• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dissipation and amplification management in an electrical model of microtubules: Hybrid behavior network

    2023-12-02 09:28:52SedricNdoungalahGuyRogerDeffoArnaudDjineandSergeBrunoYamgou
    Chinese Physics B 2023年11期

    Sedric Ndoungalah, Guy Roger Deffo, Arnaud Djine, and Serge Bruno Yamgou′e

    1Department of Physics,Faculty of Science,University of Bamenda,P.O.Box 39 Bamenda,Cameroon

    2Research Unit of Automation and Applied Computers(UR-AIA),Department of Electrical Engineering,IUT-FV of Bandjoun,University of Dschang,BP 134,Bandjoun,Cameroon

    3Department of Physics,Higher Teacher Training College Bambili,The University of Bamenda,P.O.Box 39 Bamenda,Cameroon

    Keywords: microtubule,dissipation and amplification,hybrid behavior,solitary wave solutions

    1.Introduction

    Due to its great importance in various biological processes, protein dynamics has been widely studied in recent years.[1,2]Microtubules (MTs) are a typical example of such structures.They represent the main components of the cytoskeleton and play a crucial role in electrical activities within eukaryotic cells,including, for example, cellular division, intracellular information processing, regulation of synaptic inputs, modulation of neural firing, regulation of developmental plasticity, and mediation during transport of electrical signals.[3]

    MTs are hollow cylinders formed by protofilaments aligned in directions parallel to their axis.The approximate values of their outer and inner radii are 25 nm and 15 nm,respectively.[4–6]Their lengths are of the order of micrometers or millimeters.Many theoretical and experimental studies have been envisaged to analyze their properties and dynamics.For instance, Prielet al.studied experimentally the electrodynamic properties of MTs.[7]The obtained results demonstrated that MTs are excellent conductors of electrical signals.They can also amplify an electric current stimulated by an applied voltage pulse.Through electroorientation experiments, Minoura and Muto found that the conductivity of the MT was 1500 mS/m, which was 15 times higher than that of the surrounding buffer.[8]Freedmanet al.investigated ionic currents through microtubule nanopores.[9]The obtained results showed that the nanopores have asymmetric inner and outer conductances.Havelkaet al.investigated multi-mode electro-mechanical vibrations of an MT.[10]They showed that electrically polar collective vibration modes of MTs lead to a quasi-periodic electric oscillating potential.Based on the kink solitons and breathers,Zdravkovicet al.explained the nonlinear dynamics of MTs.[11,12]

    To better understand the dynamics of MTs and to elucidate their role in the electrical activities of cells, several electrical models of these biological systems have been proposed in the literature.In fact, since the pioneering work by Tuszynskiet al.on nonlinear electrical transmission lines (NLTLs) modeling ionic wave propagation along actin filaments,[13]growing interest has been devoted to the use of NLTLs to mimic the behavior of MTs.For instance, the ionic-conduction properties of an MT have been investigated through a model of NLTL.[14]Ilicet al.used the same model to show that the localized ionic wave could be used to explain the behavior of MTs as biomolecular transistors capable of amplifying electrical information in neurons.[15]This model was also exploited to describe the electrostatic potential coupled to the propagating localized waves along MTs.[16]Similar studies have also been conducted by Freedmanet al.and Sataricet al.considering a two-dimensional electrical model[9]and an NLTL with negative resistive components,[17]respectively.Based on another model, these authors and other coworkers investigated the polyelectrolyte character of MTs.[18]A new NLTL model has also been introduced to investigate the creation and propagation of localized pulses of positive ions flowing along cellular MTs.[19]Recently,Ndjomatchouaet al.demonstrated that the electrical wave propagation in an MT could be modeled by a discrete NLTL including a cubic negative nonlinear resistance.[20]More recently,using an electrical model with strongly nonlinear resistive elements, Ghomsiet al.studied the capability of the inner part of an MT.[21]Other models of NLTLs mimicking the dynamics of MTs have also been realized.[22,23]

    Analyzing the above cited works, we note that existing models to mimic the electrical behavior of MTs in the bandpass domain have only focused on the dissipative character of these systems.However, experimental evidence suggests that MTs act as biological electrical wires that can amplify electrical signals via the flow of condensed ion clouds.For instance,Prielet al.have shown that taxol-stabilized MTs behave as biomolecular transistors capable of amplifying electrical information.[7]In addition,this author and other coworkers obtained similar results by studying the effect of calcium on electrical energy transfer by MTs.[24]Hence,these works suggest that a complete description of the dynamics of the electrical bio-signals’ propagation along MTs via a model of an NLTL can be made by taking into account both dissipation and amplification characteristics of MTs.To the best of our knowledge,such a study has not yet been considered.

    In this paper, we aim to broaden the understanding of models of MTs as nonlinear electrical transmission lines with nonlinear resistive elements.Specifically,we undertake simultaneously herein the investigation of the amplification and the dissipation of electrical signals in an electrical model of MTs which is presented along with its exact dynamical equation in the next section.In Section 3,we first show that the dynamics of modulated waves in the network is governed by the standard nonlinear Schr¨odinger equation extended by a dissipation/amplification term.Next,the signs of various coefficients of this equation are studied.Finally, the baseband modulational instability of the amplitude equation is investigated.In Section 4, we investigate the exact and approximate solitary wave solutions of the governing equation.Analytical investigations of these obtained solutions are performed in Section 5.We conclude our paper in Section 6.

