苗令占,鄧肖雅,楊 錚,李婉逸,侯 俊
微塑料的老化過程、產(chǎn)物及其環(huán)境效應(yīng)研究進展
苗令占1*,鄧肖雅1,楊 錚2,李婉逸1,侯 俊1
(1.河海大學(xué)環(huán)境學(xué)院,淺水湖泊綜合治理與資源開發(fā)教育部重點實驗室,江蘇 南京 210098;2.廣州市城建規(guī)劃設(shè)計院有限公司云南分公司,云南 昆明 650011)
本文綜述了光氧化降解、熱降解、物理磨損和生物降解對微塑料老化過程的影響,列舉了相關(guān)實驗室研究方法及關(guān)鍵結(jié)論.在此基礎(chǔ)上總結(jié)了微塑料老化后顆粒態(tài)、溶解態(tài)產(chǎn)物的檢測方法,分析了微納米/塑料自身毒性及污染物攜帶效應(yīng)、浸出液對水生生態(tài)系統(tǒng)及生物體的影響.最后展望了未來研究應(yīng)考慮多重因素縮小與自然環(huán)境的差距,篩選降解功能的菌群治理微塑料污染,建立產(chǎn)物監(jiān)測分析的技術(shù)方法標(biāo)準(zhǔn),揭示產(chǎn)物的毒性機制.
微塑料;老化;檢測方法;浸出液;環(huán)境效應(yīng)
塑料制品應(yīng)用廣泛,2021年全球產(chǎn)量達3.9億t,其中再生塑料僅占總產(chǎn)量的8.32%[1],因此有大量塑料垃圾進入環(huán)境中,并在外力作用下老化破碎產(chǎn)生更小的顆粒,其中粒徑小于5mm的被定義為次生微塑料[2-3].此外,以小顆粒形式直接排放到環(huán)境中的小于5mm的塑料顆粒稱為原生微塑料,如清潔用品、化妝品中的微珠[4-5].調(diào)查研究表明,微塑料廣泛分布于河湖、海洋、土壤、大氣及沉積物等環(huán)境中[6-9],在生物體內(nèi)[10]、人類食品[11],甚至偏遠的南極[12]和北冰洋[13]也均有檢出.隨塑料制品需求的不斷增加,排入江河湖海中的塑料量亦日漸增多[14],預(yù)計到2100年海洋中漂浮的微塑料將達到0.25~1.3億t,與2010年相比將增加50倍[15].微塑料被認(rèn)為是新型的全球環(huán)境污染物[16].
微塑料中的添加劑會緩慢釋放到環(huán)境介質(zhì)中,其中鄰苯二甲酸酯(PAE)、溴化阻燃劑(BFR)等多種添加劑具有內(nèi)分泌干擾作用、致癌等毒性效應(yīng),向生物體遷移會對人體健康和生態(tài)安全產(chǎn)生威脅[17].同時,微塑料比表面積大、疏水性強,容易成為許多疏水性有機污染物、重金屬、病原體的載體,產(chǎn)生復(fù)合污染效應(yīng),危害生物及生態(tài)系統(tǒng)[18].此外,微塑料粒徑較小而容易被生物攝食,顆粒及其吸附、釋放的污染物可通過食物網(wǎng)富集,造成潛在的生物毒性和生態(tài)風(fēng)險[19].已有研究表明,攝入微塑料可導(dǎo)致生物體生理代謝和生長發(fā)育異常[20-21]、產(chǎn)生生殖毒性[22]、免疫毒性[23]等毒性效應(yīng),使機體造成損傷.微塑料在環(huán)境中易受到海水沖刷、紫外線照射、生物膜定殖等環(huán)境因素的影響而老化[24-26],物化性質(zhì)發(fā)生改變,影響其環(huán)境行為和生態(tài)效應(yīng),因此了解其老化過程對于探索微塑料對生物的毒性機制及環(huán)境效應(yīng)至關(guān)重要.目前關(guān)于微塑料的綜述多側(cè)重于老化過程或毒性效應(yīng),并未對兩者進行系統(tǒng)歸納.鑒于此,本文總結(jié)了自然環(huán)境中微塑料經(jīng)歷的主要老化過程,列舉了相關(guān)實驗室模擬研究,闡述了老化后的產(chǎn)物及其檢測方法、環(huán)境效應(yīng),并就微塑料的老化研究、產(chǎn)物檢測方法和環(huán)境效應(yīng)研究進行了展望.
環(huán)境中的微塑料會在機械力、光照、溫度、生物等各種環(huán)境因素的影響下而發(fā)生老化降解,進而影響著其遷移轉(zhuǎn)化過程.已有研究中,通過對微塑料表面特性及產(chǎn)物監(jiān)測分析進行老化表征[27-29](圖1).明確微塑料的老化過程對于理解其環(huán)境行為和風(fēng)險至關(guān)重要.
圖1 微塑料的老化表征
1.1.1 光氧化降解機制 微塑料的光老化是自由基引發(fā)的聚合物鏈?zhǔn)椒磻?yīng)的過程,包括鏈引發(fā)、鏈傳遞、鏈終止3個階段(圖2).在鏈引發(fā)階段中,聚合物中的不飽和鍵或發(fā)色團吸收紫外光能,生成烷基自由基(R·)[28,30].隨后進入鏈傳遞階段,R·與分子氧形成過氧自由基(ROO·),并從另一條聚合物鏈RH中奪取氫原子,形成中間體氫過氧化物(ROOH),ROOH中O—O鍵在紫外線下不穩(wěn)定,吸收光能斷裂形成烷氧基自由基(RO·)和羥基自由基(·OH)[31-32].·OH攻擊ROOH和RH,分別形成ROO·和R·,此外,ROO·與RH結(jié)合通過光解作用形成過氧化氫自由基(HO2·)和R·,HO2·隨后可形成過氧化氫(H2O2)[33].RO·可經(jīng)歷多種反應(yīng)途徑,如從RH中奪氫生成醇、β-裂解形成酮或醛[34].酮在紫外線照射下會通過Norrish Ⅰ反應(yīng)生成R·和酰基自由基(R-CO·),或通過Norrish Ⅱ反應(yīng)形成末端羰基(R-CO-CH3)[35].鏈反應(yīng)終止階段主要是雙分子或低分子自由基與主要產(chǎn)物烯烴、酮、醛之間的重組[33].
圖2 微塑料的光降解和熱降解過程[33]
RH為微塑料,R1和R2為不同長度的聚合物鏈
1.1.2 光氧化降解研究 對于微塑料的光氧化降解過程,國內(nèi)外已進行大量的模擬研究[36-37],包括老化機理、光照強度及時間對老化的影響等.光氧化降解是暴露在太陽光下的微塑料老化的主要途徑[38].由紫外線輻射吸收產(chǎn)生的光化學(xué)反應(yīng)會引起氧化,能夠?qū)е滤芰献兇唷椥越档?而容易破碎[39].老化微塑料表面形貌發(fā)生改變,如變得粗糙,出現(xiàn)孔隙、裂縫、凹痕,且數(shù)量、大小隨老化時間增加而不斷增多、增大,最終導(dǎo)致微塑料破碎[40].微塑料經(jīng)紫外線照射后表面被氧化產(chǎn)生含氧官能團,氧碳比(O/C)和羰基指數(shù)(CI)增加[29].由于微塑料自身氧化產(chǎn)生的發(fā)色團產(chǎn)物或酚類抗氧化劑氧化產(chǎn)生的含醌類結(jié)構(gòu)產(chǎn)物等會產(chǎn)生變色效應(yīng),微塑料的顏色通常會隨老化時間的延長而變深,如變黃甚至變黑[41].
