• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unveiling localized electronic properties of ReS2 thin layers at nanoscale using Kelvin force probe microscopy combined with tip-enhanced Raman spectroscopy

    2023-12-02 09:29:36YuLuo羅宇WeitaoSu蘇偉濤JuanjuanZhang張娟娟FeiChen陳飛KeWu武可YijieZeng曾宜杰andHongweiLu盧紅偉
    Chinese Physics B 2023年11期
    關(guān)鍵詞:陳飛

    Yu Luo(羅宇), Weitao Su(蘇偉濤),?, Juanjuan Zhang(張娟娟), Fei Chen(陳飛),Ke Wu(武可), Yijie Zeng(曾宜杰), and Hongwei Lu(盧紅偉)

    1School of Sciences,Hangzhou Dianzi University,Hangzhou 310018,China

    2Hunan Petrochemical Vocational Technology College,Yueyang 414011,China

    3College of Materials and Environmental Engineering,Hangzhou Dianzi University,Hangzhou 310018,China

    Keywords: few layer ReS2,tip enhanced Raman spectroscopy,local strain,Kelvin probe force microscopy

    1.Introduction

    Two-dimensional (2D) transition metal dichalcogenides(TMDs) have drawn much attention recently owing to their unique layered structures and excellent physical properties.[1–4]Rhenium disulfide (ReS2) is an important member of these layered TMDs, in terms of its unique anisotropic optical and electronic properties.[5–7]ReS2has a distorted 1T structure as its stable phase.[8]In (100) plane,the atoms of a ReS2layer exist in the form of strong covalent bonds, while the neighboring layers are stacked by weak van der Waals force along[001]direction.[5]At the same time,the metallic Re–Re bond causes the Re4 atomic cluster to form highly oriented Re–Re chains along the lattice direction of theb-axis, [010], forming two rhombic edges with an included angle of 118.97?from thea-axis,[9]which lowers the crystal symmetry.Due to such an unique structure,the optical,electrical,and optoelectronic properties of ReS2thin layers exhibit significant in-plane and out-of-plane anisotropy.[7,10]Moreover, the band structure of ReS2thin layers is independent of the layer thickness, i.e., both single-layer and multi-layer ReS2possess direct-band gaps.[9]Compared to other conventional TMDs, ReS2provides a wider range for exploring advanced electronic and optoelectronic devices,such as logic inverters with higher amplification gain,[11]higher performance field effect transistors,[12]and high-sensitivity polarized light detection.[13]

    For a new generation atomic scale device manufactured using ReS2thin layers, hardly removed imperfect structures,such as strain,[14]twin boundaries,[15]domain boundaries,[16]are expected to induce localized energy band structure and electronic properties at nanoscale region neighboring these imperfect structure.Probing localized electronic properties induced by these imperfect structures demands an analytic tool with nanoscale spatial resolution.Based on electrostatic interactions, Kelvin probe force microscopy (KPFM) performs as an useful tool to obtain the surface potential changes.[17,18]In a dual pass scan of conventional KPFM, the surface morphology is obtained in the first scan by employing an conductive atomic force microscopy(AFM)probe working at tapping mode,then the contact potential difference(CPD)is obtained in the second scan by lifting the probe and maintaining it at a settled height.[19]The electrostatic force between the tip and the sample is not simply the interaction between the tip apex and a certain point of the sample,but the averaged interaction with a larger sample area under the probe apex.[20]Therefore,the obtained CPD is the averaged potential of this large area and affected by the lifting height and diameter of tip apex,resulting in a few hundreds of nanometers in spatial resolution for conventional KPFM,[21,22]and it is difficult to characterize nanoscale localized electrical properties.

    Tip-enhanced Raman spectroscopy (TERS), which utilizes the localized surface plasmon resonance (LSPR), lighting rod effect and tip-substrate coupling effect,[23–26]etc.,has emerged as a novel tool to investigate localized optical and electronic properties of TMDs.[26–33]Due to the strongly localized electric field at the tip apex, the spatial resolution of TERS can be several nanometers under ambient conditions[28,34]and even sub-nanometer at helium temperature.[34,35]However, to the best of our knowledge,TERS has not been implemented into characterizing physical properties of ReS2thin layers so far.In this work, TERS is combined with KPFM to study localized electronic properties of few-layer ReS2flakes mechanically exfoliated on rough gold thin films.We obtain the local strain of ReS2bubbles using tip-enhanced Raman spectroscopy and then inversely calculate the CPD changes at the nanoscale.This method overcomes low spatial resolution of conventional KPFM and can be used to characterize localized electrical properties of thinlayer TMDs with higher spatial resolution at nanoscale.

    2.Experimental details

    Few-layer ReS2flakes with low density of defects were mechanically exfoliated from a high-quality ReS2crystal(Xianfeng Nano) onto gold thin films (40 nm) coated on Si/SiO2(300 nm) substrates.Optical images of the samples were captured by an optical microscope (Olympus BX53).Far-field Raman and photoluminescence spectra were collected on a Horiba NanoRaman system(LabRAM HR Nano,HORIBA Scientific,France)in top illumination.The 532 nm excitation laser was focused onto the sample via a 100×Olympus objective lens (NA=0.9).The laser power at the sample surface was controlled below 100 μW to avoid the overheating effect.TERS measurements were conducted using the same HORIBA NanoRaman system.A He–Ne laser(632.8 nm) was focused onto the apex of Au-coated AFM tips (k=2.7 N/m,f=60 kHz, HORIBA Scientific, France)in side-illumination geometry at an angle of 60?using a 100×long working distance(6 mm)objective lens(Mitutoyo,Japan, 0.7 NA).TERS spectra were obtained using 150 and 1800 lines/mm gratings and an electron-multiplying chargedcoupled device detector(HORIBA Scientific,France).