    2.Model description and dynamic equation

    2.1.Model presentation

    The physical electrical model of a microtubule considered in the current paper is depicted in Fig.1.It was described in some detail in Ref.[20]and consists of several identical blocks connected in sequence one to the other.Each block includes a shunt nonlinear conductance–capacitance (J(Vn)–C(Vn)) circuit and a series resistance–inductance(R–L)circuit.The first nonlinear element is a varicap diode whose differential capacitanceC(Vb+Vn)= dQn/dVnis a nonlinear function of the voltageVn.For low voltages around the dc bias voltageVb,Qn(Vn)at the(n)th node can be defined by[25,26]

    whereC0is the characteristic capacitance.αandβare positive real parameters.The second nonlinear element is negative nonlinear resistance satisfying the following expansion:[27]

    In this relation,Bis an amplitude factor determined by the slope atV=0 V.d1andd2are voltages which determine the zeros ofJ.For the active behavior ofJ,d1andd2have the opposite signs,while they are positive for the passive behavior ofJ.[27,28]

    Fig.1.Schematic representation of the electrical analogy of the MT model.

    ConsideringB2=B(d1+d2) andB1=-Bd1d2, relation(2)can be rewritten as

    Here,B2andB1represent the quadratic nonlinear and linear coefficients,respectively.The physical dimensions ofB1,B2andBare [?-1], [?-1·V-1] and [?-1·V-2], respectively.Note that ford1=-d2, we obtain the expression of the negative nonlinear resistance effects of ionic flow through nanopores used in Refs.[20,21].

    Applying Kirchhoff laws to the circuit of Fig.1, the following differential equations governing the dynamics of signal voltage(Vn(t))in the network are obtained:

    withu20=1/(LC0),β1=RB,α1=RB2,λ=RB1/4,γ1=(RC0-LB1),γ2=-(RC0α+LB2),γ3=(LB+RC0β) andn=1,2,...,N.Nrepresents the total number of blocks.In this study,numerical investigations are made for the following values of the network parameters:[16,27]

    2.2.Linear dispersion law

    The linear dispersion law of the model of Fig.1 is derived and examined in this subsection.To this end,we consider the solution of Eq.(3)asVn=V0exp(i(kn-ωt))withV0,kandωrepresenting the small wave amplitude, the wave number,and the angular frequency, respectively.Putting this solution into Eq.(3),and neglecting the terms of power greater thanV0we obtain the angular frequency and group velocity associated with the wave packet as

    Equation (5) shows that our system is a band-pass filter.Nevertheless,we note that its allowed frequency band considerably depends on the sign of parameterλwhich represents the nonlinear conductance’s contribution to the angular frequency.Indeed,two cases can be distinguished.

    Fig.2.Effect of the parameter λ on the linear dispersion curve of the network showing evolution of the frequency f = ω/(2π) as a function of the wave number k (rad/cell) with network parameters (4): (a)d2=-d1 (λ >0);(b)d2=d1 (λ <0).

    Fig.3.Variation of the bandwidth of allowed frequencies as a function of the parameter λ with the network parameters(4): (a)d2=-d1(λ >0);(b)d2=d1 (λ <0).

    3.Extended nonlinear Schro¨dinger equation and baseband modulational instability

    3.1.Extended nonlinear Schr¨odinger equation

    This section is devoted to the derivation of the nonlinear equation describing the motion of nonlinear modulated waves in the MT electrical model of Fig.1.Thus, we consider the reductive perturbation approach in the semidiscrete approximation.In this method, the carrier is treated with its discrete character and the envelope is described in the continuum approximation.Let us consider the voltage signal solution of Eq.(3)to be of the form[28]

    whereθ=kn-ωtis the phase and cc stands for the complex conjugate of the preceding expression.εis a small parameter.Solution(6)includes the fast local oscillation through the dependence of the phaseθ,and then preserves the discrete character of the network, while the dependence of the envelope part described byA(x,τ) on the slow variablesτ=ε2tandx=ε(n-μt) takes care of the slow variation in amplitude.We then order the damping coefficient in Eq.(3) so that the damping and nonlinearity effects appear in the same perturbation equations.In particular, we assume that the dissipation effect of the network is weak.Thus, we consider thatγ1is a perturbed parameter of orderε2.Inserting Eq.(6)into Eq.(3),we obtain different equations as power series ofε.

    First,the terms proportional toεexp(iθ)andε2exp(iθ)give us,respectively,the angular frequency and group velocity obtained and investigated in the previous section.

    Next, from the terms of order [ε2exp(0iθ)] and[ε2exp(2iθ)],we obtain,respectively,the continuous componentsA20(x,τ)and the second harmonicA22(x,τ)defined by

    Equation (8) includes the dissipation/amplification effect beside the linear group velocity dispersion (GVD) and the self phase modulation (SPM) represented, respectively,by the parametersPandQ.For instance,σis the dissipation/amplification coefficient.It is due to the nonlinear and linear resistances respectively,in shunt and series branches of the network.From its expression, it is clearly observed that this coefficient is an explicit function of the nonlinear resistance parameters (B,d1andd2) and can take any value and any sign depending on the considered values of these parameters and also of the magnitude of the resistanceR.Hence,it becomes important to study its sign.

    Specifically,sinceu20>0,the nature(amplification or dissipation coefficient) ofσonly depends on the sign of coefficientγ1,which is an explicit function of the network’s parameters.By definition,the coefficientsL,C0,R,andBare positive.Therefore,the sign and the nature of coefficientσonly depend on the sign of the parametersd1andd2.Various combinations of these parameters have been used in the literature.[27]

    Ford1d2<0,let

    1.Ford1d2>0, we haveσ>0: in this case,σis a dissipation coefficient.

    2.Ford1d2<0 andR>Rcr,we haveσ>0: in this case,σis also a dissipation coefficient.

