• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Parameter calculation and result storage for phase-field simulation in α-Mg dendrite growth of Mg-5-wt%Zn alloy

    2023-12-02 09:22:54WeiPengChen陳偉鵬HuaHou侯華YunTaoZhang張云濤WeiLiu柳偉andYuHongZhao趙宇宏
    Chinese Physics B 2023年11期

    Wei-Peng Chen(陳偉鵬), Hua Hou(侯華),3, Yun-Tao Zhang(張云濤),Wei Liu(柳偉), and Yu-Hong Zhao(趙宇宏)2,,4,?

    1School of Materials Science and Engineering,Collaborative Innovation Center of Ministry of Education and Shanxi Province for High-performance Al/Mg Alloy Materials,North University of China,Taiyuan 030051,China

    2Beijing Advanced Innovation Center for Materials Genome Engineering,University of Science and Technology Beijing,Beijing 100083,China

    3School of Materials Science and Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China

    4Institute of Materials Intelligent Technology,Liaoning Academy of Materials,Shenyang 110004,China

    Keywords: parameter calculation,result storage,phase-field method,dendrite growth

    1.Introduction

    The microstructures formed in solidification play a significant role in process control and mechanical properties of the final casting.[1]Dendrite, as a typical solidification microstructure,exists in most metallic alloys.[2,3]Understanding the evolution of dendrite morphologies and segregation distribution is important in controlling final microstructures.With the development of computer science and material thermodynamics, the phase-field method has become an indispensable means to simulate the evolution of microstructures,especially dendrites.[4–8]

    Typically, a comprehensive phase-field simulation process involves several steps: modeling, parameter calculation,equations solver, and result storage and post-processing.In recent years, a lot of efforts have been made to model and making a equation solver.For example, in terms of modeling, multiphase and multiscale[9,10]and phase-field-lattice Boltzmann[11]models have been developed, and in terms of making equation solver, adaptive mesh refinement[12,13]and parallel computing[14,15]methods have been presented.Nevertheless,compared with the above two steps,calculating parameters, and result storage and post-processing were often only briefly mentioned in most of published papers.[16–18]There have been almost no systematic studies for the latter two steps, which will limit the application of the phase-field method.Moreover, according to Tourretet al.,[19]the energy function at the core of phase-field model depends on a large number of parameters that control different energy contributions, and quantitative predictions of microstructure evolution require careful identification of parameters.Therefore, it is necessary to find a feasible strategy for parameter calculation, which will improve the accuracy of simulation results.A natural link exists between phase-field method and CalPhaD method, and the phase diagram and thermodynamic/kinetic data of alloys can be obtained through the Cal-PhaD method.[20]For alloy solidification,an accurate description of solutal diffusion in liquid and solid is helpful in accurately predicting the segregation distribution.[21,22]According to empirical formulas from experiments or theoretical calculations,solutal diffusion coefficient in liquid and solid can be obtained,which are essential to describe solute diffusion.Then,key parameters of the phase-field model can be presented by combining the CalPhaD method and empirical formulas.In addition, a feasible result storage strategy requires not only high storage efficiency but also convenient post-processing.Since the simulation domain in phase-field simulation is usually a regular graph,finite difference[23]and finite volume[24]methods are often used to solve equations.Therefore, it is reasonable to use structured grid or structured point storage methods for result storage.

    In this study, a method of calculating parameters and storing results is presented for phase-field simulation inα-Mg dendrite growth of Mg-5-wt% Zn alloy under isothermal solidification.Based on the PANDAT software, the Mg–Zn phase diagram is calculated,then third-order polynomials are adapted to fit both solidus and liquidus lines, and parameters such as equilibrium partition coefficientk, liquidus slopemare obtained.Subsequently, the solutal diffusion coefficient in liquidDland solutal diffusion coefficient in solidDsare calculated from empirical formulas.The structured grid and structured point storage methods are chosen to store simulation results, and the storage efficiencies of the two methods are compared.Finally,α-Mg dendrite growth is studied to test the accuracy of parameters and stability of storage methods.

    The rest of this paper is organized as follows.The phasefield method is introduced in Section 2.The results and analysis are given in Section 3, and the discussion is presented in Section 4.Finally,conclusions are drawn from the present study in Section 5.