    KPFM measurements were performed on the scanning probe microscopy(SPM)unit of the same HORIBA NanoRaman system.Au-coated TERS probes were directly used for the AFM and KPFM measurements.KPFM measurements were performed by lifting the AFM probes 10 nm away from the sample surface.

    3.Results and discussion

    Optical image of a ReS2multi-layer flake deposited on a Au thin film is presented in Fig.1(a).The area with lightest contrast can be tentatively assigned to 1L.The areas with gradually increasing contrast can be tentatively assigned to 2L and 3L.The area with darkest contrast can be assigned to thick layer (tL).AFM topographic and phase images of a marked area in Fig.1(a)are shown in Fig.1(b)and Fig.S1 in the supporting information.Due to large surface roughness of the Au thin film, the 1L area is hardly seen in the topographic image, but can be easily found in the phase image (Fig.S1).A height profile across the terrace between 1L and 3L along the arrowed line in Fig.1(b)is plotted as an inset[Fig.1(b)].The thickness difference between 1L and 3L can be determined to be 1.8 nm.The thickness of 3L was determined to be 2.8 nm by using the height line profiles across 3L and tL (Fig.S2),while the thickness of 1L can be determined to be 1 nm,which agree well with the literatures.[10,36]By combining the optical,height and phase images, this ReS2flake can be quarantined into areas with different layer thickness shown in Fig.1(b).

    A CPD image of the ReS2area corresponding to Fig.1(b)is presented in Fig.1(c).The 1L area has highest CPD as 0.31±0.02 V.For 2L, 3L and tL, their CPDs gradually decrease to 0.24±0.01 V,0.23±0.01 V and 0.22±0.01 V,respectively.The Fermi level (Ef) of 1L, 2L, 3L and tL can be calculated to be 4.59±0.02, 4.66±0.01, 4.68±0.01 and 4.68±0.01 eV,respectively,by using the equation[37]

    whereΦA(chǔ)uis the work function of Au tip (4.9 eV).The measured values of ReS2thin layers are in good agreement with the theoretical value (4.63 eV) obtained using the DFT calculation.[38]

    Zoomed-in topographic and CPD images of a 3L area marked in Fig.1(c) are shown in Figs.1(d) and 1(e), respectively.Due to the large particle size (averaged diameter~70 nm)and high roughness(RMS roughness,RMS=3.1 nm)of the gold particles,the ReS2area also gives large roughness of RMS=1.9 nm(Fig.S3).This indicates the 3L ReS2bends into bubbles in order to follow the roughness of the gold particles.The bubble like feature is much clear at the edge of this ReS2flake (Fig.S3).When the ReS2thin layer forms a bubble-like structure covering gold particles, biaxial strain is expected to be generated.For a bubble with a heighthand a diameterR, the biaxial strain at the crest can be calculated using the equation[39,40]

    whereδ(ν)is a parameter that only depends on Poisson’s ratioν.For ReS2with an averageν=0.225,[41]δ(ν)can be set to be 0.6.The strain distributions of the bubbles are also calculated based on the membrane theory of solid mechanics[42](Note 1 in the supporting information), which is exemplified in Fig.S4.

    In the CPD image shown in Fig.1(e), the CPD value at the valley of bubbles is hard to be determined due to large noise.Moreover, the low spatial resolution of KPFM scan(49.6±18.9 nm,Fig.S5)also inhibits the accurate imaging of the CPD distribution in the whole ReS2bubble area.Luckily the CPDs at crest of some bubbles can still be obtained.The CPDs at crests 14 bubbles(see Figs.S6a and S6b for their locations)were measured and plotted as a function of their strain calculated using Eq.(2),as shown by scatters in Fig.1(f).The CPD as a function of strain at the crest of bubble calculated based on the membrane theory are also plotted as scatters in Fig.1(f), which agrees well with the calculated results using Eq.(2)when strain>0.2%,indicating the validity of the calculations using Eq.(2).These CPDs can be well fitted by a 4thorder polynomial function of strain as follows:

    The fitted data is plotted as a solid line in Fig.1(f).Best fit gives a V-shape curve with the minimum CPD at strain of 0.2%.The trend of the CPD–strain curve in strain>0.2%agrees well with that of ReS2bubbles reported by Longet al.[43]The measured CPD of ReS2is inversely proportional to its Fermi level, which has been defined aswhereEc(Ev) andmdp(mde) are the energies of conduction band minima (valence band maxima) and effective mass of hole(electron)at theΓpoint of the first Brillouin zone.[44]According to the previous reports,[45,46]Ec,Ev,mdpandmdeare all dependent on the loaded strain.Detailed quantitative analysis of the V-shape relationship betweenEfand strain needs to further consider the in-plane anisotropic electronic properties, which is still ongoing and will be reported in the near future.It should be noted that the relationship of Eq.(3) is obtained by using the strain and CPDs at crests of the bubbles.Because the strain varies from the bottom to the crest of a bubble,the local strain induced CPD variation in the whole area of a bubble cannot be directly obtained by Eq.(3).