相同光照處理條件下不同種類微塑料的老化程度有差異,44 μW/cm2輻照強度下照射90d,老化后的PS微塑料表面出現(xiàn)了大量的顆粒狀凸起、凹陷和微孔,而聚乙烯(PE)微塑料表面變得粗糙,產(chǎn)生了細小的孔隙和裂紋[42].Hebner等[27]、Fairbrother等[43]分別證實了光照時間和輻照強度也會影響微塑料老化過程,微塑料老化破碎產(chǎn)生的塑料顆粒隨紫外線照射時間的延長而增多,老化的變化速率隨輻照強度的增加而加快.施加機械應(yīng)力也能夠加快光氧化降解的速率[44],如Sun等[45]的研究結(jié)果顯示,紫外線照射和施加機械應(yīng)力更能促進PE、熱塑性聚氨酯彈性體(TPU)的降解,比單獨紫外線照射處理產(chǎn)生的微塑料數(shù)量更多.
紫外線輻射是導(dǎo)致微塑料中聚合物快速降解的重要環(huán)境因素[46].PE塑料地膜廣泛應(yīng)用于農(nóng)業(yè)生產(chǎn),由于其在戶外陽光下使用[47],其光降解過程為學(xué)者所關(guān)注.PE薄膜的光老化為自由基鏈?zhǔn)椒磻?yīng)(圖2),經(jīng)過鏈引發(fā)生成高活性自由基,鏈傳遞產(chǎn)生ROO·或HO2·等中間產(chǎn)物,鏈終止階段通過Norrish Ⅰ反應(yīng)或Norrish Ⅱ反應(yīng)最終產(chǎn)生羰基、端乙烯基和羥基等[48-49].Briassoulis等[47]通過紫外輻射對PE殘留地膜進行老化試驗,并將地膜回填到土壤中觀察自然狀態(tài)下降解情況,結(jié)果表明,未經(jīng)紫外照射的地膜在土壤中8.5a后降解現(xiàn)象不明顯,紫外照射下地膜完全分解為<1mm的塑料顆粒,證實了PE的光降解.尤里武等[50]的研究也表明了光照使PE地膜的老化速率加快,其采用干熱大氣暴露、實驗室氙燈和紫外燈暴露試驗研究了PE地膜的老化,結(jié)果顯示,3種條件下,PE的拉伸負荷和斷裂標(biāo)稱應(yīng)變與暴露時間均大致呈負相關(guān)性,干熱大氣暴露條件下PE老化速率與實驗室光源下呈現(xiàn)一定倍率關(guān)系,且紫外老化速率更快.在陸地環(huán)境中,光氧化被證明比其他類型的降解過程快了幾個數(shù)量級[21].如在Song等[51]的研究中,自然光照下聚苯乙烯泡沫(EPS)僅1個月質(zhì)量就下降了5%,12個月后質(zhì)量損失可達34.2%.PBAT/PLA地膜經(jīng)紫外照射10d相當(dāng)于在田間栽培環(huán)境老化120d[52].另有研究表明,在模擬太陽輻照下,當(dāng)光強分別為北緯0°和50°自然光強的3倍和10倍時,PS微塑料可通過光降解完全礦化為CO2[53].光老化的室內(nèi)模擬研究主要使用燈光模擬陽光,僅占可見光的小部分波段或光強,無法很好地反映暴露在環(huán)境中不斷變化的陽光下的真實老化行為,因此需要考慮更多因素更接近實際環(huán)境模擬老化過程.
微塑料的熱降解過程與光氧化降解過程類似,均為聚合物鏈斷裂后的氧化反應(yīng)[54],但在陸地和海洋環(huán)境的降解中,光氧化降解比熱降解更占主導(dǎo)地位[55].當(dāng)微塑料受熱吸收的能量超過高分子化合物分子鏈間的化學(xué)鍵的解離能,弱位點就會發(fā)生隨機斷裂和支鏈的脫落,降解速率將會加快[56]. Fairbrother等[43]的研究中,HDPE老化降解的變化速率隨溫度的升高而加快.另有研究表明PS在70℃下發(fā)生熱裂,表面出現(xiàn)裂紋,而在40℃時表面仍光滑.溫度升高也導(dǎo)致微塑料老化浸出添加劑的速率加快,浸出濃度也越高[57].Zhou等[58]的研究也表明了一次性塑料飯盒在受熱后釋放雙酚F和雙酚S的水平在各個貯藏時間點整體上為80℃>50℃>25℃.微塑料在自然環(huán)境中發(fā)生熱降解的同時往往伴隨著光氧化降解,研究中采用的高溫多是堆肥溫度,與多變的環(huán)境溫度有所差異,因此微塑料在環(huán)境中隨溫度的熱降解需要進一步探究.
已有學(xué)者關(guān)注了物理磨損作用下微塑料的變化,也有研究將物理磨損與光照這一環(huán)境因素結(jié)合探究了微塑料的老化(表1).物理磨損能夠改變微塑料的表面形貌和結(jié)構(gòu),使其產(chǎn)生裂縫,比表面積增加,更有利于其他老化過程的進行[33,54,59].有研究顯示,物理磨損是造成微塑料表面裂紋、凹陷等紋理產(chǎn)生的主要因素[60].微塑料在水中會受到剪切力和拉伸力的作用,發(fā)生機械破碎和脆化形成更小的顆粒,甚至形成納米塑料[59].Enfrin等[61]研究表明,微塑料在剪切力的作用下會通過裂紋擴展破碎形成大量的納米塑料.Hebner等[27]用紫外燈照射聚丙烯(PP)、PE、聚對苯二甲酸乙二醇酯(PET)3種微塑料,并設(shè)置湍流和靜水條件進行了老化實驗,結(jié)果表明在湍流水機械應(yīng)力作用下,產(chǎn)生的塑料顆粒比靜水條件多1.4~3倍,且產(chǎn)生的微塑料的數(shù)量隨粒徑的減小而增加.
微塑料還可能在沙子、石頭等其他機械力的作用下釋放顆粒到環(huán)境中[62].Song等[39]收集海灘的沙子并對其進行預(yù)處理去除有機物和塑料,將沙子與低密度聚乙烯(LDPE)、PP、EPS混合放置在滾筒攪拌機上旋轉(zhuǎn)2個月進行機械磨損實驗,LDPE、PP、EPS組分別產(chǎn)生(8.7±2.5)、(10.7±0.7)、(4220±33)個顆粒/粒,說明塑料的機械磨損受材料類型的影響;在研究中還對比了不同紫外燈照射時間處理后對微塑料機械磨損的影響,結(jié)果顯示,照射12個月后再進行磨損實驗LDPE、PP、EPS組分別產(chǎn)生(20±8.3)、(6084±1061)、(10501±1718個)顆粒/粒,PP、EPS組遠高于無紫外燈照射產(chǎn)生的顆粒數(shù)量,說明與單獨的機械磨損相比,紫外燈照射可以促進機械磨損釋放更多的微塑料顆粒.與塑料相互作用的海灘鵝卵石、沙子等顆粒越粗,塑料破碎的質(zhì)量比例也越大[63].沙子、沉積物產(chǎn)生的機械應(yīng)力比水產(chǎn)生的機械應(yīng)力使微塑料的破碎率更高,釋放的顆?;蚶w維更多[45,64],因此塑料顆粒的降解在陸地上比在水環(huán)境中更容易發(fā)生,特別是海灘環(huán)境更有利于微塑料的機械破碎和化學(xué)老化過程[60].目前對于微塑料物理磨損方面的研究資料有限,相關(guān)研究考慮的環(huán)境因素多是1~2個,模擬的水流速度、所用顆粒物的粒徑等在實驗過程中都是一成不變的,而實際環(huán)境中影響老化的因素眾多,情況更多變,因此與實際環(huán)境貼合設(shè)置實驗才能更好地揭示微塑料的老化過程.