    2.Phase-field method

    2.1.Phase-field equations

    In this study, a quantitative phase-field model is used to describeα-Mg dendrite growth of Mg-5-wt%Zn alloy under isothermal solidification.[25,26]The phase-field is represented byφ, withφ=+1 in the solid,φ=-1 in the liquid, andφvarying smoothly from+1 to-1 within the diffuse interface.For a two-phase system, the free energy function can be described as

    wherecis the solute concentration,Tis the temperature,σis the energy per unit length,andTmis the melting temperature.The double-well potential and free energy density functions are given,respectively,by

    whereHis the barrier height,fA(Tm) is the free energy for pure A atTm,Ris the gas constant,v0is the molar volume of A,s(φ)andε(φ)are interpolation functions related to entropy density and internal energy density, respectively.According to Allen–Cahn equation and Cahn–Hilliard equation,the variational formulation for all fields can be derived from

    2.2.Computational conditions

    3.Results and analysis

    3.1.Key parameters calculation

    According to Eqs.(6)–(8), the key parameters of the phase-field model contain equilibrium partition coefficientk,solutal diffusion coefficient in liquidDl,solutal diffusion coefficient in solidDs,and chemical capillary lengthd0.The above parameters are the bridge between the phase-field model and the solidification process, playing an important role in determining the accuracy of simulation results.Based on thermodynamic data from PANDAT software(Version 2021b 64bit),part of the Mg–Zn phase diagram is calculated as shown in Fig.1.To obtain accurate physical parameters,the third-order polynomials are adapted to fit both solidus and liquidus lines as follows:[29]

    According to the empirical formulas,[30–32]the solutal diffusion coefficient in liquid and solid can be expressed, respectively,as

    where ?Aand ?Bare both the adjustment constant,kBis the Boltzmann constant,ρmsoluteis the density of solute at the melting temperatureTmsolute,Msoluteis the atomic mass of solute,the termsVsolvent,Msolvent, andTmsolventare the absolute molar volume, the atomic mass, and the melting temperature of the solvent,respectively.Moreover,D0is the pre-exponential factor, andQis the activation energy.For Mg–Zn alloy, the Mg substrate is regarded as the solvent, and alloying element Zn is regarded as the solute.Therefore, according to Eqs.(12)and(13),the solutal diffusion coefficient in liquid isDl=4.6763×10-9m2/s and solutal diffusion coefficient in solid isDs=5.1899×10-14m2/s at the temperatureT=T0.

    Moreover, Beckeret al.[33]showed that the simulations converge to stationary results forW0/d0≤10,therefore,W0=9.0d0=2.9772×10-7m, coupling constantλ=7.9551, relaxation timeτ0= 9.4497×10-5s, space step size ?x=0.8W0=2.3818×10-7m, and time step size ?t=0.01τ0=9.4497×10-7s.The other physical and model parameters for phase-field simulations are listed in Table 1.[34–36]

    Parameter Value Surface energy,γ0 0.81 J/m2 Density,ρ 1740 kg/m3 Latent heat of fusion,Lf 3.66×105 J/kg Pre-exponential factor,D0 0.0483×10-5 m2/s Activation energy,Q 1.186×105 J/mol Initial concentration,c0 5.0 wt%Supersaturation,? 0.55 Anisotropy strength,ε0,ε6,ε1,ε2,ε3 0.01,0.06,–0.02,0.15,0.0 Simulation domain,Λ 400?x×400?x(×400?x)

    3.2.Structured grid and structured point storage

    Usually, the results of the phase-field simulation are stored in the array and need to be visualized by postprocessing software or package.Choosing an appropriate storage strategy is not only beneficial to the post-processing of results but also able to save storage space.In this study,based on the.vtkfile format, the structured grid method and structured point method are used to store simulation results.Figure 2(a)shows the structured grid storage method.It can be found that the grid needs first to be built according to the size of the array,and the elements in the array are then stored in grid nodes.Figure 2(b)shows the structured point storage method,which is different from the structured grid: elements in the array are directly stored as nodes.Figures 2(c) and 2(d) show simulation results stored by using the structured grid method and structured point method,respectively,through post-processing software: Paraview-Version 5.6.0 64bit.It can be found that in terms of the resolution of this study,there is almost no difference in dendrite morphologies obtained by these two storage methods.Moreover,for structured grid storage,when elements in the array are sequentially stored in grid nodes,undistorted post-processing results can be obtained only when the total number of nodes in each of all directions of the simulation domain is similar.When elements in the array are stored in reverse order in grid nodes, undistorted post-processing results can be obtained unconditionally.For structured point storage,undistorted post-processing results can be obtained only when elements in the array are stored in reverse order in nodes.

