字幕电影| 久久国产乱子免费精品| 国产黄色小视频在线观看| 免费观看的影片在线观看| 中文字幕精品亚洲无线码一区| 欧美zozozo另类| 国产极品精品免费视频能看的| 成人高潮视频无遮挡免费网站| 伦精品一区二区三区| 一个人看视频在线观看www免费| 欧美不卡视频在线免费观看| 亚洲电影在线观看av| 欧美潮喷喷水| 一区二区三区免费毛片| 免费看日本二区| 噜噜噜噜噜久久久久久91| 国产成人freesex在线| 亚洲丝袜综合中文字幕| 国产成人午夜福利电影在线观看| 国产伦理片在线播放av一区 | 别揉我奶头 嗯啊视频| 老女人水多毛片| av专区在线播放| 亚洲性久久影院| 人体艺术视频欧美日本| 国产蜜桃级精品一区二区三区| 欧美在线一区亚洲| 日韩欧美国产在线观看| .国产精品久久| 久久国产乱子免费精品| 午夜亚洲福利在线播放| 成人鲁丝片一二三区免费| 尾随美女入室| 欧美日本亚洲视频在线播放| 激情 狠狠 欧美| 午夜激情欧美在线| 搞女人的毛片| 少妇丰满av| 欧美激情在线99| 人妻久久中文字幕网| 日本熟妇午夜| 日韩欧美 国产精品| 天堂av国产一区二区熟女人妻| 国产亚洲91精品色在线| 变态另类丝袜制服| 亚洲自偷自拍三级| 2021天堂中文幕一二区在线观| 国产三级中文精品| 日本黄大片高清| 日韩一本色道免费dvd| 国产精品.久久久| 高清午夜精品一区二区三区 | 深爱激情五月婷婷| 一区二区三区四区激情视频 | 国语自产精品视频在线第100页| 又粗又爽又猛毛片免费看| 99热只有精品国产| 黄色视频,在线免费观看| 亚洲国产色片| 国产单亲对白刺激| 日韩视频在线欧美| 日本成人三级电影网站| 亚洲精品日韩av片在线观看| 综合色av麻豆| 六月丁香七月| 麻豆av噜噜一区二区三区| av女优亚洲男人天堂| 久久草成人影院| 国产欧美日韩精品一区二区| 99久久九九国产精品国产免费| 成人毛片a级毛片在线播放| 少妇被粗大猛烈的视频| 91麻豆精品激情在线观看国产| 日韩三级伦理在线观看| 日韩av在线大香蕉| 国产真实乱freesex| 国产 一区 欧美 日韩| 内射极品少妇av片p| 麻豆久久精品国产亚洲av| 国产精品99久久久久久久久| 国产亚洲5aaaaa淫片| 久久久成人免费电影| 日韩制服骚丝袜av| 精品一区二区三区人妻视频| 成人欧美大片| 国产伦在线观看视频一区| 亚洲国产高清在线一区二区三| 自拍偷自拍亚洲精品老妇| 97超视频在线观看视频| 日本免费a在线| 亚洲av免费高清在线观看| 啦啦啦观看免费观看视频高清| 91久久精品电影网| 狠狠狠狠99中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 色综合色国产| 国产精品人妻久久久影院| 99在线视频只有这里精品首页| 免费一级毛片在线播放高清视频| 日韩中字成人| 国内精品宾馆在线| 久久久久久久久久成人| 久久婷婷人人爽人人干人人爱| 亚洲婷婷狠狠爱综合网| 又黄又爽又刺激的免费视频.| 亚洲欧美精品自产自拍| 九九热线精品视视频播放| 99热6这里只有精品| 免费一级毛片在线播放高清视频| 欧美日韩综合久久久久久| a级毛色黄片| 性欧美人与动物交配| 久久久精品大字幕| 国产伦一二天堂av在线观看| 精品熟女少妇av免费看| 国产 一区精品| 亚洲内射少妇av| 中国美女看黄片| 啦啦啦啦在线视频资源| 三级男女做爰猛烈吃奶摸视频| 99热只有精品国产| 99热全是精品| 网址你懂的国产日韩在线| 久久中文看片网| 国产精品一区www在线观看| 国产激情偷乱视频一区二区| 你懂的网址亚洲精品在线观看 | 亚洲欧洲国产日韩| 国产亚洲av嫩草精品影院| 成人欧美大片| 国产 一区精品| 国产精品久久视频播放| 午夜免费男女啪啪视频观看| 热99在线观看视频| 午夜激情欧美在线| 小说图片视频综合网站| 中文字幕熟女人妻在线| 蜜桃久久精品国产亚洲av| av.