2.1.5 藥品劑型的影響:同一藥品的劑型不同,其在體內(nèi)的吸收也不會相同,即生物利用度相異,如果不能掌握劑量就會導(dǎo)致不良反應(yīng)的出現(xiàn)。
微塑料生物降解包括生物攝食消化和生物膜覆蓋(微生物降解)2個途徑.生物攝食消化被認(rèn)為是潛在的生物降解機制,微塑料可在生物體內(nèi)的酶作用下老化降解[33].微塑料為微生物提供了獨特的棲息地,微生物在其表面形成了生物膜[65],二者組合成塑料圈[66],微生物可以通過胞內(nèi)或胞外解聚酶對微塑料進行降解.
1.4.1 微生物降解過程 微塑料的微生物降解過程如圖3所示.首先微生物附著在微塑料上,隨后在其表面定殖并形成生物膜[67].微生物分泌的胞外聚合物(EPS)為定殖提供了粘性基質(zhì)[33],給予生物膜穩(wěn)定性支撐并有利于其粘附于微塑料表面.隨后,微塑料表面發(fā)生生物降解,導(dǎo)致微塑料裂解[68].微生物分泌的內(nèi)酶和外酶促進微塑料的解聚過程,使其破碎形成具有較小分子(如單體和低聚體)的中間體并釋放添加劑[67].最后,這些小分子聚合物可以被微生物用作碳源和能源吸收代謝,通過同化、礦化作用生成代謝產(chǎn)物(CO2、H2O、CH4等)[69].值得注意的是,可降解微塑料區(qū)別于非降解微塑料,其生物降解過程為先吸收水分,部分高分子鏈水解為較低分子量聚合物,并在微生物體外酶作用下再分解為寡聚物或單體,最后被微生物吸收、代謝成水和二氧化碳等小分子產(chǎn)物[70].
圖3 微塑料的微生物降解過程[59]
1.4.2 微生物降解研究 目前微生物降解的研究包括生物膜的形成對微塑料老化的影響[67,71]、從生物體內(nèi)或環(huán)境中篩選具有降解功能的菌種或菌群[72-73]等.如Bhagwat等[74]在海水中進行6個月的原位老化實驗,發(fā)現(xiàn)PE、PA、PES、PA這4種微塑料表面都形成了生物膜,含氧官能團增多,并檢測到了多糖類化合物光譜區(qū)的振動,微塑料不斷裂解,比表面積增加.生物膜的形成還會影響微塑料的其他老化過程.附著在微塑料表面的生物膜迅速生長,會導(dǎo)致微塑料浮力和疏水性顯著降低[67],生物膜分泌粘性聚合物,會促進微塑料與天然有機物的雜聚體的形成,都會使顆粒下沉處于低溫和弱光的環(huán)境中,從而可能減弱光老化和熱降解過程,影響老化速率[75-77].有研究指出,生物膜可以吸收高達99%的紫外線輻射[76],保護塑料碎片免受紫外線的輻射,減緩光化學(xué)分解過程,且能降低其他促進塑料老化的因素(如剪切力)的影響,從而保護顆粒表面,降低微塑料老化裂解的破碎率[71].另一方面,生物膜微生物群落中的細菌能夠通過光合作用產(chǎn)生氧氣,會加速微塑料的氧化分解過程[78].
據(jù)報道,許多菌株都具有生物降解塑料的能力,可以改變微塑料表觀形貌、使其造成質(zhì)量損失,還可以使其官能團、疏水性等理化性質(zhì)發(fā)生改變[69].如從蠟蟲和黃粉蟲腸道內(nèi)分離出的YT1和sp. YP1被證實能夠降解PE,能夠使PE產(chǎn)生質(zhì)量損失,表面出現(xiàn)孔洞,抗拉強度下降,水接觸角降低,O/C值和CI指數(shù)增加,這些結(jié)果也都表明了PE的老化[72].通過異位篩選獲得能夠有效降解微塑料的真菌菌株較困難,但也有一些真菌被篩選分離出也被證實能夠利用微塑料作為營養(yǎng)源進行生長,具有降解微塑料的能力[79-81].除了分離出的單個菌種,有研究關(guān)注了菌群聯(lián)合體降解微塑料的效果[82-83].如堆肥技術(shù)中的嗜熱菌群被報道能夠降解微塑料,Chen等[73]以超高溫堆肥(TC)的懸浮液為接種物,70℃條件下與PS微塑料置于瓶中培養(yǎng)56d后,PS表面出現(xiàn)大量凹痕和孔隙,質(zhì)量損失約7.3%,約為未接種對照組的6.6倍,TC接種物還能夠有效地解聚或裂解PS的長鏈結(jié)構(gòu),并在高溫下形成低分子量片段,說明嗜熱菌群通過高生物氧化性能有效誘導(dǎo)微塑料的降解.另有研究通過分析塑料圈上的群落結(jié)構(gòu)組成以篩選潛在降解功能的菌群,如Miao等[84]通過野外原位培養(yǎng),分析對比了3個不同淡水系統(tǒng)中塑料圈上微生物群落的動態(tài)演替,通過高通量測序分析、構(gòu)建網(wǎng)絡(luò),并與相關(guān)文獻對比,發(fā)現(xiàn)可生物降解塑料具有吸引和聚集關(guān)鍵微生物的能力,包括芽孢桿菌目(Bacillales)的微小桿菌屬()和環(huán)絲菌屬()、黃單胞菌目(Xanthomonadales)的砂胞單胞菌屬()等,這些都是潛在的烴降解生物.但目前對于微生物降解微塑料的路徑資料還存在很大的空缺,研究中篩選菌種多是在實驗室優(yōu)化環(huán)境下進行,且單一菌種的降解作用下通常會產(chǎn)生抑制其生長的副產(chǎn)物[85],因此未來探究微生物的降解機制,開展具有降解功能的菌群聯(lián)合體的篩選研究,繼而富集培養(yǎng)應(yīng)用于解決微塑料污染中,是非常必要的.
表1 微塑料老化過程相關(guān)實驗室模擬研究
續(xù)表1
續(xù)表1
微塑料老化降解過程中會釋放顆粒態(tài)、溶解態(tài)產(chǎn)物,會對生態(tài)環(huán)境和生物體造成一定的效應(yīng)(圖4),目前已有一些技術(shù)用于這些產(chǎn)物的檢測分析中(表2).
圖4 微塑料的老化產(chǎn)物及其毒性效應(yīng)
微塑料在外界作用下會逐漸老化裂解產(chǎn)生更小粒徑的顆粒[27,63],甚至是小于1μm的納米塑料[2],即顆粒態(tài)產(chǎn)物.多個研究表明,光照、物理磨損等作用下,微塑料會破碎形成更小的塑料顆粒[27,39,64].大多數(shù)塑料含有增塑劑、阻燃劑、穩(wěn)定劑、抗氧劑等添加劑以改善產(chǎn)品的性能[94],其中大部分添加劑都未與聚合物鏈以化學(xué)鍵相連,在塑料老化過程中可能會浸出到環(huán)境中[95],此外塑料單體、低聚物也會在老化過程中釋放出來[86],上述物質(zhì)即為微塑料老化的溶解態(tài)產(chǎn)物,稱為塑料浸出液[96].已有許多研究在實驗條件下證實了塑料添加劑的浸出[97],如BFR[98]、增塑劑PAEs[99]、抗氧化劑壬基酚[100](NP)等,另有研究表明了塑料老化會釋放低聚物和其他聚合物單體[101].