    ReS2belongs to thePgroup.Bulk ReS2has 36 phonon modes including 18 Raman active Agmodes, 15 infrared active Aumodes and 3 acoustic Aumodes.[47]Raman spectra of 1L, 2L, 3L and tL ReS2are plotted in Fig.1(g).Six Raman peaks between 100 cm-1and 250 cm-1can be assigned to Agmodes annotated as A1(~137 cm-1), A2(~143 cm-1), A3(151 cm-1), A4(161 cm-1), A5(212 cm-1)and A6(235 cm-1), of which the peak positions agree well with the reported data.[47,48]Raman peak positions of A3,A4and A5modes as a function of layer numbers are plotted in Fig.1(h).All these three modes redshift for~0.5 cm-1from 1L to tL, which is in agreement with the results reported in the literature[10,49]and can be correlated to the plane bond length contraction and lateral deformation caused by interlayer coupling.[50]

    The optical configuration of the TERS setup is shown by a scheme presented in Fig.2(a).Briefly, a He–Ne laser(632.8 nm)is focused onto the apex of a plasmonic gold coated silicon probe at an angle of 30?via a long working distance lens(see experimental section for details).1L,2L and 3L areas were moved to the TERS probe by a piezostage.The obtained tip-in[containing near field(NF)and far field(FF)]and tip-out (FF) Raman spectra are plotted in Fig.2(b).Because the 150/mm grating gives a spectral resolution of~4 cm-1,fine Raman peaks in Fig.1(g)cannot be fully scrutinized.The Raman band B1 at~150 cm-1is predominantly merged by A3and A4peaks,while band B2 at~220 cm-1was merged by Raman peaks of A5and A6(see Fig.S7 for the deconvolution of B1 and B2 bands).The TERS spectra of ReS2exhibit a layer number and peak dependent enhancement.Single-layer ReS2has the strongest enhancement for B1 and B2 bands.The enhancement roughly decreases as the layer number increases from 1L to 3L.However, for thick layer, the enhancement of B1 and B2 becomes slightly larger than that of 3L.The enhancement contrasts of different layers can be calculated by usingC=(Itip-in-Itip-out)/Itip-out,[51]whereItip-inandItip-outare intensities of Raman bands B1 and B2 measured at tipin and tip-out, respectively.The calculated contrasts of B1 and B2 bands of different layers are plotted as opened circles in Fig.2(c).For 1L the contrasts of B1 and B2 are calculated to be 0.76 and 0.23, respectively; while for 3L, the contrasts of B1 and B2 decrease to be 0.04 and 0.15, respectively.The enhancement factors are further calculated by using EF=C×D2focus/d2tip, whereDfocusanddtipare diameters of laser focus and TERS spatial resolution,[52]and can be set to be 1000 nm and 10 nm,[30]respectively.In a TERS system operated in gap mode, the TERS intensity decays exponentially with the increasing distance from tip apex to the metallic thin film.As the layer thickness of ReS2increases, the gap size is also enlarged, which decreases the enhancement factor.[31]An exponential decay function of enhancement factor,EF ∝e(d-d0)/D,in whichDis a parameter that quantifies the enhanced optical field confinement at the tip apex along the longitudinal direction of the tip axis,[53]is used to fit the enhancement factor of ReS2B1 band as a function of layer thickness.Best fitting yields a decay constantDof 0.88 nm,which is very close to the thickness of 1L(Fig.S8).

    In further TERS analysis of ReS2,the strain induced relative peak intensity change and peak shift need to be considered.Liet al.[54]calculated the Raman intensity of A3and A4using the density function theory(DFT)and indicated that their intensity ratio can be enlarged fromIA3/IA4<1 to>1 either at tensile or at compressive strain.In the case of strong TERS enhancement like 1L ReS2, this would not give strong influence.However, in the case of weak TERS enhancement obtained for 3L ReS2, the local strain induced peak intensity ratio change may be larger than that of enhancement.The unusual stronger enhancement of Raman band B2 than that of B1 shown in Fig.2(c)is supposed to be induced by this factor.

    In TERS analysis of strained ReS2,peak shift also needs to be considered.In a usual TERS enhancement analysis in which the peak shift is negligible, a pure NF signal is easily obtained by subtracting the FF signal from the NF [see the simulation shown in Figs.3(a) and 3(b)].For a local biaxial strain existing on a ReS2bubble,Raman peaks A3and A4are supposed to shift referring to their far-field positions.In the case of weak enhancement, either red shift (RF) or blue shift (BF) of NF signal causes a distorted Raman peak when subtracting the FF from the NF [see the simulation shown in Figs.3(a)and 3(b)].The position of the positive peak can still be used as the peak position of the pure NF signals for further calculations,which only gives negligible errors.