    To illustrate the efficiency of the structured grid storage method and structured point storage method,storage space and storage time varying with node number are counted as shown in Fig.3.With the increase of node number,both storage space and storage time will increase linearly.For structured grid storage,the relationship between storage space and node number satisfiesy=15.0×10-6x, and the relationship between storage time and node number complies withy=0.8×10-6x.For the structured point storage,the relationship between storage space and node number meetsy=6.0×10-6x, and the relationship between storage time and node number obeysy=0.5×10-6x.Therefore,using the structured point storage method will reduce about 60%storage space and 37.5%storage time compared with the structured grid storage method.When the node number is small,the storage advantage of the structured point over the structured grid method is not significant.However, when the node number is large, it is difficult to obtain post-processing results even based on the current computer level.Therefore,when carrying out large-scale computing,especially for three-dimensional simulation,the use of the structured point storage method will greatly reduce storage space and time.

    4.Discussion

    4.1.The α-Mg dendrite growth

    To verify the accuracy of parameters and stability of storage methods, the phase-field simulation inα-Mg dendrite growth of Mg-5-wt%Zn alloy is investigated.Figure 4 shows solute field evolution in the whole simulation domain, it can be found that the dendrite on{0001}crystal plane has six primary dendrite arms,showing a typical snowflake morphology,which result from the solid–liquid interface anisotropy.Owing to solute redistribution during the growth ofα-Mg dendrite, the solute is enriched on the liquid side of the solid–liquid interface, and solute enrichment at the root of the dendrite is higher than that at the tip of the dendrite,which results from curvature effect.Figure 5 shows the solute field evolution at the solid–liquid interface,it can be found that the threedimensional dendrite has eighteen primary dendrite arms,the six primary dendrite arms on{0001}crystal plane grows along the〈110〉direction, while the other twelve primary dendrite arms grow along the〈113〉direction,and the growth velocity of the primary dendrite arm growing along the〈110〉 direction is faster than that along the〈113〉 direction.Moreover,there is also a concentration difference at the solid–liquid interface, the concentration is high in depression areas and low in uplift areas,and the difference in concentration between the two areas is about 0.2,which is lower than that between solid and liquid.

    Figure 6 shows the evolutions of solid fraction, dendrite tip velocity, and dendrite tip radius inα-Mg dendrite growth of Mg-5-wt% Zn alloy under isothermal solidification.With dendrite growth, solid fraction increases nonlinearly and the slope of the curve increases gradually, which result from the development of sidebranching.Moreover, since the curve is smooth, the random distribution of sidebranching will not cause a large fluctuation of solid fraction.To avoid the effect of excessive noise on the dendrite tip stability, the magnitude of the noise is set ton0=0 when calculating the dendrite tip velocity and radius.With dendrite growth,dendrite tip velocity will first increase from 0 to 2.56 and then decrease gradually and stabilize at about 2.24.While the dendrite tip radius will increase gradually, from 0 to 2.2, and stabilize at about 2.2.

    4.2.Experimental validation

    To verify the accuracy of simulations, simulation results are compared with experimental results as shown in Fig.7.The original ingots with a nominal composition of Mg-5-wt%Zn are fabricated in an electric-resistant furnace under an argon atmosphere by melting high-purity Mg,and Zn at 750?C.Then, the melts are cast into a preheated mold at 200?C when the temperature decreases to 730?C,and the cast alloys each with a diameter of 42 mm and a height of 150 mm are obtained.It can be found that both morphologies ofα-Mg dendrite of experimental and simulation results on the{0001}crystal plane have six primary dendrite arms and develop secondary dendrite arms.The angle between the primary dendrite arms is 60?,and the angle between the primary dendrite arms and secondary dendrite arms is also 60?, therefore, the growth direction of primary dendrite arms and secondary dendrite arms are both〈110〉.Moreover, it can be found that the morphologies ofα-Mg dendrite of experimental and simulation results oncrystal plane have both four primary dendrite arms and undeveloped secondary dendrite arms.The angle between the left primary dendrite arm and the right primary dendrite arm is about 85?,and the angle between the upper primary dendrite arm and the lower primary dendrite arm is about 95?.The growth direction of primary dendrite arm is〈11〉, and since the interaction between secondary dendrite arms,their growth direction will be slightly deflected.

    Fig.7.Optical micrographs of α-Mg dendrite of as-cast Mg-5-wt%Zn alloy under air cooling on(a){0001}crystal plane and(b)11?1crystal plane,and morphology of α-Mg dendrite of Mg-5-wt% Zn alloy under isothermal solidification at t=6000?t on(c){0001}crystal plane and(d)11?1 crystal plane.