在线天堂| 男女边吃奶边做爰视频| 国产91av在线免费观看| 大型黄色视频在线免费观看| 搡老妇女老女人老熟妇| 天堂网av新在线| 午夜福利在线在线| 夜夜爽天天搞| 欧美变态另类bdsm刘玥| 亚洲av.av天堂| 人妻少妇偷人精品九色| 久久久久久久久久久免费av| 变态另类丝袜制服| 蜜桃久久精品国产亚洲av| 国产一级毛片七仙女欲春2| 亚洲精品国产成人久久av| 欧美成人免费av一区二区三区| 中文亚洲av片在线观看爽| 男女边吃奶边做爰视频| 欧美成人精品欧美一级黄| 熟女电影av网| 国产一区二区三区在线臀色熟女| av黄色大香蕉| 亚洲欧美精品专区久久| 精品欧美国产一区二区三| 91狼人影院| 九九久久精品国产亚洲av麻豆| 久久久色成人| 色综合色国产| 国产精品爽爽va在线观看网站| 人妻久久中文字幕网| 成年女人看的毛片在线观看| 成人午夜高清在线视频| 亚洲三级黄色毛片| av国产免费在线观看| 亚洲va在线va天堂va国产| 天堂av国产一区二区熟女人妻| www日本黄色视频网| 一本久久精品| 成人高潮视频无遮挡免费网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国内精品宾馆在线| 成人高潮视频无遮挡免费网站| 色综合亚洲欧美另类图片| 成人av在线播放网站| 国产探花极品一区二区| 国国产精品蜜臀av免费| 国内久久婷婷六月综合欲色啪| 国产高潮美女av| 国产高清有码在线观看视频| 午夜视频国产福利| 男女做爰动态图高潮gif福利片| 人妻少妇偷人精品九色| 欧美区成人在线视频| 亚洲无线在线观看| 99热这里只有是精品50| 亚洲欧洲国产日韩| 欧美3d第一页| 在线观看av片永久免费下载| 欧美激情在线99| 青春草视频在线免费观看| 91av网一区二区| 亚洲四区av| 国产成人一区二区在线| 国产一区二区激情短视频| 老司机福利观看| 亚洲第一区二区三区不卡| 青春草亚洲视频在线观看| 中文在线观看免费www的网站| 此物有八面人人有两片| 男人的好看免费观看在线视频| 亚洲成av人片在线播放无| 国产伦精品一区二区三区视频9| 亚洲人与动物交配视频| 美女被艹到高潮喷水动态| 午夜福利在线在线| 噜噜噜噜噜久久久久久91| 国产精品美女特级片免费视频播放器| 日本在线视频免费播放| 午夜激情欧美在线| 欧美成人精品欧美一级黄| 久久久精品94久久精品| 99riav亚洲国产免费| 国产乱人偷精品视频| 变态另类成人亚洲欧美熟女| 亚洲国产欧洲综合997久久,| 中文字幕精品亚洲无线码一区| 国产成人freesex在线| 久久精品国产清高在天天线| 99久久精品国产国产毛片| 亚洲经典国产精华液单| 国产精品一及| 亚洲欧美日韩高清专用| 亚洲欧美精品综合久久99| 天天一区二区日本电影三级| 久久中文看片网| 能在线免费看毛片的网站| 国产精品久久久久久久久免| 看十八女毛片水多多多| 精品午夜福利在线看| 国产精品嫩草影院av在线观看| 成人美女网站在线观看视频| 国产亚洲精品久久久久久毛片| 国产私拍福利视频在线观看| 老司机影院成人| 成人午夜精彩视频在线观看| 2021天堂中文幕一二区在线观| 两个人视频免费观看高清| 亚洲图色成人| 