微塑料自身的理化性質(zhì)、外在環(huán)境因素都會影響顆粒態(tài)和溶解態(tài)產(chǎn)物的釋放過程.微塑料自身的添加劑可能會抑制其老化,但老化程度高的微塑料更容易滲出添加劑[102],如在模擬海水中,含添加劑PP微塑料的光老化速率明顯低于不含添加劑的微塑料原料[103],鐵紅顏料能明顯減緩微塑料的老化[104].同一條件下,由于微塑料自身特性不同微塑料破碎速率、添加劑的遷移過程會有所差異[39,45].以PP、PE、EPS為例,經(jīng)紫外光照射和沙子機械磨損作用后,PP的破碎率要高于PE,EPS產(chǎn)生的顆粒最多[39].橡膠態(tài)聚合物中添加劑的擴散速率要高于玻璃態(tài)聚合物[105].粒徑大小也會影響微塑料的破碎速率和添加劑的浸出.由于粒徑較小的微塑料傾向于在水流作用下翻滾,受光照更均勻,運動的小顆粒表面定殖的生物膜較少,其碎裂速度比較大的顆粒更快[106].更小的微塑料擁有更大的比表面積,能夠與外界接觸的點位就越多,更容易釋放添加劑,但同時小顆粒更容易凝聚,接觸點位也會變少[107].水環(huán)境中的天然有機質(zhì)(NOM)、氯離子(Cl-)、溴離子(Br-)、碳酸根(CO32-)和硝酸根(NO3-)等具有光化學(xué)活性的組分,光照下可參與到微塑料光老化自由基反應(yīng)過程中,與直接暴露在空氣中的微塑料老化速率有差異,且不同水環(huán)境中的微塑料老化程度也會不同[108],如Mao等[40]的研究中,直接暴露在空氣中的PS老化程度最高,海水中次之,純水中最小.此外,環(huán)境溫度、酸堿度等條件也會影響微塑料產(chǎn)物的釋放.自然環(huán)境條件下,影響微塑料老化是多個因素協(xié)同、拮抗作用的結(jié)果,而目前的研究多集中在模擬條件下及單因素的分析,不能很好地契合實際環(huán)境,且其中的機理研究仍非常有限,因此需要更多更深入的研究來回答上述問題.
表2 微塑料老化產(chǎn)物的檢測方法
對于浸出液的測定分析,需要根據(jù)微塑料類型及浸出物質(zhì)種類選擇合適的方法.分光光度法和熒光光譜法可以測定浸出液中具有吸光作用的物質(zhì)[116],總有機碳(TOC)分析儀可以測定TOC和溶解性有機碳(DOC)含量,兩者的測定結(jié)果可以反映有機物的變化[117].采用液/氣相色譜-質(zhì)譜法可以定量分析獲取大/小分子、易揮發(fā)、不穩(wěn)定、低聚物等物質(zhì)的信息[116].微塑料浸出液成分復(fù)雜,且浸出濃度較小,因此準(zhǔn)確獲取浸出液成分的信息較為困難,并且與數(shù)據(jù)庫對比工作量較大,通常存在物質(zhì)濃度低而儀器未檢出、分析物質(zhì)不全面等問題.如Gewert等[28]的研究中用固相萃取濃縮、液相色譜結(jié)合高分辨率質(zhì)譜檢測,分析了紫外燈照射下PE、PP、PS、PET的浸出液成分,初步確定了22種降解產(chǎn)物,但是確認(rèn)結(jié)構(gòu)的僅有5種.因此,需要建立一種能夠有效定性定量分析微塑料浸出液的方法標(biāo)準(zhǔn),且能夠?qū)Νh(huán)境濃度進行定量分析,為微塑料污染防治提供數(shù)據(jù)支撐.
3.1.1 顆粒毒性效應(yīng) 老化后的塑料顆粒的形狀和顏色與生物的食物相似,其可被海綿動物、魚類等生物攝入[118-119].有研究表明,蜂海綿和沐浴海綿能夠快速累積海水中<300mm的微塑料,且粒徑越小的顆粒越不容易被其排出體外[118].許多生物誤食微塑料后,可能會發(fā)生食道阻塞,無法正常進食,在消化道內(nèi)累積,影響進一步進食[120];也可能引起假性飽腹感,導(dǎo)致食物攝入量減少,影響正常生理代謝和生長發(fā)育,并可能導(dǎo)致生物死亡[20-21].Lu等[121]研究表明,暴露于微塑料中會誘導(dǎo)斑馬魚體內(nèi)超氧化物歧化酶和過氧化氫酶活性顯著升高,即微塑料誘導(dǎo)了氧化應(yīng)激反應(yīng),同時,也會導(dǎo)致斑馬魚的肝臟代謝特征改變,并擾亂肝臟的脂質(zhì)和能量代謝.PS微塑料顆??杀坏讞涹w動物攝入并在消化系統(tǒng)和非消化系統(tǒng)累積,即使經(jīng)過凈化,大部分顆粒都被排出,但PS造成的神經(jīng)毒性不可恢復(fù)[122].相比于微塑料,納米塑料具有更高的細胞親和力,更大的比表面積,使其更容易穿透生物屏障并在器官中積累[123],在生物體內(nèi)的留存時間也更長,與微塑料相比對生物體帶來的危害有所不同,如Yin等對先前研究進行梳理總結(jié),結(jié)果表明,在腸道中,納米塑料引起較高的炎癥和氧化應(yīng)激反應(yīng),而微塑料傾向于引起更嚴(yán)重的腸道菌群失調(diào);在肝臟中,納米塑料會產(chǎn)生更高的氧化應(yīng)激和脂質(zhì)代謝紊亂;納米塑料引起的生殖毒性和神經(jīng)毒性高于微塑料[124].
對于微/納米塑料的毒性研究中塑料類型、粒徑大小、暴露時間的不同,研究結(jié)果也有所差異[125].如對于納米級PS毒性研究,一些學(xué)者研究結(jié)果表明其會誘導(dǎo)氧化應(yīng)激、遺傳毒性、細胞毒性、壞死或炎癥等[126],Forte等[127]研究中,40nm的PS比100nm的PS在胃腺癌細胞中的累積速度更快,兩者都會影響細胞活性、炎癥基因表達和細胞形態(tài).同時也有研究顯示納米級PS的不良影響很小或沒有[128],Fr?hlich等[129]的研究結(jié)果顯示,盡管不同粒徑(20~500nm)的PS短時間內(nèi)暴露使內(nèi)皮細胞溶酶體發(fā)生微小變化,但接觸時間越長,變化越不明顯.
3.1.2 污染物攜帶效應(yīng) 由于尺寸小、比表面積大和疏水性強,微/納米塑料可以作為有機污染物、金屬、金屬氧化物納米顆粒等污染物的載體,并能夠?qū)⑽廴疚镙斔偷缴鷳B(tài)系統(tǒng)中[130].吸附是影響微/納米塑料與污染物相互作用的關(guān)鍵因素,進而增強或減弱對生物的復(fù)合效應(yīng),其吸附機理如圖5所示[131].
圖5 微/納米塑料與共存污染物的吸附機理[131]
微/納米塑料吸附污染物對生物的復(fù)合毒性效應(yīng)并不是絕對的.有研究表明,微/納米塑料與污染物的聯(lián)合效應(yīng)會使毒性增強,如Huang等[132]發(fā)現(xiàn),PS微塑料可以吸附有機磷農(nóng)藥毒死蜱并將其轉(zhuǎn)移到斑馬魚體內(nèi),導(dǎo)致魚的氧化應(yīng)激、游泳性能和組織學(xué)損傷、腸道微生物群落紊亂和多樣性改變;Araújo等[133]發(fā)現(xiàn),PE微塑料與包含農(nóng)藥、工/農(nóng)業(yè)廢水石油等14種污染物的混合物聯(lián)合暴露對蝌蚪的誘導(dǎo)應(yīng)激反應(yīng)增強,紅細胞壞死和凋亡頻率更高,游泳活動減少;Davarpanah等[134]研究表明,將微塑料和金納米顆粒聯(lián)合暴露顯著降低了海洋微藻的生長速率,而單獨處理并未出現(xiàn)明顯的抑制作用.但是也有研究結(jié)果表明,微塑料與污染物共存會使毒性降低,如Fu等[135]的研究發(fā)現(xiàn),老化的PVC與銅聯(lián)合暴露,銅吸附在PVC表面,引起沉淀,使其對小球藻的毒性降低,甚至促進了細胞生長;Wang等[136]研究中,小球藻單獨暴露于布洛芬中,96h-IC50= 54.5mg/L,PS納米塑料與布洛芬聯(lián)合作用下,96h- IC50=63.9mg/L,對小球藻的生長抑制作用減弱,氧化應(yīng)激降低,PS處理也會導(dǎo)致小球藻內(nèi)布洛芬累積量降低,生物降解加快.