    The Raman signal of 1L and 2L ReS2is much weaker than that of 3L ReS2[Fig.2(b)], indicating that much longer exposure time is needed at each pixel to get useful TERS spectra.Notably, tL ReS2has strong Raman signals, whereas the enhancement is much weaker.Therefore,TERS line scan was conducted on 3L so as to balance the TERS enhancement and the exposure time.An AFM topographic image of a 3L ReS2area is presented in Fig.3(c).TERS line scan was conducted in the marked area of Fig.3(c).The scanned area is 200×20 nm with 20×2 pixels.The obtained TERS spectra are stacked and shown in Fig.3(d).Compared to the peak position measured at the bottom of the bubble, both Raman peak A3 and A4 redshift by 0.5–1 cm-1at the crest of the bubble.The second line scan (line 2, from pixel 21 to 40) shows similar red shift analogy to the first line scan(line 1, from pixel 1 to 20),indicating the reproducibility of the measurements.In the measured bubble area,no defects or impurities can be seen either in AFM height[Fig.3(c)]or in CPD images.Therefore,the Raman shift can be attributed to the bubble induced strain rather than impurities or defects.The A3, A4and A5peak positions of the scanned pixels are obtained by fitting the subtracted NF spectra using Lorentzian functions and plotted as scatters in Fig.3(e).These TERS peak positions as a function of positions across the bubble are further fitted by quadratic polynomial functions,as shown by solid lines in Fig.3(e).

    The strain induced Raman peak shift can be expressed as[55–57]

    whereω0is the Raman peak position at zero strain, which was determined from ReS2flakes mechanically exfoliated on SiO2(300 nm)/Si substrates;γis Gr¨uneisen parameter;εrandεθare the strains along radial and circumferential directions,respectively.

    The loaded forceFleading to the radial and circumferential strains can be expressed as[56]

    whereEis Young’s modulus,dis the thickness of the flake.With Poisson’s ratioν=0.225,εris calculated to be 8.6 times larger thanεθ.Therefore,for a ReS2bubble the radial strain is predominant,while the circumferential strain is negligible and can be neglected.

    According to the theoretical calculations,theγvalues for A3, A4, and A5peaks are 1.4, 1.3, and 2.8, respectively.[58]The strains at different positions across the ReS2bubble can be calculated through Eq.(4) by using Raman peak shifts of A3, A4and A5.The obtained strains using A3, A4and A5peaks are averaged to eliminate the random errors, which are further plotted in Fig.3(f).The largest tensile strain of 0.34%is seen at the crest of the bubble, while the smallest tensile strain of 0.18%is seen at the bottom of the bubble.

    Using this strain distribution curve as the working curve,we calculate the CPD as a function of position by employing Eq.(3),as plotted in Fig.3(f).It is worth noting that the spatial resolution of CPD calculated using Raman shift is strongly dependent on the pixel size of TERS line scan.The typical spatial resolution of our TERS system is better than 10 nm,indicating that the spatial resolution of this method is also better than 10 nm.Such a spatial resolution is~5 times better than that of the KPFM measurement.The localized electronic properties of other TMDs are expected to be measured at nanoscale by using this method.

    4.Conclusions

    In summary, we have proposed to characterize localized electronic properties of a ReS2thin layer by combining TERS with conventional KPFM measurement.The strain at different positions of a ReS2bubble can be obtained from the TERS peak shift by using Gr¨uneisen relationship.The local CPD at nanoscale is further obtained by using the strain-CPD relationship obtained via conventional KPFM instrument.The spatial resolution of the proposed method only depends on the spatial resolution of TERS and can be potentially improved to be several nanometers,which is<1/5 of that of conventional KPFM measurements.It is worth noting that this method is also applicable to other 2D materials in which local strain is the major factor modulating the localized electronic properties.This method breaks the spatial resolution limitation of conventional KPFM measurement and paves the way of characterizing the localized electronic properties with an alternative optical spectral method.

    Acknowledgments

    Project supported by the Zhejiang Provincial Natural Science Foundation of China (Grant No.LZ22A040003) and the National Natural Science Foundation of China (Grant No.52027809).