麻豆久久精品国产亚洲av| 国产一区二区激情短视频| av视频在线观看入口| 色综合站精品国产| 久久久久九九精品影院| 国产日韩欧美在线精品| 精品人妻偷拍中文字幕| 日韩欧美三级三区| 嫩草影院入口| 尤物成人国产欧美一区二区三区| 人妻制服诱惑在线中文字幕| 18禁黄网站禁片免费观看直播| 国产成人影院久久av| 国产激情偷乱视频一区二区| 看非洲黑人一级黄片| 亚洲va在线va天堂va国产| 欧美潮喷喷水| 2021天堂中文幕一二区在线观| 岛国在线免费视频观看| 国产91av在线免费观看| 一级黄色大片毛片| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产精品sss在线观看| av在线播放精品| 国产综合懂色| 91久久精品电影网| 亚洲无线在线观看| 人妻久久中文字幕网| 国产精品久久久久久久电影| 日韩成人av中文字幕在线观看| 欧美最黄视频在线播放免费| 国产一区亚洲一区在线观看| 精品久久久久久久久久久久久| 免费观看a级毛片全部| 精品无人区乱码1区二区| 精品一区二区三区人妻视频| 美女cb高潮喷水在线观看| 欧美不卡视频在线免费观看| 九九热线精品视视频播放| 特大巨黑吊av在线直播| 人人妻人人澡人人爽人人夜夜 | 国产精品蜜桃在线观看 | 欧美bdsm另类| 欧美成人a在线观看| 老女人水多毛片| 在线观看av片永久免费下载| 免费观看人在逋| 级片在线观看| 大型黄色视频在线免费观看| 亚洲精品国产av成人精品| 国产精品.久久久| 亚洲av一区综合| 成人午夜精彩视频在线观看| 国产一区二区激情短视频| 久久久a久久爽久久v久久| 婷婷色综合大香蕉| 干丝袜人妻中文字幕| 大型黄色视频在线免费观看| 简卡轻食公司| 成人毛片60女人毛片免费| 97热精品久久久久久| 国产探花极品一区二区| 日韩成人av中文字幕在线观看| 免费一级毛片在线播放高清视频| 床上黄色一级片| 乱码一卡2卡4卡精品| 久久精品久久久久久噜噜老黄 | 一个人看视频在线观看www免费| 丰满乱子伦码专区| 看片在线看免费视频| 国产高清视频在线观看网站| 久久久精品大字幕| 亚洲av成人av| 久久久精品大字幕| 久久精品影院6| 一本精品99久久精品77| 我的女老师完整版在线观看| 久久人妻av系列| 国产伦精品一区二区三区视频9| 欧美成人精品欧美一级黄| 村上凉子中文字幕在线| 男人狂女人下面高潮的视频| 18禁黄网站禁片免费观看直播| 啦啦啦啦在线视频资源| 亚洲欧美日韩无卡精品| 99热这里只有是精品在线观看| 又粗又爽又猛毛片免费看| 亚洲国产精品成人久久小说 | 欧美3d第一页| 97人妻精品一区二区三区麻豆| 久久久久性生活片| 国产午夜福利久久久久久| 精品免费久久久久久久清纯| 亚洲在线自拍视频| 久久婷婷人人爽人人干人人爱| 秋霞在线观看毛片| 在线观看免费视频日本深夜| 一级毛片久久久久久久久女| 国产成人a区在线观看| 日韩欧美 国产精品| а√天堂www在线а√下载| 成人美女网站在线观看视频| 国产真实伦视频高清在线观看| 亚洲高清免费不卡视频| 国产成人午夜福利电影在线观看| 久久婷婷人人爽人人干人人爱| 国产91av在线免费观看| 久久婷婷人人爽人人干人人爱| 国产精品久久电影中文字幕| 国产精品久久久久久精品电影| 免费黄网站久久成人精品| 久久精品国产自在天天线| 晚上一个人看的免费电影| 国产 一区精品| 国产一级毛片在线| 男女下面进入的视频免费午夜| 亚洲欧美精品综合久久99| av免费观看日本| 99久国产av精品| 日本色播在线视频| 