    5.Conclusions

    In this study,parameter calculation and result storage for phase-field simulation inα-Mg dendrite growth of Mg-5-wt%Zn alloy is investigated.The main conclusions are as follows.

    (i)Key parameters of the phase-field model,such as equilibrium partition coefficientk,liquidus slopem,solutal diffusion coefficient in liquidDl,and solutal diffusion coefficient in solidDsare obtained through the phase diagram and empirical formulas.

    (ii) Both the structured grid method and the structured point method can be used to store simulation results.Moreover, using the structured point storage method will reduce about 60% storage space and 37.5% storage time compared with the structured grid storage method.

    (iii)The convergent simulation results ofα-Mg dendrite growth are obtained and in good agreement with the optical micrograph of experimental results,verifying the accuracy of parameters and stability of storage methods.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant Nos.52074246,52275390,52205429,and 52201146), the National Defense Basic Scientific Research Program of China(Grant Nos.JCKY2020408B002 and WDZC2022-12), the Science and Technology Major Project of Shanxi Province, China (Grant Nos.20191102008 and 20191102007), and the Guiding Local Science and Technology Development Projects by the Central Government,China(Grant Nos.YDZJSX2022A025 and YDZJSX2021A027).

    香蕉丝袜av| 国产又爽黄色视频| 婷婷精品国产亚洲av| 成人欧美大片| 免费在线观看日本一区| 在线国产一区二区在线| av电影中文网址| 欧美乱码精品一区二区三区| 精品国产国语对白av| 韩国av一区二区三区四区| 国产精品乱码一区二三区的特点| 欧美性长视频在线观看| 欧美精品亚洲一区二区| 国产一级毛片七仙女欲春2 | 精品欧美国产一区二区三| 欧美黄色淫秽网站| 国产免费男女视频| 亚洲第一av免费看| 狠狠狠狠99中文字幕| 最新在线观看一区二区三区| 免费在线观看视频国产中文字幕亚洲| 此物有八面人人有两片| 国产欧美日韩精品亚洲av| 一本久久中文字幕| 国产精品一区二区免费欧美| 国产成人欧美| 老汉色av国产亚洲站长工具| 一级作爱视频免费观看| 一区二区三区国产精品乱码| 好男人电影高清在线观看| www.999成人在线观看| a在线观看视频网站| 丰满人妻熟妇乱又伦精品不卡| 国产精品国产高清国产av| 亚洲国产精品sss在线观看| 免费看美女性在线毛片视频| 色综合欧美亚洲国产小说| 无限看片的www在线观看| 欧美又色又爽又黄视频| 免费观看人在逋| 无人区码免费观看不卡| 亚洲欧洲精品一区二区精品久久久| 欧美一级a爱片免费观看看 | 又紧又爽又黄一区二区| 男人舔女人的私密视频| 黄片小视频在线播放| 欧美日韩乱码在线| 日韩有码中文字幕| 丰满人妻熟妇乱又伦精品不卡| 女警被强在线播放| 国产日本99.