已經(jīng)有學(xué)者在人體血液中發(fā)現(xiàn)微塑料顆粒[137],又有研究指出在人體血栓樣本[138]和痰液[139]中發(fā)現(xiàn)了一定數(shù)量和不同類型的微塑料,微塑料對人體可能造成的潛在健康風(fēng)險需要論證.目前關(guān)于微/納米塑料的毒性研究主要集中在水生生物上,缺乏對陸生生物的毒性研究,且微塑料與納米塑料的毒性作用在不同生物上的差異是否一致還不得而知,不同塑料類型、不同粒徑的微/納米塑料的作用機制尚不清楚,因此需要就上述問題進行研究揭示塑料的毒性機理.
微塑料浸出液的環(huán)境效應(yīng)研究主要集中于DOC和添加劑等.隨著塑料的老化破碎,塑料中溶解性有機物(DOM)會浸出到環(huán)境中[140].王琳等[141]的研究結(jié)果指出150~200μm的PS浸出的小分子有機物質(zhì)是對小球藻產(chǎn)生毒性并抑制其生長的主要因素.DOM的浸出包括DOC的瀝濾[142].老化塑料對DOC的釋放比原始塑料浸出的DOC要高出兩個數(shù)量級[143].據(jù)估計,海洋塑料垃圾每年釋放的DOC高達2.36萬t,在高污染地區(qū)塑料浸出的DOC甚至占水體表面(40μm)DOC的10%[144].DOC通過調(diào)節(jié)光合作用和異養(yǎng)微生物的存在、生長和活動,在海洋食物網(wǎng)中發(fā)揮著重要的作用[145].天然存在的DOC是海洋食物網(wǎng)底端微生物的主要碳來源,并構(gòu)成全球主要的碳儲存庫[146].微塑料浸出的DOC是海洋微生物的潛在重要碳源[147],影響著海洋中的微生物活動和碳循環(huán).如Romera-Castillo等[144]的研究表明,光照和黑暗條件下不同類型的PP、PE均能夠不同程度地釋放DOC到水體中,并可被微生物吸收,刺激異養(yǎng)微生物的生長.微塑料不僅能夠釋放DOC,還能吸附DOC,直至吸附平衡,該過程中微塑料可能與微生物對DOC的吸收利用相競爭,從而擾亂其低營養(yǎng)級過程[144].因此,塑料的積累可能影響水環(huán)境中生物群落的碳循環(huán)、群落組成,進一步影響水生生態(tài)系統(tǒng)的結(jié)構(gòu)與功能.
目前世界各地的河口和海洋中檢出的塑料添加劑濃度從pg/L~mg/L不等[95],在生物體內(nèi)也有添加劑檢出,如海鳥、貽貝、大型藻類和各種魚類等[148-149].添加劑的浸出量隨微塑料在環(huán)境中停留時間的延長而增多,可能對水生生物產(chǎn)生負面效應(yīng)[150].微塑料浸出的添加劑會抑制藻類的生長,如聚氨酯泡沫塑料(PFU)在不同天然水體和模擬水體中的熒光添加劑的釋放量隨溶液pH值和浸出時間的增加而增加,達到一定濃度時,會對小球藻的生長和細胞光合作用產(chǎn)生抑制作用[142],商用鉻酸鉛著色的微塑料浸出的鉻和鉛隨老化時間的延長而增加,高濃度的浸出液對銅綠微囊藻細胞的毒性更大[151]. Schrank等[152]的研究發(fā)現(xiàn)含增塑劑鄰苯二甲酸異壬酯(DiNP)的聚氯乙烯(PVC)浸出液會導(dǎo)致大型溞的體長增加,并對其產(chǎn)生生殖毒性導(dǎo)致后代數(shù)量減少.盡管某些PE塑料袋為食品級,但將其裝滿合成海水放置48h后釋放NP濃度可達(163.3±5.7) μg/L,將弗氏擬雀鯛(魚)放置于裝滿合成海水的PE袋子中暴露48h,檢測其體內(nèi)NP含量為(368±39) μg/kg,魚的死亡率高達60%[100].在環(huán)境中老化后的塑料顆粒吸附了更多的污染物,這些物質(zhì)與原始添加劑相互作用浸出后對貽貝的毒性作用更強[153],用攝食微塑料的貽貝喂食螃蟹,在螃蟹多個器官組織中均檢出了該塑料顆粒,表明了微塑料的營養(yǎng)轉(zhuǎn)移[154],這也可能導(dǎo)致微塑料上化學(xué)物質(zhì)通過食物網(wǎng)轉(zhuǎn)移、富集,進一步影響人類的健康.目前微塑料浸出液的生物毒性、對生態(tài)系統(tǒng)的影響已有一定的基礎(chǔ),但多是使用高于環(huán)境中浸出液的組分濃度進行模擬,且環(huán)境中浸出液的含量和組成是多變的,可能存在多個組分的協(xié)同毒性,作用機制可能更復(fù)雜,因此需要考慮實際環(huán)境濃度和組分來研究浸出液對生物體的毒性效應(yīng),探究其對整個生態(tài)系統(tǒng)的影響.
塑料制品的使用量不斷增加,但其的回收率依舊很低,導(dǎo)致環(huán)境中的塑料垃圾越來越多.自然環(huán)境中塑料垃圾破碎產(chǎn)生微塑料,微塑料會在水環(huán)境中物理、化學(xué)和生物作用下老化破碎成更小的顆粒,并釋放化學(xué)物質(zhì),在環(huán)境中賦存,對水生生物產(chǎn)生毒性作用,影響著水生生態(tài)系統(tǒng)的平衡.因此,研究環(huán)境中微塑料的老化過程及產(chǎn)物對開展微塑料的污染防治及生態(tài)風(fēng)險評估具有重要意義,但目前相關(guān)研究還存在諸多不足,今后的研究可從以下幾個方面開展.
4.1 微塑料老化過程實驗室研究應(yīng)更貼合實際環(huán)境進行,縮小兩者之間的差距.目前光老化研究使用的燈光僅是可見光的小部分波段或光強,熱降解研究中多是采用高于自然環(huán)境的溫度,實驗中物理磨損模擬的水流速度、所用沙子的粒徑等都是不變的,但自然環(huán)境條件更多變復(fù)雜,應(yīng)關(guān)注多個環(huán)境因素協(xié)同老化的自然作用過程,更好地揭示微塑料的老化過程.
4.2 探究微生物的降解機制,篩選具有降解功能的菌群聯(lián)合體,并富集培養(yǎng)應(yīng)用于解決微塑料污染問題.當(dāng)前研究篩選菌種多是在實驗室優(yōu)化環(huán)境下進行,對于微生物降解微塑料的路徑資料也還存在很大的空缺,今后應(yīng)對降解機制展開深入研究,致力于篩選可降解塑料的菌群,并為微塑料污染防治服務(wù).