    猜你喜歡
    陳飛
    我家的虎皮鸚鵡
    阿司匹林,天天在吃,但你可能從一開始就沒吃對
    祝您健康(2023年9期)2023-09-05 02:06:28
    溫暖的輸液瓶子
    故事會(2022年13期)2022-07-05 04:43:59
    灌籃高手的那年夏天
    大志創(chuàng)新業(yè) 丹心報國恩——記全國僑聯(lián)新僑創(chuàng)新創(chuàng)業(yè)聯(lián)盟理事陳飛
    華人時刊(2020年19期)2021-01-14 01:17:04
    女士(2017年10期)2017-11-01 22:30:56
    分憂(2017年6期)2017-06-07 21:40:42
    岳母,請把老婆還給我
    伴侶(2017年1期)2017-01-10 17:49:49
    如果愛,請別深愛
    新青年(2016年8期)2016-08-04 12:30:54
    經(jīng)濟(jì)全球化、貧富分化與社會保障
    国产色婷婷99| 秋霞在线观看毛片| 国国产精品蜜臀av免费| 少妇丰满av| 国产一区二区三区av在线| 一区二区三区精品91| 汤姆久久久久久久影院中文字幕| 亚洲精品视频女| 午夜福利在线在线| 男人狂女人下面高潮的视频| 国产精品99久久99久久久不卡 | 老司机影院成人| 欧美极品一区二区三区四区| 国产在线免费精品| 久久精品国产自在天天线| 丰满迷人的少妇在线观看| 日韩 亚洲 欧美在线| 夜夜爽夜夜爽视频| 亚洲最大成人中文| 婷婷色综合大香蕉| 精品午夜福利在线看| 亚洲av男天堂| 日韩av不卡免费在线播放| 高清午夜精品一区二区三区| 国产精品.久久久| 三级经典国产精品| 夫妻性生交免费视频一级片| 午夜福利在线观看免费完整高清在| 亚洲电影在线观看av| 日本-黄色视频高清免费观看| 全区人妻精品视频| 日本黄大片高清| 欧美精品一区二区大全| 日韩人妻高清精品专区| 2022亚洲国产成人精品| 久久综合国产亚洲精品| 亚洲精品国产av蜜桃| 精品少妇黑人巨大在线播放| 免费播放大片免费观看视频在线观看| 校园人妻丝袜中文字幕| 久久精品国产亚洲av天美| 黄色配什么色好看| 美女主播在线视频| 欧美成人a在线观看| 成年av动漫网址| 国产欧美亚洲国产| av免费在线看不卡| 五月天丁香电影| 国产一区有黄有色的免费视频| 欧美日韩综合久久久久久| 99久久精品热视频| 性色avwww在线观看| 国产在线一区二区三区精| 亚洲中文av在线| 一区在线观看完整版| 欧美一区二区亚洲| 成年av动漫网址| 免费av不卡在线播放| 久久精品久久久久久噜噜老黄| 免费观看无遮挡的男女| 亚洲不卡免费看| 精品酒店卫生间| 日韩中字成人| 亚洲国产最新在线播放| 国产日韩欧美亚洲二区| 国产熟女欧美一区二区| 一级a做视频免费观看| av女优亚洲男人天堂| 成人综合一区亚洲| 中文字幕av成人在线电影| 亚洲精品国产色婷婷电影| 狂野欧美白嫩少妇大欣赏| 成人午夜精彩视频在线观看| 免费人妻精品一区二区三区视频| 高清不卡的av网站| 观看免费一级毛片| 亚洲精品视频女| 久久久久人妻精品一区果冻| 亚洲精品456在线播放app| 99re6热这里在线精品视频| 欧美日韩视频精品一区| 丰满少妇做爰视频| 观看免费一级毛片| 人妻夜夜爽99麻豆av| 国产成人精品婷婷| 国产中年淑女户外野战色| 国产精品不卡视频一区二区| 欧美bdsm另类| 久久午夜福利片| 97在线人人人人妻| 最近中文字幕2019免费版| 国产永久视频网站| 日本av手机在线免费观看| 夜夜骑夜夜射夜夜干| 亚洲不卡免费看| 国产有黄有色有爽视频| 亚洲精品国产色婷婷电影| 成年免费大片在线观看| 十八禁网站网址无遮挡 | 人人妻人人添人人爽欧美一区卜 | 天天躁夜夜躁狠狠久久av| 国产精品欧美亚洲77777| 久久精品夜色国产| 久久久久国产网址| 亚洲精品色激情综合| 中文乱码字字幕精品一区二区三区| 久久精品熟女亚洲av麻豆精品| 天天躁夜夜躁狠狠久久av| 欧美性感艳星| 精品亚洲成a人片在线观看 | 久久久久久久国产电影| 两个人的视频大全免费| 黄色怎么调成土黄色| 久久久久久久大尺度免费视频| 国产黄片美女视频| 亚洲av.av天堂| 日本欧美国产在线视频| 日韩成人伦理影院| 亚洲成人中文字幕在线播放| 亚洲婷婷狠狠爱综合网| 国产又色又爽无遮挡免| 最黄视频免费看| 18禁在线无遮挡免费观看视频| 精品亚洲成a人片在线观看 | 亚洲av在线观看美女高潮| 美女脱内裤让男人舔精品视频| 又粗又硬又长又爽又黄的视频| 久久国内精品自在自线图片| 亚洲无线观看免费| 各种免费的搞黄视频| 