免费观看| 国产精品 欧美亚洲| 一区二区三区国产精品乱码| 亚洲五月色婷婷综合| 黄色 视频免费看| 搡老岳熟女国产| 99精品欧美一区二区三区四区| 嫩草影院精品99| 91av网站免费观看| 久久久久久久精品吃奶| 久久九九热精品免费| 午夜激情福利司机影院| 人妻久久中文字幕网| 怎么达到女性高潮| 韩国av一区二区三区四区| 777久久人妻少妇嫩草av网站| 国产精品综合久久久久久久免费| 国产一区在线观看成人免费| 亚洲熟妇熟女久久| 国产伦人伦偷精品视频| 麻豆成人午夜福利视频| 欧美一级毛片孕妇| 国产1区2区3区精品| 侵犯人妻中文字幕一二三四区| 国产欧美日韩一区二区三| 久久久久国内视频| 成人一区二区视频在线观看| 久久精品人妻少妇| 亚洲精品中文字幕一二三四区| 精品午夜福利视频在线观看一区| 日本黄色视频三级网站网址| 在线天堂中文资源库| av福利片在线| 香蕉久久夜色| 国产免费av片在线观看野外av| 在线观看午夜福利视频| 人人澡人人妻人| 久久婷婷成人综合色麻豆| 国产av不卡久久| 国产极品粉嫩免费观看在线| 欧美日本视频| 国产主播在线观看一区二区| 禁无遮挡网站| 搡老熟女国产l中国老女人| 亚洲欧美日韩无卡精品| 一边摸一边抽搐一进一小说| 一区二区三区国产精品乱码| 在线观看一区二区三区| 欧美成狂野欧美在线观看| 国内精品久久久久精免费| 丝袜在线中文字幕| 欧美性猛交╳xxx乱大交人| 亚洲一区高清亚洲精品| 久热爱精品视频在线9| 久久精品国产清高在天天线| 后天国语完整版免费观看| 成人亚洲精品av一区二区| 国产高清videossex| netflix在线观看网站| 99国产极品粉嫩在线观看| 久久中文字幕一级| 精品久久久久久久久久久久久 | 亚洲精品国产精品久久久不卡| 18禁黄网站禁片午夜丰满| 91在线观看av| 一区二区日韩欧美中文字幕| 亚洲精品久久国产高清桃花| 日韩欧美在线二视频| 美女国产高潮福利片在线看| 精品一区二区三区视频在线观看免费| 国产亚洲精品av在线| 黄色丝袜av网址大全| 在线十欧美十亚洲十日本专区| 每晚都被弄得嗷嗷叫到高潮| 亚洲激情在线av| 中文字幕另类日韩欧美亚洲嫩草| e午夜精品久久久久久久| 丰满人妻熟妇乱又伦精品不卡| 国产1区2区3区精品| www.自偷自拍.com| 久久中文字幕一级| 国产亚洲欧美精品永久| 女人爽到高潮嗷嗷叫在线视频| 少妇粗大呻吟视频| 他把我摸到了高潮在线观看| 日本a在线网址| 久久精品国产99精品国产亚洲性色| 女人爽到高潮嗷嗷叫在线视频| 男女午夜视频在线观看| av有码第一页| 亚洲色图 男人天堂 中文字幕| 欧美最黄视频在线播放免费| 欧美亚洲日本最大视频资源| 老汉色av国产亚洲站长工具| 亚洲一卡2卡3卡4卡5卡精品中文| www.熟女人妻精品国产| 婷婷亚洲欧美| 巨乳人妻的诱惑在线观看| 国产精品九九99| 在线观看免费午夜福利视频| 热re99久久国产66热| 成人国产一区最新在线观看| 国产精品精品国产色婷婷| 国产欧美日韩一区二区精品| 国产激情久久老熟女| 日日爽夜夜爽网站| 国产乱人伦免费视频| 久久狼人影院| 久久久久国内视频| 日本一本二区三区精品| 日韩中文字幕欧美一区二区| 久久中文看片网| 啪啪无遮挡十八禁网站| 国产国语露脸激情在线看| 久久久久久久久中文| 亚洲国产欧美日韩在线播放| 久久婷婷人人爽人人干人人爱| 欧美zozozo另类| 熟女少妇亚洲综合色aaa.| 精品福利观看| 日韩欧美三级三区| av福利片在线| 成人精品一区二区免费| 午夜视频精品福利| 日韩视频一区二区在线观看| 午夜免费激情av| 熟女少妇亚洲综合色aaa.