    3.Ford1d2<0 andR

    4.Ford1d2<0 andR=Rcr,we haveσ=0: in this case,the amplitude equation(8)leads to the well-known nonlinear Schr¨odinger equation.This result is in perfect agreement with existing results on the dissipative NLTL in which the dissipative terms of the NLS equation disappear when the dissipation elements (resistances) are not considered.[30–32]However, in contrast to these previous results, the dissipation is not neglected in the model studied in this paper.In other words,the resistance(R)always exists in our system but its effect is counterbalanced by the effect of the nonlinear conductanceJ.This new result shows clearly that the nonlinear resistance can be exploited to control the dissipation in the network of Fig.1.

    Although Eq.(8)has been derived in the context of NLTL mimicking the behavior of MTs,the well-known versatility of NLS type equations makes it legitimate to expect that its applications can extend beyond the NLTL.For instance,Okalyet al.derived a similar equation when studying the solitary wavelike solutions in nonlinear dynamics of damped DNA systems.[33]Likewise, it has been used by Gianniniet al., Marquieet al.,and Demiray to analyze the propagation of bright and dark solitons in lossy optical fibers,[34]to study the modulational instability in a real electrical lattice,[35]and to investigate the modulation of nonlinear waves in a thin elastic tube filled with a viscous fluid,[36]respectively.

    In the particular caseσ=0, the discrete version of the eigenvalue problem of Eq.(8),namely,

    has also been studied by Wenet al.in order to further understand the discrete rogue waves phenomena in nonlinear optics and relevant fields.[37]In addition, an extended discrete version of Eq.(8)including the quintic nonlinearity has been used in Ref.[38].

    Before ending this subsection, we present in Fig.4 the behaviors of the dispersion and nonlinear coefficients (PandQ)for values of the wavenumberkchosen in the first Brillouin zone (0≤k ≤π).These plots show that these coefficients can be positive,null or negative depending on the values ofkand the sign ofλ.These results are useful for understanding the dynamics and the kind of localized waves that can propagate in the electrical model of MTs considered in this work.Indeed, it is well known that the kind of solutions the NLS equation has strongly depends on the sign of the product of these parameters.[30–32]

    Fig.4.Nonlinear coefficients and linear dispersive curves as a function of the wavenumber k with the network parameters(4)for the same network parameters as Fig.2: (a) λ =4.66×10-4 (kc =0.043 rad), (b)λ =-4.66×10-4.

    3.2.Baseband modulational instability

    In this section,we focus our attention on the investigation of baseband modulational instability of the amplitude equation(8).To this end,we first consider the plane wave solutions characterized by the time-dependent angular frequency?(τ),the wavenumberkand the time-varying unperturbed amplitudeA0=A0(τ)in the form[39,40]

    withA0(τ)=A00exp[-στ] andA0(τ)=A00forσ/=0 andσ=0,respectively.

    Now,consider a small real phase perturbation of the amplitude(a(x,τ))and phase(b(x,τ))as follows:

    Substituting Eq.(13) into the extended NLS Eq.(8), the linearizing terms give the system

    whereKsandνsrepresent, respectively, the wavenumber and the angular frequency of the perturbation; anda0andb0are complex constant amplitudes.Substitution of Eq.(15) into Eq.(14) leads to a system of two linear algebraic homogeneous equations fora0andb0.After some algebraic manipulations,the dispersion relation gives

    The plane wave will be unstable against small modulation if the perturbation diverges with time, that is, the right hand side of Eq.(16)is negative.In this condition,the angular frequencyνsof the perturbation is complex and its imaginary part is considered as a measure of the growth rate of the perturbation defined as

    Equation (17) shows that the baseband modulational instability of the plane wave (11) occurs if and only ifPQ>0 andK2s0,the modulational instability region decreases when the time(τ)increases.On the other hand,forσ<0,the modulational instability region increases with timeτ.Note that, in the particular caseσ=0, the same condition of the modulational instability is obtained but with a constant amplitude(A0(τ)=A00).These analyses suggest that the ENLS Eq.(8) can admit various solutions including bright solitons(PQ>0) and dark solitons (PQ<0) to name a few.These solutions will be constructed in the next section.

    4.Exact and approximate modulated solitary waves in the network of Fig.2

    In the present section, we focus our attention on the derivation of the exact and approximate representations of the solitary wave solutions of Eq.(8) which correspond to localized wave solutions of Eq.(3).We first note that in the particular caseσ=0,Eq.(8)becomes a standard integrable NLS equation and admits both bright and dark as solitary wave solutions.However,forσ/=0,Eq.(8)becomes no longer integrable.Thus,to proceed with the integration of this equation,we introduce the following ansatz:

    whereνandKare real constants;φ(τ)and?(τ)are the real functions of variableτto be determined;U(z)is a real envelope function.Substituting Eq.(18) into Eq.(8), we expand and factor out the exponential factor.Then, using a prime to denote a differentiation with respect toz,we obtain the following equations from the imaginary and real parts,respectively:

    Hence, the initial partial differential equation in the complex variableA(x,τ) is now reduced to a single second order ordinary differential equation in the real amplitudeU(z) given by Eq.(23).In the literature,many powerful techniques have been used to solve such an equation, and several types of solutions have been constructed.[41–50]Here,with the aid of the direct method, our attention is focused on the derivation of the solitary wave solutions of this equation.The kind of these solutions strongly depends on the sign of the productPQas discussed below.

    4.1.Bright-like solitary wave

    Fig.5.Effects of the dissipative parameter on the shape of bright soliton(25)at τ =1,k=0.5π and for the same network parameters as in Fig.3(a).