九九爱精品视频在线观看| 午夜a级毛片| 亚洲人成网站在线播| 色噜噜av男人的天堂激情| a级毛片a级免费在线| 大又大粗又爽又黄少妇毛片口| 中文精品一卡2卡3卡4更新| 黄色欧美视频在线观看| 国产精品三级大全| kizo精华| 69人妻影院| 人妻制服诱惑在线中文字幕| 亚洲婷婷狠狠爱综合网| 欧美三级亚洲精品| 99在线视频只有这里精品首页| 12—13女人毛片做爰片一| 午夜爱爱视频在线播放| 2022亚洲国产成人精品| 性欧美人与动物交配| av免费观看日本| 欧美极品一区二区三区四区| 国产伦精品一区二区三区视频9| 国产乱人偷精品视频| 国产精品一及| 国产探花在线观看一区二区| 亚洲最大成人av| 国产成人一区二区在线| 免费人成视频x8x8入口观看| 国产熟女欧美一区二区| 人妻少妇偷人精品九色| 2021天堂中文幕一二区在线观| 免费看av在线观看网站| 日本色播在线视频| 日本在线视频免费播放| 日韩三级伦理在线观看| 午夜视频国产福利| 观看美女的网站| 大香蕉久久网| 18禁裸乳无遮挡免费网站照片| 成人特级黄色片久久久久久久| 国产精品嫩草影院av在线观看| 国产爱豆传媒在线观看| 美女高潮的动态| 精品久久久久久久久亚洲| 国产91av在线免费观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本-黄色视频高清免费观看| 岛国在线免费视频观看| 看黄色毛片网站| 爱豆传媒免费全集在线观看| 亚洲精品456在线播放app| 99久久久亚洲精品蜜臀av| 日韩av在线大香蕉| 18+在线观看网站| 日韩三级伦理在线观看| 欧洲精品卡2卡3卡4卡5卡区| 久久99蜜桃精品久久| 午夜爱爱视频在线播放| 国产精品久久久久久久电影| 卡戴珊不雅视频在线播放| 国产亚洲精品av在线| 色5月婷婷丁香| 美女大奶头视频| 国产成人影院久久av| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看 | 黑人高潮一二区| 欧洲精品卡2卡3卡4卡5卡区| 日本与韩国留学比较| 能在线免费观看的黄片| av.在线天堂| 最后的刺客免费高清国语| 少妇高潮的动态图| 亚洲精品国产av成人精品| 悠悠久久av| 人妻系列 视频| 国产一区二区在线观看日韩| 国产亚洲av片在线观看秒播厂 | 日本黄大片高清| 久久久国产成人免费| 日本五十路高清| 欧美另类亚洲清纯唯美| 日韩欧美三级三区| 国产精品人妻久久久久久| 亚洲av第一区精品v没综合| av天堂中文字幕网| 简卡轻食公司| 免费观看a级毛片全部| 99久久成人亚洲精品观看| 波多野结衣高清作品| 欧美高清成人免费视频www| 亚洲av第一区精品v没综合| 亚洲成人av在线免费| 久久久国产成人免费| 日本与韩国留学比较| 免费黄网站久久成人精品| 国产一区亚洲一区在线观看| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜爱| 成人特级黄色片久久久久久久| 国产成人aa在线观看| 亚洲欧美日韩无卡精品| 老师上课跳d突然被开到最大视频| 九色成人免费人妻av| 国产伦一二天堂av在线观看| 欧美成人一区二区免费高清观看| 在线观看av片永久免费下载| 老司机福利观看| 爱豆传媒免费全集在线观看| 国产精品不卡视频一区二区| 精品久久久久久久末码| 男的添女的下面高潮视频| 女人被狂操c到高潮| 美女国产视频在线观看| 久久久欧美国产精品| 欧美在线一区亚洲| 99久久久亚洲精品蜜臀av| 国产单亲对白刺激| 