4.3 建立微/納米塑料、浸出液的定性定量分析的技術(shù)方法標(biāo)準(zhǔn).目前對于顆粒太、溶解態(tài)產(chǎn)物的檢測仍然缺乏高效、低成本的分析方法,因此建立完整的評估方法、定性定量分析方案能夠更全面地研究產(chǎn)物的毒性效應(yīng)、了解產(chǎn)物在環(huán)境中的賦存濃度.
4.4 探究微/納米塑料對陸生、水生生物的毒性效應(yīng)及作用機制,微塑料與納米塑料的毒性差異.目前關(guān)于微/納米塑料的毒性主要集中在水生生物上,缺乏對陸生生物的毒性效應(yīng)資料,且微塑料與納米塑料的毒性作用在不同生物上的差異還不清楚,不同塑料類型、不同粒徑的微/納米塑料的作用機制尚不明晰,因此需要就上述問題進行研究揭示塑料的毒性機理.
4.5 考慮浸出液的實際環(huán)境濃度和組分來研究老化產(chǎn)物對生物體的毒性效應(yīng).目前研究多是使用高于環(huán)境中浸出液的組分濃度進行模擬,且環(huán)境中浸出液的含量和組成是不定的,可能存在多個組分的協(xié)同毒性,作用機制可能更復(fù)雜,因此需要考慮實際環(huán)境污染來研究浸出液對生物體的毒性效應(yīng),探究其對整個生態(tài)系統(tǒng)的影響.
[1] F A. Plastics-the facts 2022: an analysis of European plastics production, demand, conversion and end-of-life management [M]. Brussels: Plastics Europe, 2022.
[2] Lebreton L, Andrady A. Future scenarios of global plastic waste generation and disposal [J]. Palgrave Communications, 2019,5(1):6.
[3] 薛潤澤,劉卓苗,王 萌,等.海洋生物對微塑料遷移轉(zhuǎn)化的調(diào)控作用 [J]. 地球與環(huán)境, 2022,50(2):291-303. Xue R Z, Liu Z M, Wang M, et al. Regulation of marine organisms on the transport and transformation of microplastics [J]. Earth and Environment, 2022,50(2):291-303.
[4] Praveena S M, Shaifuddin S N M, Akizuki S. Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from Malaysia [J]. Marine Pollution Bulletin, 2018,136:135-140.
[5] Na T, Xiaoning L, Wei X. Microplastics in wastewater treatment plants of Wuhan, Central China: Abundance, removal, and potential source in household wastewater [J]. Science of the Total Environment, 2020,745:141026.
[6] Di M, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China [J]. Science of the Total Environment, 2018,616-617:1620-1627.
[7] Bessa F, Ratcliffe N, Otero V, et al. Microplastics in gentoo penguins from the Antarctic region [J]. Scientific Reports, 2019,9(1):14191.
[8] 徐湘博,孫明星,張林秀,等.土壤微塑料污染研究進展與展望 [J]. 農(nóng)業(yè)資源與環(huán)境學(xué)報, 2021,38(1):1-9. Xu X B, Sun M X, Zhang L X, et al. Research progress and prospect of soil microplastic pollution [J]. Journal of Agricultural Resources and Environment, 2021,38(1):1-9.
[9] Dris R, Gasperi J, Saad M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? [J]. Marine Pollution Bulletin, 2016,104(1/2):290-293.
[10] Hossain M S, Rahman M S, Uddin M N, et al. Microplastic contamination in Penaeid shrimp from the Northern Bay of Bengal [J]. Chemosphere, 2020,238:124688.
[11] Kim J, Lee H, Kim S, et al. Global pattern of microplastics (MPs) in commercial food-grade salts: Sea salt as an indicator of seawater MP pollution [J]. Environmental Science & Technology, 2018,52(21): 12819-12828.
[12] Ivar Do Sul J A, Costa M F. The present and future of microplastic pollution in the marine environment [J]. Environmental Pollution, 2014,185:352-364.
[13] Kanhai L D K, Gardfeldt K, Krumpen T, et al. Microplastics in sea ice and seawater beneath ice floes from the Arctic Ocean [J]. Scientific Reports, 2020,10(1).
[14] 侯晨麗,于 越,于玲紅,等.微塑料與雙酚A聯(lián)合下黃河鯉魚的生物積累及氧化應(yīng)激效應(yīng) [J]. 中國環(huán)境科學(xué), 2023,43(8):4334-4342.Hou C L, Yu Y, Yu L H, et al. Interactive effects of polystyrene microplastics and bisphenol A on bioaccumulation and oxidative stress in the Yellow River carp () [J]. China Environmental Science, 2023,43(8):4334-4342.
[15] Everaert G, Van Cauwenberghe L, De Rijcke M, et al. Risk assessment of microplastics in the ocean: Modelling approach and first conclusions [J]. Environmental Pollution, 2018,242:1930-1938.
[16] 邵雪純,胡雙慶,張 琪,等.聚乳酸微塑料及其復(fù)合污染的生物毒性效應(yīng)與機制研究進展 [J]. 中國環(huán)境科學(xué), 2023,43(2):935-945.Shao X C, Hu S Q, Zhang Q, et al. Research progress on biotoxicological effects and mechanism of polylactic acid microplastics and their combined pollution [J]. China Environmental Science, 2023,43(2):935-945.
[17] Luo H, Liu C, He D, et al. Effects of aging on environmental behavior of plastic additives: Migration, leaching, and ecotoxicity [J]. Science of the Total Environment, 2022,849:157951.
[18] 蔣 娟,龍云川,胡 菁,等.農(nóng)村垃圾堆周邊土壤微塑料及潛在病原微生物群落特征 [J]. 中國環(huán)境科學(xué), 2023,43(7):3592-3603.Jiang J, Long Y C, Hu J, et al. Characteristics of microplastics and potential pathogenic microorganisms in the soil surrounding a rural garbage dump [J]. China Environmental Science, 2023,43(7):3592- 3603.
[19] Tang Y, Liu Y, Chen Y, et al. A review: Research progress on microplastic pollutants in aquatic environments [J]. Science of the Total Environment, 2020,766:142572.
[20] 楊秉倬,黃 河.微塑料對水生生物的生態(tài)毒理效應(yīng)研究進展.環(huán)境與發(fā)展, 2019,31(9):126-130. Yang B Z, Huang H. Research progress on the ecotoxicological effects of microplastics on aquatic organism [J]. Environment and Development, 2019,31(9):126-130.
[21] Wang J, Tan Z, Peng J, et al. The behaviors of microplastics in the marine environment [J]. Marine Environmental Research, 2016,113: 7-17.
[22] Besseling E, Wang B, Lürling M, et al. Nanoplastic affects growth ofand reproduction of[J]. Environmental Science & Technology, 2014,48(20):12336-12343.
[23] Sussarellu R, Suquet M, Thomas Y, et al. Oyster reproduction is affected by exposure to polystyrene microplastics [J]. Proceedings of the National Academy of Sciences, 2016,113(9):2430-2435.
[24] Tu C, Chen T, Zhou Q, et al. Biofilm formation and its influences on the properties of microplastics as affected by exposure time and depth in the seawater [J]. Science of The Total Environment, 2020,734: 139237.
[25] Chen C, Chen L, Yao Y, et al. Organotin release from polyvinyl chloride microplastics and concurrent photodegradation in water: impacts from salinity, dissolved organic matter, and light exposure [J]. Environmental Science & Technology, 2019,53(18):10741-10752.
[26] Resmeri?? A, Coroaba A, Darie R, et al. Erosion as a possible mechanism for the decrease of size of plastic pieces floating in oceans [J]. Marine Pollution Bulletin, 2018,127:387-395.
[27] Hebner T S, Maurer-Jones M A. Characterizing microplastic size and morphology of photodegraded polymers placed in simulated moving water conditions [J]. Environmental Science: Processes & Impacts, 2020,22(2):398-407.