    Here, we are concerned with the investigation of the bright-like soliton solution of Eq.(8).This type of solution exists whenPQ>0.For this purpose,we introduce the soliton solution of Eq.(23)in the formU(z)=1/cosh(ρz).Substituting this ansatz into Eq.(23)and setting the coefficients of the obtained polynomial (in the cosh term) equal to zero, we get the following results:Equation(25)shows clearly that forσ=0,the analytical expression of the bright-like soliton width is inversely proportional to the soliton amplitudeχ0which is an independent function of time.It is the most crucial property of the bright soliton.On the other hand,whenσ/=0,the soliton amplitude is proportional to function exp[-στ], while its width is inversely proportional to function exp[-στ].This result means that both the amplitude and width of a solitary wave can be manipulated by controlling the parameterσthrough resistance elements of the network,as can be seen in Fig.5.Specifically,forσ>0,function exp[-στ]decreases whenσincreases,the soliton width increases, and the soliton amplitude decreases(see Fig.5(a)).In this case,σis a dissipation parameter.Whenσ<0,function exp[-στ]increases whenσdecreases,the soliton width decreases and the soliton amplitude increases(see Fig.5(b)).Hence,in contrast with the preceding case,σis an amplification parameter.These observations show that the parameterσis a hybrid parameter and can be used to control the shape of the bright solitary wave solution.

    4.2.Dark solitary wave

    WhenPQ< 0, the equation (20) admits a modulated dark solitary wave as a solution.To derive the exact expression of this solution, we consider the following ansatzU(z)=tanh(ρz).Substitution of this solution into Eq.(23)and setting the coefficients of the obtained polynomial equal to zero leads to a system of algebraic equations forρandφ(τ).Solving this system of algebraic equations yields the following results:

    Equation (27) represents the dark soliton solution of the amplitude equation(8)governing the dynamics of modulation in our studied system.It should be noted that,as in the previous case, the characteristic parameters (amplitude and width) of this solution are also the function of exp[-στ].Consequently,it has similar behavior when the sign or value of the parameterσchanges.Thus,the width and the amplitude of the dark solitary wave can be controlled by reducing or increasing the value of the parameterσ.This effect is more clearly seen in Fig.6,where the shape of the dark soliton(27)is portrayed for different values ofσ.

    Before ending this subsection, it is important to make some remarks concerning the above obtained solutions.In fact, in the particular case ofσ/= 0, the obtained solutions Eqs.(27b) and (25b) are the approximate solutions of Eq.(8).They show how the amplitude of solitary waves increases/decreases in time parameterτas they progress.In the particular case where the hybrid coefficientσis vanishingly small,one can approximateχ(τ)=χ0and e-2στ=1-2στ.Thus,these approximate solutions(27b)and(25b)degenerate to exact solutions(27a)and(25a),respectively.

    5.Behavior of modulated waves through the network of Fig.2.

    In the previous sections,the bright and dark solitary wave solutions of the extended nonlinear Schr¨odinger equation governing the dynamics of the electrical model of microtubules have been obtained.In order to check these analytical calculations,we analyze in the current section the behavior of these waves through the network of Fig.2 for the wave numbers chosen in the first Brillouin zone.More precisely,we investigate the effects of the parameterσon the shape of the solitary and rogue wave signals through the system, respectively.To this end, we first express the obtained solutions of the ENLS equation in terms of the network coordinatesnandt.In fact,considering dc and second-harmonic terms given by Eq.(7),the voltage signal solution(6)can easily be written as

    in whichθ=kn-ωt,x=ε(n-μt) andτ=ε2t.ωandμare defined by Eq.(5) and represent the angular frequency and group velocity, respectively.A(x,τ) corresponds to one of the above profiles,namely,the bright solitary solution(25)or the dark solitary solution (27).Next, for the effectiveness of these simulations,the network parameters(4)are exploited together withε=0.1 andχ0=1.For given wave numberk,we evaluate the frequency(f=ω/(2π))and the group velocity of the wave using Eq.(5),the dispersion and nonlinear coefficients using Eq.(9), and the threshold linear resistanceRcrusing Eq.(10).The number of cells in the system is taken as equal toN=2500.Thus, we present in Figs.7 and 8 the evolution of the obtained solitary wave voltage signals.

    Fig.7.Signal voltage obtained with the exact bright soliton solution (25) of the dissipative NLS Eq.(8) at different times (in units of ω-1)with network parameters(4)and for k=0.5π: (a)R=3Rcr (σ >0);(b)R=Rcr (σ =0);(c)R=0.1Rcr (σ <0).

    Fig.8.Signal voltage obtained with the exact dark soliton solution(27)of the dissipative NLS Eq.(8)at different times(in units of ω-1)with network parameters(4)and for k=0.61π: (a)R=3Rcr (σ >0);(b)R=Rcr (σ =0);(c)R=0.1Rcr (σ <0).

    Figure 7 displays the shapes of the bright solitary wave voltages at different times given in units ofω-1.It appears from these figures that the wave amplitude decreases while its width increases when the hybrid parameterσis positive(Fig.7(a)).Forσ=0, that is, the effect of linear resistance is counterbalanced by the effect of the nonlinear resistance,the bright signal voltage propagates in the system with constant amplitude, with constant width, and without distortion of shape (Fig.7(b)).Forσ<0, one can see that the amplitude of the wave increases progressively during propagation(Fig.7(c)).The results are in full agreement with the theoretical prediction, and also corroborate the experimental results obtained in Refs.[7,24].In addition,as we see in Fig.8,similar results are obtained with dark solitary waves.