亚洲精品日本国产第一区| 国产精品国产av在线观看| 亚洲美女黄色视频免费看| 久久精品国产亚洲网站| 欧美日本视频| 精品国产乱码久久久久久小说| 亚洲国产最新在线播放| 青春草视频在线免费观看| 亚洲av中文av极速乱| 91在线精品国自产拍蜜月| 新久久久久国产一级毛片| 两个人的视频大全免费| 久久久精品94久久精品| 午夜福利影视在线免费观看| 我要看黄色一级片免费的| 午夜日本视频在线| 亚洲伊人久久精品综合| 十分钟在线观看高清视频www | 国内少妇人妻偷人精品xxx网站| 深夜a级毛片| 免费观看性生交大片5| 欧美日韩亚洲高清精品| 国产成人精品福利久久| 亚洲国产av新网站| 美女cb高潮喷水在线观看| 成年女人在线观看亚洲视频| 日韩av在线免费看完整版不卡| 欧美国产精品一级二级三级 | 最近最新中文字幕大全电影3| 国产免费福利视频在线观看| 黑人猛操日本美女一级片| 免费在线观看成人毛片| 联通29元200g的流量卡| 久久精品国产亚洲av涩爱| 高清黄色对白视频在线免费看 | 国产黄片视频在线免费观看| 成人一区二区视频在线观看| 街头女战士在线观看网站| 王馨瑶露胸无遮挡在线观看| 欧美变态另类bdsm刘玥| 国产午夜精品久久久久久一区二区三区| 六月丁香七月| 日韩欧美一区视频在线观看 | 亚洲欧美日韩卡通动漫| 国产高清三级在线| 精品国产乱码久久久久久小说| 日本欧美国产在线视频| 伦理电影大哥的女人| 欧美精品国产亚洲| 国产深夜福利视频在线观看| 日韩av在线免费看完整版不卡| 亚洲aⅴ乱码一区二区在线播放| 免费黄频网站在线观看国产| 日本色播在线视频| 国产黄色视频一区二区在线观看| av天堂中文字幕网| 99九九线精品视频在线观看视频| 免费少妇av软件| 一区二区三区精品91| 欧美日韩国产mv在线观看视频 | 嫩草影院入口| 亚洲无线观看免费| 国产精品免费大片| av在线app专区| 亚洲激情五月婷婷啪啪| 亚洲va在线va天堂va国产| 国产伦精品一区二区三区四那| 精华霜和精华液先用哪个| 亚洲欧美清纯卡通| 亚洲性久久影院| 99久久精品热视频| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品自产自拍| av在线播放精品| 日本欧美视频一区| 免费播放大片免费观看视频在线观看| 三级国产精品片| 国产男女超爽视频在线观看| 国产黄片视频在线免费观看| 人人妻人人看人人澡| 国产精品秋霞免费鲁丝片| 国产成人aa在线观看| 黄色一级大片看看| 国产精品一区二区在线不卡| 男女无遮挡免费网站观看| 日本色播在线视频| 久久久久性生活片| 边亲边吃奶的免费视频| 精品久久久精品久久久| 国产探花极品一区二区| 一边亲一边摸免费视频| 老师上课跳d突然被开到最大视频| 男女边摸边吃奶| 精品久久久久久久末码| 色5月婷婷丁香| 最近最新中文字幕免费大全7| 美女高潮的动态| 美女脱内裤让男人舔精品视频| 成人漫画全彩无遮挡| 久久久a久久爽久久v久久| 深夜a级毛片| 国产片特级美女逼逼视频| 成人高潮视频无遮挡免费网站| 又粗又硬又长又爽又黄的视频| 纯流量卡能插随身wifi吗| av网站免费在线观看视频| 美女福利国产在线 | 亚洲国产欧美在线一区| 狠狠精品人妻久久久久久综合| 国产爱豆传媒在线观看| 国产亚洲精品久久久com| 日韩,欧美,国产一区二区三区| 一边亲一边摸免费视频| 又黄又爽又刺激的免费视频.| 日本色播在线视频| 色视频www国产| 欧美日韩一区二区视频在线观看视频在线| 男男h啪啪无遮挡| 91精品一卡2卡3卡4卡| 国产欧美另类精品又又久久亚洲欧美| 国产久久久一区二区三区| 亚洲激情五月婷婷啪啪| 在线免费十八禁| 国产精品一区二区在线观看99| 国产视频首页在线观看| 成人综合一区亚洲| 少妇人妻久久综合中文| 狠狠精品人妻久久久久久综合| 午夜日本视频在线| 丝袜脚勾引网站| 国产精品一区二区在线观看99| 美女xxoo啪啪120秒动态图| 国产色婷婷99| 久久久久视频综合| 老师上课跳d突然被开到最大视频| 成人黄色视频免费在线看| 国产黄色视频一区二区在线观看| av在线蜜桃| 欧美成人a在线观看| 国产伦在线观看视频一区| 国产亚洲91精品色在线| 免费黄频网站在线观看国产| 99热网站在线观看| 欧美高清性xxxxhd video| 一区二区三区精品91| 国产片特级美女逼逼视频| 国产高清不卡午夜福利| 亚洲色图综合在线观看| 亚洲精华国产精华液的使用体验| 日韩av免费高清视频| 精品亚洲乱码少妇综合久久| 男女下面进入的视频免费午夜| 日韩一区二区三区影片| 成人毛片a级毛片在线播放| 亚洲国产最新在线播放| 亚洲无线观看免费| av一本久久久久| 观看免费一级毛片| 