[28] Gewert B, Plassmann M, Sandblom O, et al. Identification of chain scission products released to water by plastic exposed to ultraviolet light [J]. Environmental Science & Technology Letters, 2018,5(5): 272-276.
[29] Wu X, Liu P, Huang H, et al. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations [J]. Science of The Total Environment, 2020,717:137033.
[30] Singh B, Sharma N. Mechanistic implications of plastic degradation [J]. Polymer Degradation and Stability, 2008,93(3):561-584.
[31] Tian L L, Chen Q Q, Jiang W, et al. A carbon-14 radiotracer-based study on the phototransformation of polystyrene nanoplastics in water versus in air [J]. Environmental Science:Nano, 2019,6(9):2907-2917.
[32] Yousif E, Haddad R. Photodegradation and photostabilization of polymers, especially polystyrene: review [J]. SpringerPlus, 2013,2(1): 1-32.
[33] Duan J, Bolan N, Li Y, et al. Weathering of microplastics and interaction with other coexisting constituents in terrestrial and aquatic environments [J]. Water Research, 2021,196:117011.
[34] Ceccarini A, Corti A, Erba F, et al. The hidden microplastics: New insights and figures from the thorough separation and characterization of microplastics and of their degradation byproducts in coastal sediments [J]. Environmental Science & Technology, 2018,52(10): 5634-5643.
[35] Gardette M, Perthue A, Gardette J L, et al. Photo- and thermal- oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content [J]. Polymer Degradation and Stability, 2013,98(11):2383-2390.
[36] Liu P, Shi Y, Wu X, et al. Review of the artificially-accelerated aging technology and ecological risk of microplastics [J]. Science of The Total Environment, 2021,768:144969.
[37] Liu P, Wu X, Huang H, et al. Simulation of natural aging property of microplastics in Yangtze River water samples via a rooftop exposure protocol [J]. Science of The Total Environment, 2021,785:147265.
[38] Hammer J, Kraak M H, Parsons J R. Plastics in the marine environment: The dark side of a modern gift [J]. Rev Environ Contam Toxicol, 2012,220:1-44.
[39] Song Y K, Hong S H, Jang M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type [J]. Environmental Science & Technology, 2017,51(8): 4368-4376.
[40] Mao R, Lang M, Yu X, et al. Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals [J]. Journal of Hazardous Materials, 2020,393:122515.
[41] 劉 鵬.微塑料的加速老化過程及其與藥物和鐵紅顏料的相互作用研究 [D]. 南京:南京大學(xué), 2020. Liu P. Study on the accelerated aging of microplastics and the interaction of aged microplastics with pharmaceuticals and iron red pigment [D]. Nanjing: Nanjing University, 2020.
[42] 徐鵬程,郭 健,馬 東,等.新制和老化微塑料對多溴聯(lián)苯醚的吸附 [J]. 環(huán)境科學(xué), 2020,41(3):1329-1337. Xu P C, Guo P, Ma D, et al. Sorption of polybrominated diphenyl ehers by virgin and aged microplastics [J]. Environmental Science, 2020,41(3):1329-1337.
[43] Fairbrother A, Hsueh H, Kim J H, et al. Temperature and light intensity effects on photodegradation of high-density polyethylene [J]. Polymer Degradation and Stability, 2019,165:153-160.
[44] Tyler D R. Mechanistic aspects of the effects of stress on the rates of photochemical degradation reactions in polymers [J]. Journal of Macromolecular Science, Part C. 2004,44(4):351-388.
[45] Sun J, Zheng H, Xiang H, et al. The surface degradation and release of microplastics from plastic films studied by UV radiation and mechanical abrasion [J]. Science of The Total Environment, 2022,838: 156369.
[46] Andrady A L. The plastic in microplastics: A review [J]. Marine Pollution Bulletin, 2017,119(1):12-22.
[47] Briassoulis D, Babou E, Hiskakis M, et al. Degradation in soil behavior of artificially aged polyethylene films with pro-oxidants [J]. Journal of Applied Polymer Science, 2015,132(30):42289.
[48] 張立基.聚乙烯薄膜的光氧老化及影響因素 [J]. 石化技術(shù)與應(yīng)用, 2000,1(4):191-194. Zhang L J. Photooxidative aging of polyethylene film and its influence factors [J]. Petrochemical Technology & Application, 2000,1(4):191- 194.
[49] 李 真,何文清,劉恩科,等.聚乙烯地膜降解過程與機理研究進展 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2019,38(2):268-275. Li Z, He W Q, Liu E K, et al. A review on polyethylene mulch film degradation [J]. Journal of Agro-Environment Science, 2019,38(2): 268-275.
[50] 尤里武,楊穎楠,喬富永,等.聚乙烯地膜的光老化行為及相關(guān)性研究 [J]. 合成材料老化與應(yīng)用, 2022,51(6):5-7. You L W, Yang Y N, Qiao F Y, et al. Study on photoaging behavior and correlation of PE film [J]. Synthetic Materials Aging and Application, 2022,51(6):5-7.
[51] Song Y K, Hong S H, Eo S, et al. Rapid production of micro- and nanoplastics by fragmentation of expanded polystyrene exposed to sunlight [J]. Environmental Science & Technology, 2020,54(18): 11191-11200.
[52] Xie J, Yan Y, Fan S, et al. Prediction model of photodegradation for PBAT/PLA mulch films: Strategy to fast evaluate service life [J]. Environmental Science & Technology, 2022,56(12):9041-9051.
[53] Ward C P, Armstrong C J, Walsh A N, et al. Sunlight converts polystyrene to carbon dioxide and dissolved organic carbon [J]. Environmental Science & Technology Letters, 2019,6(11):669-674.
[54] 趙夢婷,秦藝源,邱 野,等.微塑料的環(huán)境老化機制及效應(yīng)研究進展[J]. 環(huán)境化學(xué), 2022,41(8):2465-2477. Zhao M T, Qin Y Y, Qiu Y, et al. Environmental aging of microplastic: Processes, mechanisms and implications [J]. Environmental Chemistry, 2022,41(8):2465-2477.
[55] Tang C C, Chen H I, Brimblecombe P, et al. Morphology and chemical properties of polypropylene pellets degraded in simulated terrestrial and marine environments [J]. Marine Pollution Bulletin, 2019,149:110626.
[56] Sun Y, Yuan J, Zhou T, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review [J]. Environmental Pollution, 2020,265:114864.
[57] Gulizia A M, Patel K, Philippa B, et al. Understanding plasticiser leaching from polystyrene microplastics [J]. Science of The Total Environment, 2023,857:159099.
[58] Zhou Q, Jin Z, Li J, et al. A novel air-assisted liquid-liquid microextraction based on in-situ phase separation for the HPLC determination of bisphenols migration from disposable lunch boxes to contacting water [J]. Talanta, 2018,189:116-121.
[59] 郭 威,羅雅丹,李晨光,等.海洋中微塑料的老化機理及老化后環(huán)境行為研究進展 [J]. 生態(tài)毒理學(xué)報, 2022,17(4):33-46. Guo W, Luo Y D, Li C G, et al. Research progress on aging mechanism and environmental behavior of marine microplastics [J]. Asian Journal of Ecotoxicology, 2022,17(4):33-46.
[60] Corcoran P L, Biesinger M C, Grifi M. Plastics and beaches: A degrading relationship [J]. Marine Pollution Bulletin, 2009,58(1): 80-84.
[61] Enfrin M, Lee J, Gibert Y, et al. Release of hazardous nanoplastic contaminants due to microplastics fragmentation under shear stress forces [J]. Journal of Hazardous Materials, 2020,384:121393.
[62] Ekvall M T, Lundqvist M, Kelpsiene E, et al. Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products [J]. Nanoscale Advances, 2019,1(3):1055-1061.