    6.Conclusion

    In this paper,we have studied the dynamics of modulated waves in an electrical model of a microtubule with linear and nonlinear dissipative elements.Based on the linear dispersion relation,we have shown that the system can behave like a low bandpass filter or a bandpass filter depending on the sign of the conductance’s contribution parameterλto the angular frequency.We have also shown that the allowed bandwidth frequencies of the network strongly depend on the parameterλ.

    Applying the reductive perturbation method, we have shown that the well-known nonlinear Schr¨odinger equation extended by a linear term proportional to a hybrid parameter governs the motion of modulated waves in the network.The sign of this hybrid coefficientσstrongly influences the dissipation/amplification nature of the ENLS equation.We have also shown that the sign of the linear group velocity dispersion and the self-phase modulation coefficients depends onλ.

    Likewise, we have derived the exact and approximate solitary wave solutions of the obtained ENLS equation and their dynamics through the network that has been investigated.Our result has revealed that the amplitude and the width of the obtained solitary waves can be controlled based on the parameterσ.In other words,σcan be used to dissipate,stabilize,or amplify the solitary signals propagating through the network.

    Finally, the interesting results obtained in this work clearly reveal the significant role of the nonlinear resistance in the electrical model of MTs.In fact,this element can be used to obtain different behaviors(dissipation or amplification)and different characteristics(low bandpass filter or bandpass filter)of the system.In the existing works,each one of these characters or behaviors has been examined in a specific model.Since the electrical model of MTs investigated in the present work adopts alternately the above cited characters or behaviors,we named it the ”hybrid” electrical model of MTs.Another interesting aspect of this work is the fact that it can be useful in making a better choice of network parameters and in better understanding the results of experiments of the propagating electrical signal in MTs.