又大又黄又爽视频免费| 少妇熟女欧美另类| 亚洲精品亚洲一区二区| 亚洲欧美中文字幕日韩二区| 日本-黄色视频高清免费观看| 久久韩国三级中文字幕| 国产成人精品福利久久| 国精品久久久久久国模美| 中文资源天堂在线| 91久久精品国产一区二区三区| 国产色爽女视频免费观看| 精品国产三级普通话版| 18禁动态无遮挡网站| 在线观看免费日韩欧美大片 | 国产亚洲精品久久久com| 成人亚洲精品一区在线观看 | 少妇的逼水好多| 精品午夜福利在线看| 高清在线视频一区二区三区| 少妇人妻久久综合中文| 国产中年淑女户外野战色| 性高湖久久久久久久久免费观看| 精品久久久久久电影网| 综合色丁香网| 日韩一区二区三区影片| 岛国毛片在线播放| 日日撸夜夜添| 欧美精品亚洲一区二区| 男人添女人高潮全过程视频| 插逼视频在线观看| 色哟哟·www| 国产视频内射| 一个人看的www免费观看视频| 日本猛色少妇xxxxx猛交久久| 亚洲精品456在线播放app| 精品酒店卫生间| 男女下面进入的视频免费午夜| 免费观看无遮挡的男女| 国产免费又黄又爽又色| 欧美xxⅹ黑人| 欧美bdsm另类| 色婷婷久久久亚洲欧美| 国产精品人妻久久久久久| 精品国产乱码久久久久久小说| 久久久久网色| 亚洲,欧美,日韩| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美一区二区三区国产| 久久久久国产网址| 中文精品一卡2卡3卡4更新| 欧美丝袜亚洲另类| 国产精品一区二区在线观看99| 日本猛色少妇xxxxx猛交久久| 晚上一个人看的免费电影| 肉色欧美久久久久久久蜜桃| 国产高清国产精品国产三级 | 深爱激情五月婷婷| 99re6热这里在线精品视频| 中国国产av一级| 午夜视频国产福利| 舔av片在线| 18+在线观看网站| 亚洲国产欧美人成| 欧美97在线视频| 日韩三级伦理在线观看| 又爽又黄a免费视频| 国内揄拍国产精品人妻在线| 精品亚洲乱码少妇综合久久| 亚洲一级一片aⅴ在线观看| 亚洲精品一区蜜桃| 中国三级夫妇交换| 夜夜爽夜夜爽视频| 97在线视频观看| 亚洲丝袜综合中文字幕| 欧美国产精品一级二级三级 | 久久久午夜欧美精品| 亚洲精品第二区| 亚洲精品日韩在线中文字幕| 国产乱来视频区| 欧美亚洲 丝袜 人妻 在线| 51国产日韩欧美| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影小说 | 日韩中文字幕视频在线看片 | 成人18禁高潮啪啪吃奶动态图 | 国产无遮挡羞羞视频在线观看| 国产黄频视频在线观看| 亚洲精品中文字幕在线视频 | 最近最新中文字幕免费大全7| videos熟女内射| 十分钟在线观看高清视频www | 在线播放无遮挡| 国产精品爽爽va在线观看网站| 在线播放无遮挡| 欧美一区二区亚洲| 岛国毛片在线播放| 午夜老司机福利剧场| 国产黄片美女视频| 最后的刺客免费高清国语| 日本免费在线观看一区| 国产精品嫩草影院av在线观看| 大话2 男鬼变身卡| 女性被躁到高潮视频| 91久久精品电影网| 99热全是精品| 欧美亚洲 丝袜 人妻 在线| 最近手机中文字幕大全| 一个人看的www免费观看视频| 王馨瑶露胸无遮挡在线观看| 九草在线视频观看| 久久人人爽av亚洲精品天堂 | 好男人视频免费观看在线| 成人免费观看视频高清| 成人无遮挡网站| av.在线天堂| 热99国产精品久久久久久7| 午夜福利网站1000一区二区三区| 少妇熟女欧美另类| 美女主播在线视频| 中文字幕人妻熟人妻熟丝袜美| 国产精品av视频在线免费观看| 国产乱人偷精品视频| 色婷婷av一区二区三区视频| 成人综合一区亚洲| 久久久久人妻精品一区果冻| 看免费成人av毛片| 18禁裸乳无遮挡免费网站照片| 精品熟女少妇av免费看| 51国产日韩欧美| 自拍偷自拍亚洲精品老妇| 干丝袜人妻中文字幕| 观看av在线不卡| 精品99又大又爽又粗少妇毛片| 搡女人真爽免费视频火全软件| av线在线观看网站| 黑人高潮一二区| 免费少妇av软件| 国国产精品蜜臀av免费| 久久精品国产亚洲av涩爱| 91精品国产国语对白视频| 国产精品一区二区在线观看99| 婷婷色综合www| 成人毛片a级毛片在线播放| 久久人人爽人人片av| 久久国产乱子免费精品| 又爽又黄a免费视频| 亚洲av福利一区| 午夜免费男女啪啪视频观看| av在线播放精品| 久久久久久久久久人人人人人人| 一本一本综合久久| freevideosex欧美| 狠狠精品人妻久久久久久综合| 亚洲av男天堂| 久久久精品免费免费高清| 18禁在线播放成人免费| 亚洲成色77777| av不卡在线播放| 男女边摸边吃奶| 一级av片app| 99久久精品热视频| 亚洲丝袜综合中文字幕| 