| 真人做人爱边吃奶动态| 精品国产超薄肉色丝袜足j| 久久99热这里只有精品18| 日韩欧美三级三区| 国产精品久久视频播放| 国产成人欧美在线观看| 国产激情欧美一区二区| 少妇 在线观看| 国产不卡一卡二| 满18在线观看网站| 夜夜夜夜夜久久久久| 欧美乱码精品一区二区三区| 午夜影院日韩av| or卡值多少钱| 亚洲成人久久爱视频| 麻豆一二三区av精品| 老司机靠b影院| 国产私拍福利视频在线观看| 69av精品久久久久久| 久久久久久亚洲精品国产蜜桃av| 一级毛片女人18水好多| 又紧又爽又黄一区二区| 波多野结衣av一区二区av| 国产亚洲欧美在线一区二区| 午夜福利在线观看吧| 中出人妻视频一区二区| 欧美最黄视频在线播放免费| 国产精品亚洲一级av第二区| 亚洲真实伦在线观看| 淫秽高清视频在线观看| 中文字幕人妻熟女乱码| 久久国产精品人妻蜜桃| 在线观看www视频免费| 国产精品久久久久久精品电影 | 亚洲成a人片在线一区二区| 午夜免费鲁丝| 亚洲国产高清在线一区二区三 | 国产精品精品国产色婷婷| 久久久久久亚洲精品国产蜜桃av| 欧美日韩瑟瑟在线播放| 丁香欧美五月| 叶爱在线成人免费视频播放| 亚洲色图 男人天堂 中文字幕| 久久久久久久久免费视频了| 婷婷精品国产亚洲av| 久久婷婷人人爽人人干人人爱| 99国产精品一区二区蜜桃av| 欧美一级毛片孕妇| 亚洲国产日韩欧美精品在线观看 | 母亲3免费完整高清在线观看| 国产激情久久老熟女| 色老头精品视频在线观看| 亚洲国产精品999在线| 香蕉丝袜av| 91麻豆av在线| 又黄又爽又免费观看的视频| 午夜福利欧美成人| 久久亚洲真实| www国产在线视频色| 超碰成人久久| 一a级毛片在线观看| 亚洲黑人精品在线| 午夜久久久久精精品| 老汉色∧v一级毛片| 亚洲第一青青草原| 日本免费a在线| 男女做爰动态图高潮gif福利片| 国产亚洲欧美在线一区二区| 久99久视频精品免费| 日日爽夜夜爽网站| 国产爱豆传媒在线观看 | 亚洲自拍偷在线| 精品国产乱码久久久久久男人| 成人三级做爰电影| av免费在线观看网站| 亚洲激情在线av| 一级作爱视频免费观看| 精品国内亚洲2022精品成人| 日韩欧美国产一区二区入口| 极品教师在线免费播放| 99久久综合精品五月天人人| 侵犯人妻中文字幕一二三四区| 亚洲第一青青草原| 久久久国产成人免费| 欧美日本视频| 中文字幕人成人乱码亚洲影| 日本 欧美在线| 国产精品电影一区二区三区| 无遮挡黄片免费观看| 老鸭窝网址在线观看| 国产又黄又爽又无遮挡在线| 欧美亚洲日本最大视频资源| 国产私拍福利视频在线观看| 亚洲片人在线观看| tocl精华| 国产1区2区3区精品| 久久人人精品亚洲av| а√天堂www在线а√下载| 天堂影院成人在线观看| 亚洲成人精品中文字幕电影| 给我免费播放毛片高清在线观看| 亚洲成国产人片在线观看| 婷婷精品国产亚洲av| 久久人人精品亚洲av| 精品久久久久久久末码| 波多野结衣巨乳人妻| 婷婷六月久久综合丁香| 非洲黑人性xxxx精品又粗又长| 国产精品免费视频内射| 国产亚洲欧美在线一区二区| 国产成人啪精品午夜网站| 国产精品综合久久久久久久免费| 亚洲精品中文字幕一二三四区| 91大片在线观看| 亚洲国产精品999在线| 在线观看免费日韩欧美大片| 国产激情欧美一区二区| 啦啦啦免费观看视频1| 国产成人精品久久二区二区91| 成熟少妇高潮喷水视频| 久热爱精品视频在线9| 露出奶头的视频| 免费看日本二区| 麻豆成人av在线观看| 国产一区二区激情短视频| 午夜福利一区二区在线看| 久久久久久久精品吃奶| 亚洲天堂国产精品一区在线| 久久香蕉精品热| av欧美777| 免费看十八禁软件| 亚洲欧美精品综合久久99| 国产精品亚洲美女久久久| 无遮挡黄片免费观看| 天天添夜夜摸| 一进一出抽搐动态| 久久久久久久久中文| 亚洲专区中文字幕在线| 变态另类丝袜制服| 午夜福利视频1000在线观看| 成人18禁在线播放| 少妇 在线观看| 色综合亚洲欧美另类图片| 亚洲国产欧美一区二区综合| 最新美女视频免费是黄的| 国产午夜福利久久久久久| 黄色视频不卡| 真人一进一出gif抽搐免费| 黑人操中国人逼视频| 国产亚洲精品第一综合不卡| 一夜夜www| 91麻豆av在线| 老熟妇乱子伦视频在线观看| 国内揄拍国产精品人妻在线 | 99国产精品一区二区蜜桃av| 国产激情久久老熟女| 国产精品99久久99久久久不卡| 午夜福利欧美成人| a级毛片在线看网站| www.