    毛片一级片免费看久久久久| 国产精品偷伦视频观看了| 观看美女的网站| 日韩av在线免费看完整版不卡| 赤兔流量卡办理| 啦啦啦啦在线视频资源| 国产视频首页在线观看| 爱豆传媒免费全集在线观看| av网站免费在线观看视频| 国产精品不卡视频一区二区| 纯流量卡能插随身wifi吗| 曰老女人黄片| 午夜福利影视在线免费观看| 亚洲怡红院男人天堂| 大又大粗又爽又黄少妇毛片口| 老熟女久久久| 婷婷成人精品国产| 中文乱码字字幕精品一区二区三区| 亚洲欧美日韩卡通动漫| 亚洲av电影在线观看一区二区三区| 精品一区在线观看国产| 亚洲欧洲日产国产| 十分钟在线观看高清视频www| 一区二区三区精品91| 高清黄色对白视频在线免费看| 高清午夜精品一区二区三区| 美女脱内裤让男人舔精品视频| 97超碰精品成人国产| 在线亚洲精品国产二区图片欧美 | 一级爰片在线观看| 老女人水多毛片| 国产深夜福利视频在线观看| 国产精品99久久99久久久不卡 | 国内精品宾馆在线| 久久精品久久精品一区二区三区| 免费观看性生交大片5| 狂野欧美激情性xxxx在线观看| 欧美精品国产亚洲| 日韩三级伦理在线观看| 亚洲国产av新网站| 精品国产一区二区久久| 日本色播在线视频| 国产一区二区在线观看日韩| 国产 一区精品| 只有这里有精品99| 精品国产一区二区三区久久久樱花| 看免费成人av毛片| 伊人久久精品亚洲午夜| 在线观看免费视频网站a站| 久久久a久久爽久久v久久| 丰满饥渴人妻一区二区三| 毛片一级片免费看久久久久| 成人漫画全彩无遮挡| 2018国产大陆天天弄谢| 母亲3免费完整高清在线观看 | 久久毛片免费看一区二区三区| 在线免费观看不下载黄p国产| 成人无遮挡网站| 国产高清有码在线观看视频| 久久久久久久精品精品| 有码 亚洲区| 九色成人免费人妻av| 久久久久久久久大av| 日韩三级伦理在线观看| 精品久久国产蜜桃| 狂野欧美激情性xxxx在线观看| 色哟哟·www| 日本猛色少妇xxxxx猛交久久| 成人国产av品久久久| 啦啦啦视频在线资源免费观看| 国产精品国产三级国产av玫瑰| 美女国产视频在线观看| 男人操女人黄网站| 18在线观看网站| 日本黄大片高清| 成人亚洲精品一区在线观看| 久久毛片免费看一区二区三区| 尾随美女入室| 国产成人一区二区在线| 免费人成在线观看视频色| 午夜影院在线不卡| 精品人妻一区二区三区麻豆| 国产69精品久久久久777片| 国产精品一区www在线观看| 老司机亚洲免费影院| 一区二区三区四区激情视频| 一本色道久久久久久精品综合| 亚洲av成人精品一二三区| 黄片无遮挡物在线观看| 最近最新中文字幕免费大全7| 黄片播放在线免费| 9色porny在线观看| 人妻人人澡人人爽人人| 亚洲综合精品二区| 久久国内精品自在自线图片| 老司机影院成人| 丝袜在线中文字幕| 久久这里有精品视频免费| 两个人免费观看高清视频| 午夜视频国产福利| 国产精品.久久久| 人人妻人人澡人人爽人人夜夜| 男女边摸边吃奶| 各种免费的搞黄视频| 丰满迷人的少妇在线观看| 国产男人的电影天堂91| 久久久久视频综合| 免费不卡的大黄色大毛片视频在线观看| 26uuu在线亚洲综合色| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩成人在线一区二区| 久久免费观看电影| 在线看a的网站| 夫妻性生交免费视频一级片| 成年人免费黄色播放视频| 99re6热这里在线精品视频| av视频免费观看在线观看| 一级爰片在线观看| 国产高清三级在线| 一个人免费看片子| 亚洲av在线观看美女高潮| 久久久久久久大尺度免费视频| 国产精品国产三级国产专区5o| 久久久久精品性色| 男人爽女人下面视频在线观看| 国产亚洲精品久久久com| 能在线免费看毛片的网站| 亚洲欧美日韩卡通动漫| av在线播放精品| 青春草亚洲视频在线观看| av天堂久久9| 黑人猛操日本美女一级片| 搡老乐熟女国产| 精品久久国产蜜桃| 黑人猛操日本美女一级片| 国产视频首页在线观看| 丰满迷人的少妇在线观看| 亚洲,一卡二卡三卡| av卡一久久| 一二三四中文在线观看免费高清| 青春草亚洲视频在线观看| 亚洲色图综合在线观看| 精品久久国产蜜桃| 美女xxoo啪啪120秒动态图| 9色porny在线观看| 亚洲精品av麻豆狂野| 免费观看性生交大片5| 日日摸夜夜添夜夜爱| 国产精品女同一区二区软件| 久久久久人妻精品一区果冻| 亚洲av电影在线观看一区二区三区| 亚洲,一卡二卡三卡| 人妻人人澡人人爽人人| a级毛片黄视频| 嘟嘟电影网在线观看| 亚洲国产欧美日韩在线播放| a级毛色黄片| 欧美 日韩 精品 国产| 国产精品久久久久久精品古装| 亚洲精品中文字幕在线视频| 亚洲国产成人一精品久久久| 蜜桃久久精品国产亚洲av| 在线亚洲精品国产二区图片欧美 | 国产av精品麻豆| 最近中文字幕2019免费版| 制服丝袜香蕉在线| 久久免费观看电影| 一区二区三区精品91| 又大又黄又爽视频免费| 人人妻人人澡人人看| www.色视频.com| 男女国产视频网站| 嫩草影院入口| 51国产日韩欧美| 日韩 亚洲 欧美在线| 嘟嘟电影网在线观看| 久久精品国产鲁丝片午夜精品| 午夜影院在线不卡| 免费大片黄手机在线观看| 亚洲国产精品一区二区三区在线| a级毛片在线看网站| 最黄视频免费看| 国产精品无大码| 我的女老师完整版在线观看| 97超视频在线观看视频| 在线观看三级黄色| 91久久精品国产一区二区三区| av电影中文网址| videossex国产| 亚洲国产精品一区三区| 黑人高潮一二区| 精品一区在线观看国产| 亚洲国产最新在线播放| 久久青草综合色| a 毛片基地| 香蕉精品网在线| 久久狼人影院| 久久亚洲国产成人精品v| 人人妻人人澡人人爽人人夜夜| 亚洲精品久久久久久婷婷小说| 大香蕉久久成人网| 亚洲一级一片aⅴ在线观看| 成人无遮挡网站| 亚洲美女搞黄在线观看| 日韩欧美一区视频在线观看| 