免费不卡的大黄色大毛片视频在线观看 | 综合色丁香网| 精品不卡国产一区二区三区| 国产美女午夜福利| 午夜a级毛片| 联通29元200g的流量卡| 国产黄片视频在线免费观看| 亚洲欧美精品自产自拍| 又爽又黄无遮挡网站| 色吧在线观看| 日日摸夜夜添夜夜添av毛片| 欧美成人一区二区免费高清观看| 亚洲精品自拍成人| 精品久久久久久成人av| 少妇的逼好多水| 亚洲欧美日韩东京热| 久久久久九九精品影院| av在线观看视频网站免费| 久久精品国产鲁丝片午夜精品| 男女边吃奶边做爰视频| 亚洲色图av天堂| 午夜爱爱视频在线播放| 最新中文字幕久久久久| 免费一级毛片在线播放高清视频| 欧美在线一区亚洲| 日本免费一区二区三区高清不卡| 国产精品蜜桃在线观看 | 精品久久久久久久久久久久久| 久久久久久国产a免费观看| 九草在线视频观看| 在线免费十八禁| 日韩中字成人| 中文字幕久久专区| 69人妻影院| 三级国产精品欧美在线观看| 国产一级毛片在线| 久久精品影院6| 岛国毛片在线播放| 久99久视频精品免费| 男人舔女人下体高潮全视频| 日韩一区二区视频免费看| 女人十人毛片免费观看3o分钟| av在线蜜桃| 人妻久久中文字幕网| 一边亲一边摸免费视频| 国产精品99久久久久久久久| 久久午夜亚洲精品久久| 国产真实伦视频高清在线观看| 又黄又爽又刺激的免费视频.| 青春草亚洲视频在线观看| 插逼视频在线观看| 欧美3d第一页| 国产成人精品婷婷| 日韩,欧美,国产一区二区三区 | av专区在线播放| 久久韩国三级中文字幕| 亚洲精品亚洲一区二区| 级片在线观看| 超碰av人人做人人爽久久| 精品熟女少妇av免费看| 亚洲精品456在线播放app| 欧美精品国产亚洲| 色综合色国产| 少妇人妻精品综合一区二区 | 国产精品蜜桃在线观看 | 男女那种视频在线观看| 最近中文字幕高清免费大全6| 12—13女人毛片做爰片一| 亚洲人成网站在线播| 久久久精品94久久精品| 人体艺术视频欧美日本| 国产单亲对白刺激| 亚洲内射少妇av| 亚洲经典国产精华液单| 日本撒尿小便嘘嘘汇集6| 国产精品免费一区二区三区在线| 欧美人与善性xxx| 国产老妇伦熟女老妇高清| 久久精品久久久久久噜噜老黄 | 久久99精品国语久久久| 中文在线观看免费www的网站| 亚洲av成人av| 国产精品人妻久久久久久| 日韩成人av中文字幕在线观看| 岛国毛片在线播放| 久久久久九九精品影院| 国产精品国产三级国产av玫瑰| 精品久久久噜噜| 亚洲精品国产成人久久av| 两性午夜刺激爽爽歪歪视频在线观看| 久久6这里有精品| 成人亚洲欧美一区二区av| 亚洲欧美日韩高清专用| 亚洲精品亚洲一区二区| 国产一级毛片在线| 久久精品夜夜夜夜夜久久蜜豆| 国产在视频线在精品| 国产精品人妻久久久影院| 国产午夜精品一二区理论片| 免费观看人在逋| 网址你懂的国产日韩在线| 日韩欧美精品免费久久| 国内精品美女久久久久久| 人妻少妇偷人精品九色| 亚洲欧美精品专区久久| 欧美高清性xxxxhd video| 久久久久久久久久黄片| 又爽又黄a免费视频| 免费无遮挡裸体视频| 18禁裸乳无遮挡免费网站照片| 永久网站在线| 人妻系列 视频| 久久精品国产自在天天线| 精品人妻一区二区三区麻豆| 长腿黑丝高跟| 日韩欧美在线乱码| av在线播放精品| 高清午夜精品一区二区三区 | 日本熟妇午夜| 毛片女人毛片| 日本与韩国留学比较| 日本在线视频免费播放| 久久精品影院6| 成人永久免费在线观看视频| 国产精品久久久久久精品电影| 秋霞在线观看毛片| 美女大奶头视频| 最近最新中文字幕大全电影3|