熟女人妻精品国产| 在线观看免费视频日本深夜| 黄片小视频在线播放| 一区二区三区精品91| 黑人欧美特级aaaaaa片| 999精品在线视频| 亚洲av成人av| 久久这里只有精品19| 国产亚洲精品av在线| 97人妻精品一区二区三区麻豆 | 人人妻人人澡人人看| 一级毛片精品| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩精品久久久久久密| 久久这里只有精品19| 色综合婷婷激情| 亚洲成人精品中文字幕电影| 久久中文字幕一级| 欧美中文日本在线观看视频| 搞女人的毛片| 美女午夜性视频免费| 久久久久久久精品吃奶| 国产精品永久免费网站| 日韩中文字幕欧美一区二区| 精品国产美女av久久久久小说| 18禁裸乳无遮挡免费网站照片 | 午夜视频精品福利| 国产黄a三级三级三级人| 国内精品久久久久久久电影| 日本熟妇午夜| 美女免费视频网站| 国产高清有码在线观看视频 | 黑丝袜美女国产一区| 美女扒开内裤让男人捅视频| 亚洲美女黄片视频| 大香蕉久久成人网| 欧美黑人欧美精品刺激| 欧美午夜高清在线| 后天国语完整版免费观看| 老司机深夜福利视频在线观看| www日本黄色视频网| 欧美激情 高清一区二区三区| 国产精品久久久久久人妻精品电影| 久久国产精品人妻蜜桃| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 欧美日韩瑟瑟在线播放| 变态另类丝袜制服| 中文字幕人妻熟女乱码| 一区二区三区激情视频| 亚洲一码二码三码区别大吗| 免费一级毛片在线播放高清视频| 婷婷精品国产亚洲av在线| 这个男人来自地球电影免费观看| 在线观看舔阴道视频| 久久精品aⅴ一区二区三区四区| 黄频高清免费视频| 亚洲欧美日韩高清在线视频| 国产精品综合久久久久久久免费| 后天国语完整版免费观看| 欧美成人午夜精品| 欧美日韩乱码在线| 黄色a级毛片大全视频| 国产蜜桃级精品一区二区三区| 国产区一区二久久| 在线观看免费日韩欧美大片| 丰满人妻熟妇乱又伦精品不卡| 国产亚洲av高清不卡| 美国免费a级毛片| 99热只有精品国产| 国产精品久久电影中文字幕| 国产精品影院久久| 麻豆国产av国片精品| 成年版毛片免费区| 欧美av亚洲av综合av国产av| 久久精品成人免费网站| 成人一区二区视频在线观看| 久久狼人影院| 国产熟女午夜一区二区三区| 又黄又爽又免费观看的视频| 十八禁网站免费在线| 久久久久国产一级毛片高清牌| 国产精品免费视频内射| 欧美日韩中文字幕国产精品一区二区三区| 性欧美人与动物交配| 中文亚洲av片在线观看爽| 久久久久久久午夜电影| 国产精品永久免费网站| 成人国产一区最新在线观看| 黄片大片在线免费观看| 亚洲午夜理论影院| 午夜a级毛片| 高清毛片免费观看视频网站| 亚洲avbb在线观看| 亚洲三区欧美一区| 久久久精品欧美日韩精品| 国产精品 欧美亚洲| 不卡一级毛片| 丝袜人妻中文字幕| 亚洲专区字幕在线| 国产精品免费一区二区三区在线| 桃色一区二区三区在线观看| 神马国产精品三级电影在线观看 | 青草久久国产| 成人特级黄色片久久久久久久| 在线观看午夜福利视频| 日本熟妇午夜| 日韩欧美免费精品| 搡老熟女国产l中国老女人| 国产三级黄色录像| 最新美女视频免费是黄的| 丰满的人妻完整版| 亚洲avbb在线观看| 亚洲国产欧洲综合997久久, | av天堂在线播放| 99在线视频只有这里精品首页| 久久久久久免费高清国产稀缺| 这个男人来自地球电影免费观看| 国语自产精品视频在线第100页| 69av精品久久久久久| 日韩精品中文字幕看吧| 深夜精品福利| 91大片在线观看| 宅男免费午夜| 国内久久婷婷六月综合欲色啪| 一区二区日韩欧美中文字幕| 一级作爱视频免费观看| 老汉色∧v一级毛片| 91国产中文字幕| 精品国产超薄肉色丝袜足j| 高清毛片免费观看视频网站| 亚洲熟女毛片儿| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| tocl精华| 