欧美日本中文国产一区发布| 制服丝袜香蕉在线| 国产 一区精品| 免费不卡的大黄色大毛片视频在线观看| 日韩强制内射视频| 大片免费播放器 马上看| 精品一区二区三区视频在线| 国产片特级美女逼逼视频| 日日啪夜夜爽| 中国美白少妇内射xxxbb| 夜夜看夜夜爽夜夜摸| 街头女战士在线观看网站| 最新中文字幕久久久久| 亚洲国产欧美在线一区| 午夜免费鲁丝| 久久 成人 亚洲| 欧美精品亚洲一区二区| av在线app专区| 中文字幕久久专区| 久热这里只有精品99| 国产精品99久久久久久久久| 99视频精品全部免费 在线| 日韩av在线免费看完整版不卡| 久久久久视频综合| 丝袜美足系列| 国产亚洲一区二区精品| 夜夜爽夜夜爽视频| 91精品三级在线观看| 三级国产精品欧美在线观看| 国产精品 国内视频| 亚洲精品久久久久久婷婷小说| 日本色播在线视频| 亚洲综合色网址| 一边亲一边摸免费视频| 99九九线精品视频在线观看视频| 99久久精品国产国产毛片| 一级爰片在线观看| 99re6热这里在线精品视频| 欧美xxⅹ黑人| 最黄视频免费看| 久久精品久久精品一区二区三区| 飞空精品影院首页| 日韩一区二区视频免费看| 女性生殖器流出的白浆| 久久99一区二区三区| 视频区图区小说| 久久久精品94久久精品| 99久久综合免费| 久久精品夜色国产| 蜜桃久久精品国产亚洲av| 免费人成在线观看视频色| 99热这里只有是精品在线观看| a级毛色黄片| 欧美精品高潮呻吟av久久| 亚洲欧美成人精品一区二区| 黑丝袜美女国产一区| av网站免费在线观看视频| 国产精品 国内视频| 精品一区二区免费观看| 男女高潮啪啪啪动态图| 精品国产国语对白av| 欧美日韩av久久| 黄色欧美视频在线观看| 亚洲在久久综合| 超色免费av| 国产男人的电影天堂91| 国产亚洲午夜精品一区二区久久| 亚洲高清免费不卡视频| 超碰97精品在线观看| 高清在线视频一区二区三区| 亚洲,欧美,日韩| 国产女主播在线喷水免费视频网站| 国产 一区精品| 啦啦啦在线观看免费高清www| 免费观看性生交大片5| 精品一区二区三区视频在线| 久久99热6这里只有精品| 国产日韩欧美亚洲二区| 成人综合一区亚洲| 欧美激情极品国产一区二区三区 | 亚洲欧美日韩另类电影网站| 91精品伊人久久大香线蕉| 最近的中文字幕免费完整| 99久久精品一区二区三区| 边亲边吃奶的免费视频| 欧美少妇被猛烈插入视频| 国产精品一区二区在线不卡| 国产成人免费无遮挡视频| 亚洲欧美一区二区三区国产| 亚洲av不卡在线观看| 天堂俺去俺来也www色官网| 午夜精品国产一区二区电影| 大又大粗又爽又黄少妇毛片口| 色94色欧美一区二区| 日韩一本色道免费dvd| 免费观看a级毛片全部| 一边亲一边摸免费视频| 91久久精品国产一区二区成人| 一本一本综合久久| 韩国高清视频一区二区三区| av在线老鸭窝| 91精品一卡2卡3卡4卡| 黑丝袜美女国产一区| 亚洲av欧美aⅴ国产| 久久久久国产网址| 亚洲av国产av综合av卡| 亚洲av福利一区| 国产高清国产精品国产三级| 国模一区二区三区四区视频| 飞空精品影院首页| 成年女人在线观看亚洲视频| 伊人久久精品亚洲午夜| a级毛片在线看网站| 观看av在线不卡| 男女边吃奶边做爰视频| 国产老妇伦熟女老妇高清| 高清在线视频一区二区三区| 欧美最新免费一区二区三区| 性高湖久久久久久久久免费观看| 婷婷色综合大香蕉| 人人妻人人澡人人看| 日本av手机在线免费观看| 欧美 亚洲 国产 日韩一| 欧美xxxx性猛交bbbb| 国产色爽女视频免费观看| 亚洲人成77777在线视频| 五月伊人婷婷丁香| 国精品久久久久久国模美| 亚洲av综合色区一区| 国产成人一区二区在线| 免费高清在线观看视频在线观看| √禁漫天堂资源中文www| 国产片特级美女逼逼视频| 亚洲第一av免费看| 成人毛片60女人毛片免费| 777米奇影视久久| 国产亚洲精品久久久com| 久久久久久久久久久丰满| 亚洲性久久影院| 日本与韩国留学比较| 久久午夜综合久久蜜桃| 一级黄片播放器| 午夜免费观看性视频| 国产精品 国内视频| 亚洲欧洲日产国产| 亚洲四区av| 久久久a久久爽久久v久久| 99视频精品全部免费 在线| 七月丁香在线播放| 性色avwww在线观看| 午夜视频国产福利| 国产av码专区亚洲av| 最近最新中文字幕免费大全7| 国产片特级美女逼逼视频| 久久这里有精品视频免费| 国产精品成人在线| 中文字幕av电影在线播放| 国产亚洲av片在线观看秒播厂| 肉色欧美久久久久久久蜜桃| 中文精品一卡2卡3卡4更新| 春色校园在线视频观看| 国产精品麻豆人妻色哟哟久久| 午夜福利在线观看免费完整高清在| 大片电影免费在线观看免费| 久久国内精品自在自线图片| 日韩电影二区| 免费观看在线日韩| 成人国产麻豆网| 观看美女的网站| 妹子高潮喷水视频| 九草在线视频观看| 日韩不卡一区二区三区视频在线| 亚洲国产最新在线播放| 亚洲第一av免费看| 免费人妻精品一区二区三区视频| av天堂久久9| 免费看av在线观看网站| 亚洲av二区三区四区| 日本vs欧美在线观看视频| 简卡轻食公司| 人妻制服诱惑在线中文字幕| 亚洲欧洲国产日韩| 国产精品久久久久久av不卡| 亚洲精品国产av蜜桃| 你懂的网址亚洲精品在线观看| 亚洲精品色激情综合| 成年人午夜在线观看视频| 人妻 亚洲 视频| 蜜臀久久99精品久久宅男| 成人影院久久| 一级二级三级毛片免费看| 韩国av在线不卡| 亚洲性久久影院| 国产一区二区在线观看日韩| 亚洲婷婷狠狠爱综合网| 国产色爽女视频免费观看| 男的添女的下面高潮视频| 久久午夜综合久久蜜桃| 欧美日韩亚洲高清精品| 成人亚洲欧美一区二区av| 中文精品一卡2卡3卡4更新| 午夜激情福利司机影院| 免费看光身美女| 桃花免费在线播放| 国产精品久久久久久精品电影小说| 女人久久www免费人成看片| 亚洲内射少妇av| 欧美成人午夜免费资源| 日韩一本色道免费dvd| 