天美传媒精品一区二区| 人体艺术视频欧美日本| a 毛片基地| av在线观看视频网站免费| 91精品国产九色| 搡女人真爽免费视频火全软件| 亚洲人成网站高清观看| 我要看日韩黄色一级片| 亚洲色图av天堂| 日本欧美国产在线视频| 国产精品偷伦视频观看了| 久久久久久久国产电影| 永久免费av网站大全| 婷婷色综合www| 天天躁夜夜躁狠狠久久av| 婷婷色av中文字幕| 亚洲av成人精品一二三区| 亚洲人成网站高清观看| 国产精品精品国产色婷婷| 性高湖久久久久久久久免费观看| 热99国产精品久久久久久7| 久久久午夜欧美精品| 亚洲精品国产av蜜桃| 黑人高潮一二区| 欧美高清成人免费视频www| 亚洲欧美日韩卡通动漫| 国产免费福利视频在线观看| 性色av一级| 男女下面进入的视频免费午夜| 99热这里只有是精品50| 久久综合国产亚洲精品| 国产av码专区亚洲av| 欧美xxxx性猛交bbbb| 欧美日韩视频精品一区| 国产色爽女视频免费观看| 91久久精品国产一区二区三区| www.av在线官网国产| 最近手机中文字幕大全| 蜜臀久久99精品久久宅男| 欧美高清性xxxxhd video| 又粗又硬又长又爽又黄的视频| 91狼人影院| 亚洲高清免费不卡视频| 中文字幕av成人在线电影| 亚洲av不卡在线观看| 五月玫瑰六月丁香| 国产精品99久久久久久久久| 丰满少妇做爰视频| 汤姆久久久久久久影院中文字幕| 啦啦啦啦在线视频资源| 精品人妻视频免费看| 香蕉精品网在线| 国产精品福利在线免费观看| 国产精品嫩草影院av在线观看| 黑丝袜美女国产一区| 免费大片18禁| 十八禁网站网址无遮挡 | 插阴视频在线观看视频| 亚洲经典国产精华液单| 91在线精品国自产拍蜜月| 久久av网站| 搡老乐熟女国产| 久久亚洲国产成人精品v| 夫妻午夜视频| 亚洲av中文字字幕乱码综合| 黑人猛操日本美女一级片| 小蜜桃在线观看免费完整版高清| 久久久精品94久久精品| 少妇的逼水好多| 中国国产av一级| 伦精品一区二区三区| 日本爱情动作片www.在线观看| 久久久久久久久久成人| 亚洲精品久久午夜乱码| 日本黄色日本黄色录像| 国产高清有码在线观看视频| 伊人久久精品亚洲午夜| av在线播放精品| 性高湖久久久久久久久免费观看| 毛片一级片免费看久久久久| 久久国产精品大桥未久av | 成人午夜精彩视频在线观看| 国产精品久久久久久av不卡| 亚洲精品自拍成人| 丝瓜视频免费看黄片| a级毛片免费高清观看在线播放| 国产成人精品福利久久| 熟女人妻精品中文字幕| 久久久久精品久久久久真实原创| av专区在线播放| 国产成人a∨麻豆精品| 日韩av不卡免费在线播放| 丝瓜视频免费看黄片| 欧美老熟妇乱子伦牲交| 一级毛片久久久久久久久女| 高清视频免费观看一区二区| 亚洲精品日韩av片在线观看| 成人漫画全彩无遮挡| 久久婷婷青草| 国产成人精品婷婷| 久久这里有精品视频免费| 国产高清国产精品国产三级 | 精品国产乱码久久久久久小说| 国产爽快片一区二区三区| 日日撸夜夜添| 午夜免费观看性视频| 欧美少妇被猛烈插入视频| 80岁老熟妇乱子伦牲交| 91久久精品国产一区二区三区| 国产精品人妻久久久久久| 视频中文字幕在线观看| 亚洲色图av天堂| 午夜福利影视在线免费观看| 国产免费一级a男人的天堂| 色婷婷久久久亚洲欧美| 午夜日本视频在线| 国产精品伦人一区二区| 日本午夜av视频| 欧美成人午夜免费资源| 十分钟在线观看高清视频www | 中文字幕制服av| 七月丁香在线播放| 亚洲三级黄色毛片| 国产精品精品国产色婷婷| 黄色一级大片看看| 日韩免费高清中文字幕av| 边亲边吃奶的免费视频| av线在线观看网站| 欧美性感艳星| av在线蜜桃| 高清毛片免费看| 91久久精品国产一区二区三区| 全区人妻精品视频| 女的被弄到高潮叫床怎么办| 激情五月婷婷亚洲| 精品国产露脸久久av麻豆| 亚洲精品456在线播放app| 国产亚洲午夜精品一区二区久久| 色网站视频免费| 亚洲av综合色区一区| 国产亚洲欧美精品永久| 国产白丝娇喘喷水9色精品| 狂野欧美白嫩少妇大欣赏| 最近最新中文字幕免费大全7| 亚洲欧美日韩东京热| 在线免费观看不下载黄p国产| 97超视频在线观看视频| 精品酒店卫生间| 麻豆精品久久久久久蜜桃| 免费不卡的大黄色大毛片视频在线观看| 内射极品少妇av片p| 日韩 亚洲 欧美在线| 国产成人91sexporn| 十八禁网站网址无遮挡 | 久久亚洲国产成人精品v| 在线 av 中文字幕| 日韩不卡一区二区三区视频在线| 尾随美女入室| 久久久久精品性色| 国产精品一及| 日韩,欧美,国产一区二区三区| 亚洲精品第二区| 国产男人的电影天堂91| 亚洲经典国产精华液单| 亚洲精品中文字幕在线视频 |