一进一出抽搐gif免费好疼| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲三区欧美一区| 黄片大片在线免费观看| 一边摸一边做爽爽视频免费| 久久久久九九精品影院| 亚洲精品国产区一区二| 大香蕉久久成人网| 搡老熟女国产l中国老女人| 亚洲第一av免费看| 亚洲欧美精品综合久久99| 久热爱精品视频在线9| 满18在线观看网站| 啦啦啦韩国在线观看视频| 国内揄拍国产精品人妻在线 | 日日摸夜夜添夜夜添小说| 长腿黑丝高跟| 18禁观看日本| 一本久久中文字幕| 一本综合久久免费| 欧美激情高清一区二区三区| 男男h啪啪无遮挡| 亚洲熟妇熟女久久| 免费观看精品视频网站| 成人午夜高清在线视频 | 黄片小视频在线播放| 老司机福利观看| av天堂在线播放| 午夜老司机福利片| www.自偷自拍.com| 午夜老司机福利片| 日韩免费av在线播放| 黄色片一级片一级黄色片| 日韩精品青青久久久久久| 香蕉国产在线看| 亚洲熟女毛片儿| 麻豆av在线久日| 国产精品98久久久久久宅男小说| 男女视频在线观看网站免费 | 欧美日韩瑟瑟在线播放| 国产精品爽爽va在线观看网站 | 女同久久另类99精品国产91| 亚洲国产欧美一区二区综合| 亚洲最大成人中文| 亚洲av第一区精品v没综合| 一本综合久久免费| 听说在线观看完整版免费高清| 中文字幕高清在线视频| 亚洲熟妇中文字幕五十中出| 中文字幕最新亚洲高清| 免费电影在线观看免费观看| 色尼玛亚洲综合影院| 男女下面进入的视频免费午夜 | 欧美乱色亚洲激情| 琪琪午夜伦伦电影理论片6080| 怎么达到女性高潮| 精品国产美女av久久久久小说| 国产又黄又爽又无遮挡在线| 天堂动漫精品| 中文字幕高清在线视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 成人午夜高清在线视频 | 久久精品国产亚洲av高清一级| 怎么达到女性高潮| 欧美在线黄色| 免费在线观看亚洲国产| 嫩草影视91久久| 99久久国产精品久久久| 波多野结衣高清无吗| 精品无人区乱码1区二区| 午夜福利在线在线| 中文字幕精品亚洲无线码一区 | 日本免费a在线| 国产精品乱码一区二三区的特点| 51午夜福利影视在线观看| 又黄又爽又免费观看的视频| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 十八禁人妻一区二区| 99久久久亚洲精品蜜臀av| 亚洲人成伊人成综合网2020| 国产三级在线视频| 最新在线观看一区二区三区| 色在线成人网| 熟女少妇亚洲综合色aaa.| 国产免费av片在线观看野外av| 最近最新中文字幕大全电影3 | 中文字幕人妻熟女乱码| 老熟妇仑乱视频hdxx| 久久香蕉激情| 久久欧美精品欧美久久欧美| xxxwww97欧美| 一级a爱片免费观看的视频| 法律面前人人平等表现在哪些方面| 草草在线视频免费看| 高潮久久久久久久久久久不卡| 日韩精品免费视频一区二区三区| 精品久久久久久久久久久久久 | 啦啦啦 在线观看视频| 男男h啪啪无遮挡| 亚洲av电影在线进入| 91在线观看av| 日本a在线网址| 超碰成人久久| 丝袜美腿诱惑在线| 无限看片的www在线观看| av在线天堂中文字幕| 人人妻人人看人人澡| 91成年电影在线观看| 搡老熟女国产l中国老女人| 欧美在线一区亚洲| 亚洲人成网站在线播放欧美日韩| 国产成人影院久久av| 亚洲人成网站在线播放欧美日韩| 香蕉国产在线看| 免费在线观看影片大全网站| 国产欧美日韩一区二区精品| 伊人久久大香线蕉亚洲五| 欧美黄色淫秽网站| 成人国产一区最新在线观看| 亚洲人成电影免费在线| 欧美一区二区精品小视频在线| 国产av又大| 日韩欧美 国产精品| 日本撒尿小便嘘嘘汇集6| 国产一区在线观看成人免费| 色av中文字幕| 男女做爰动态图高潮gif福利片| 欧美久久黑人一区二区| av有码第一页| 国产精品亚洲美女久久久| 欧美激情高清一区二区三区| 国产精品一区二区精品视频观看| 又大又爽又粗| 久久香蕉精品热| 免费在线观看黄色视频的| 日韩成人在线观看一区二区三区| 久久久久精品国产欧美久久久| 免费高清视频大片| 欧美乱码精品一区二区三区| 黄色 视频免费看| 久久天堂一区二区三区四区| 中文字幕高清在线视频|