成人18禁高潮啪啪吃奶动态图 | 大片免费播放器 马上看| 午夜影院在线不卡| 超色免费av| 亚洲国产最新在线播放| 男人添女人高潮全过程视频| 视频在线观看一区二区三区| 久久久久久久精品精品| 大又大粗又爽又黄少妇毛片口| 亚洲美女黄色视频免费看| 一区二区三区乱码不卡18| 精品视频人人做人人爽| 日本av免费视频播放| 国产免费一区二区三区四区乱码| 在线观看免费视频网站a站| 五月伊人婷婷丁香| 2021少妇久久久久久久久久久| 一本一本综合久久| 国产成人精品在线电影| 七月丁香在线播放| 狂野欧美激情性bbbbbb| 99视频精品全部免费 在线| 搡老乐熟女国产| 亚洲av综合色区一区| 久久人妻熟女aⅴ| 国产精品三级大全| 中文字幕人妻熟人妻熟丝袜美| 国产成人精品无人区| 观看美女的网站| 亚洲国产成人一精品久久久| 天堂中文最新版在线下载| 嫩草影院入口| 国产一区二区三区综合在线观看 | 大香蕉久久网| √禁漫天堂资源中文www| 欧美日韩亚洲高清精品| 在线天堂最新版资源| 黄色怎么调成土黄色| 美女xxoo啪啪120秒动态图| 日日撸夜夜添| 亚洲精品成人av观看孕妇| www.av在线官网国产| 搡女人真爽免费视频火全软件| 亚洲四区av| 亚洲性久久影院| 日本vs欧美在线观看视频| 秋霞在线观看毛片| 免费观看在线日韩| 久久人人爽av亚洲精品天堂| 久久久a久久爽久久v久久| 欧美精品一区二区免费开放| 日韩欧美精品免费久久| 免费看不卡的av| 菩萨蛮人人尽说江南好唐韦庄| 曰老女人黄片| 女性生殖器流出的白浆| 高清av免费在线| 亚洲国产成人一精品久久久| 久久99一区二区三区| 久久99热这里只频精品6学生| 国产色爽女视频免费观看| 婷婷色麻豆天堂久久| 精品国产国语对白av| 97超碰精品成人国产| 一本—道久久a久久精品蜜桃钙片| 精品一区二区三区视频在线| 午夜福利,免费看| 草草在线视频免费看| 97精品久久久久久久久久精品| 岛国毛片在线播放| 亚洲欧洲日产国产| 九九爱精品视频在线观看| 久久久午夜欧美精品| 久久 成人 亚洲| 青春草视频在线免费观看| 成人黄色视频免费在线看| 国产老妇伦熟女老妇高清| 性高湖久久久久久久久免费观看| 激情五月婷婷亚洲| 久久精品国产鲁丝片午夜精品| 欧美日韩成人在线一区二区| 国产精品久久久久成人av| 日本黄色日本黄色录像| 午夜激情久久久久久久| 午夜精品国产一区二区电影| 久久热精品热| 欧美97在线视频| 午夜av观看不卡| 最近2019中文字幕mv第一页| 少妇高潮的动态图| 多毛熟女@视频| 伊人久久国产一区二区| 如日韩欧美国产精品一区二区三区 | 久久久久久久亚洲中文字幕| 日本色播在线视频| 美女国产高潮福利片在线看| 亚洲av二区三区四区| 久久人人爽av亚洲精品天堂| 国产免费又黄又爽又色| 人人妻人人澡人人看| 久久99热6这里只有精品| 成人毛片60女人毛片免费| 嫩草影院入口| 免费看光身美女| 亚洲欧洲精品一区二区精品久久久 | 亚洲伊人久久精品综合| 最近手机中文字幕大全| 日韩欧美一区视频在线观看| 爱豆传媒免费全集在线观看| 如何舔出高潮| 欧美日韩成人在线一区二区| 久久99热这里只频精品6学生| 黑人巨大精品欧美一区二区蜜桃 | kizo精华| 亚洲内射少妇av| 亚洲国产毛片av蜜桃av| 久久精品国产自在天天线| 建设人人有责人人尽责人人享有的| 天天躁夜夜躁狠狠久久av| 在线 av 中文字幕| 亚洲欧美精品自产自拍| 啦啦啦中文免费视频观看日本| 日韩欧美一区视频在线观看| 777米奇影视久久| 国产精品麻豆人妻色哟哟久久| 少妇人妻久久综合中文| 亚洲精品乱码久久久v下载方式| 69精品国产乱码久久久| 欧美亚洲日本最大视频资源| 中文欧美无线码| 麻豆乱淫一区二区| 日韩一本色道免费dvd| 国产精品久久久久久精品电影小说| 天堂中文最新版在线下载| 日韩免费高清中文字幕av| 大陆偷拍与自拍| 免费大片18禁| 久久国产精品男人的天堂亚洲 | 精品国产一区二区久久| 久久久久久人妻| 五月伊人婷婷丁香| 超碰97精品在线观看| av在线观看视频网站免费| 亚洲人与动物交配视频| av网站免费在线观看视频| 在线 av 中文字幕| 久久99一区二区三区| 国内精品宾馆在线| 日本-黄色视频高清免费观看| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久人人人人人人| 亚洲成人手机| 久久女婷五月综合色啪小说| 国产免费视频播放在线视频| 成年女人在线观看亚洲视频| 久久人人爽人人爽人人片va| 午夜影院在线不卡| 精品久久蜜臀av无| 天天影视国产精品| 日韩三级伦理在线观看| 国产色爽女视频免费观看| 日韩大片免费观看网站| 极品少妇高潮喷水抽搐| 日日撸夜夜添| 久久久a久久爽久久v久久| 亚洲精品乱久久久久久| 99久久人妻综合| 99热网站在线观看| 国产日韩欧美亚洲二区| 在线观看三级黄色| 少妇被粗大的猛进出69影院 | 天天躁夜夜躁狠狠久久av| 欧美精品亚洲一区二区| 男女边摸边吃奶| 国产精品国产三级国产专区5o| 国产黄频视频在线观看| 久久久久网色| 老司机影院毛片| 国产亚洲精品久久久com| 国产成人精品无人区| 最近2019中文字幕mv第一页| 亚洲av中文av极速乱| 国产精品国产三级国产专区5o| 久久99精品国语久久久| 成人二区视频| 99热国产这里只有精品6| 亚洲美女搞黄在线观看| www.色视频.com| 亚洲国产毛片av蜜桃av| xxx大片免费视频| 日韩精品免费视频一区二区三区 | 欧美三级亚洲精品| 国产精品嫩草影院av在线观看| 人妻夜夜爽99麻豆av| 狂野欧美激情性bbbbbb| 街头女战士在线观看网站| 成人二区视频| 久久久久精品久久久久真实原创| 精品人妻一区二区三区麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 午夜视频国产福利|