[63] Chubarenko I, Efimova I, Bagaeva M, et al. On mechanical fragmentation of single-use plastics in the sea swash zone with different types of bottom sediments: Insights from laboratory experiments [J]. Marine Pollution Bulletin, 2020,150:110726.
[64] Wu P, Li J, Lu X, et al. Release of tens of thousands of microfibers from discarded face masks under simulated environmental conditions [J]. Science of The Total Environment, 2022,806:150458.
[65] De Tender C A, Devriese L I, Haegeman A, et al. Bacterial community profiling of plastic litter in the Belgian Part of the North Sea [J]. Environmental Science & Technology, 2015,49(16):9629- 9638.
[66] Zettler E R, Mincer T J, Amaral-Zettler L A. Life in the “Plastisphere”: microbial communities on plastic marine debris [J]. Environmental science & technology, 2013,47(13):7137-7146.
[67] Kumar G A, Anjana K, Hinduja M, et al. Review on plastic wastes in marine environment – Biodegradation and biotechnological solutions [J]. Marine Pollution Bulletin, 2020,150:110733.
[68] Lucas N, Bienaime C, Belloy C, et al. Polymer biodegradation: Mechanisms and estimation techniques [J]. Chemosphere, 2008, 73(4):429-442.
[69] Jacquin J, Cheng J, Odobel C, et al. Microbial ecotoxicology of marine plastic debris: A review on colonization and biodegradation by the “Plastisphere” [J]. Frontiers in Microbiology, 2019,10:865.
[70] 張玉萍,肖光洋,王 丹,等.可降解塑料的降解機理及影響降解過程的因素,綠色包裝, 2021,1(11):17-21.Zhang Y P, Xiao G Y, Wang D, et al. The degradation mechanism of degradable plastics and the factors affecting the degradation process [J]. Green Packaging, 2021,1(11):17-21.
[71] Macleod M, Arp H P H, Tekman M B, et al. The global threat from plastic pollution [J]. Science, 2021,373(6550):61-65.
[72] Yang J, Yang Y, Wu W, et al. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms [J]. Environmental Science & Technology, 2014,48(23): 13776-13784.
[73] Chen Z, Zhao W, Xing R, et al. Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology. [J]. Journal of Hazardous Materials, 2020,384:121271.
[74] Bhagwat G, Tran T K A, Lamb D, et al. Biofilms enhance the adsorption of toxic contaminants on plastic microfibers under environmentally relevant conditions [J]. Environmental Science & Technology, 2021,55(13):8877-8887.
[75] Yuan J, Ma J, Sun Y, et al. Microbial degradation and other environmental aspects of microplastics/plastics [J]. Science of The Total Environment, 2020,715:136968.
[76] Arp H P H, Kühnel D, Rummel C, et al. Weathering plastics as a planetary boundary threat: Exposure, fate, and hazards [J]. Environmental Science & Technology, 2021,55(11):7246-7255.
[77] Rummel C D, Jahnke A, Gorokhova E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment [J]. Environmental Science & Technology Letters, 2017,4(7):258-267.
[78] Roldán-Carrillo T, Rodr??guez-Vázquez R, D??az-Cervantes D, et al. Starch-based plastic polymer degradation by the white rot fungus Phanerochaete chrysosporium grown on sugarcane bagasse pith: Enzyme production [J]. Bioresource technology, 2003,86(1):1-5.
[79] Pa?o A, Duarte K, Da Costa J P, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum [J]. Science of The Total Environment, 2017,586:10-15.
[80] Perera P, Deraniyagala A S, Mahawaththage M, et al. Decaying hardwood associated fungi Showing signatures of polyethylene degradation [J]. BioResources, 2021,16(4):7055-7069.
[81] Sheik S, Chandrashekar K R, Swaroop K, et al. Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi [J]. International Biodeterioration & Biodegradation, 2015,105:21-29.
[82] Park S Y, Kim C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site [J]. Chemosphere, 2019,222:527-533.
[83] Syranidou E, Karkanorachaki K, Amorotti F, et al. Development of tailored indigenous marine consortia for the degradation of naturally weathered polyethylene films [J]. PLoS ONE, 2017,12(8):e0183984.
[84] Miao L, Li W, Adyel T M, et al. Spatio-temporal succession of microbial communities in plastisphere and their potentials for plastic degradation in freshwater ecosystems [J]. Water Research. 2023,229: 119406.
[85] Dobretsov S, Abed R M M, Teplitski M. Mini-review: Inhibition of biofouling by marine microorganisms [J]. Biofouling, 2013,29(4): 423-441.
[86] Shi Y, Liu P, Wu X, et al. Insight into chain scission and release profiles from photodegradation of polycarbonate microplastics [J]. Water Research, 2021,195:116980.
[87] Shi Y, Zheng L, Huang H, et al. Formation of nano- and microplastics and dissolved chemicals during photodegradation of polyester base fabrics with polyurethane coating [J]. Environmental Science & Technology, 2023,57(5):1894-1906.
[88] Li Y, Liu Y, Liu S, et al. Photoaging of baby bottle-derived polyethersulfone and polyphenylsulfone microplastics and the resulting bisphenol S release [J]. Environmental Science & Technology, 2022,56(5):3033-3044.
[89] Jakubowicz I. Evaluation of degradability of biodegradable polyethylene (PE). Polymer Degradation and Stability, 2003,80(1):39- 43.
[90] 鄭涵月,孫姣霞,向 紅,等.生物可降解塑料PBAT/PLA在典型非生物降解環(huán)境下的降解研究 [J]. 中國環(huán)境科學(xué), 2023,43(8):4247- 4254.Zheng H Y, Sun J X, Xiang H, et al. Degradation of biodegradable plastic PBAT/PLA under typical non-biodegradable environment [J]. China Environmental Science, 2023,43(8):4247-4254.
[91] Kalogerakis N, Karkanorachaki K, Kalogerakis G C, et al. Microplastics generation: Onset of fragmentation of polyethylene films in marine environment mesocosms [J]. Frontiers in Marine Science, 2017,4:84.
[92] Auta H S, Emenike C U, Fauziah S H. Screening of Bacillus strains isolated from mangrove ecosystems infor microplastic degradation [J]. Environmental Pollution, 2017,231: 1552-1559.
[93] Esmaeili A, Pourbabaee A A, Alikhani H A, et al. Colonization and biodegradation of photo-oxidized low-density polyethylene (LDPE) by new strains ofsp. andsp [J]. Bioremediation journal, 2014,18(3):213-226.
[94] Luo H, Xiang Y, Li Y, et al. Weathering alters surface characteristic of TiO2-pigmented microplastics and particle size distribution of TiO2released into water [J]. Science of The Total Environment, 2020,729:139083.
[95] Hermabessiere L, Dehaut A, Paul-Pont I, et al. Occurrence and effects of plastic additives on marine environments and organisms: A review [J]. Chemosphere, 2017,182:781-793.
[96] Lithner D, Damberg J, Dave G, et al. Leachates from plastic consumer products--screening for toxicity with Daphnia magna [J]. Chemosphere, 2009,74(9):1195-1200.
[97] Bridson J H, Gaugler E C, Smith D A, et al. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches [J]. Journal of Hazardous Materials, 2021,414.
[98] Haider T P, Volker C, Kramm J, et al. Plastics of the future? The impact of biodegradable polymers on the environment and on society [J]. Angewandte Chemie International Edition, 2019,58(1):50-62.
[99] Paluselli A, Fauvelle V, Galgani F, et al. Phthalate release from plastic fragments and degradation in seawater [J]. Environmental Science & Technology, 2019,53(1):166-175.
[100]Hamlin H J, Marciano K, Downs C A. Migration of nonylphenol from food-grade plastic is toxic to the coral reef fish species Pseudochromis fridmani [J]. Chemosphere, 2015,139:223-228.
[101]Kwon J, Chang S, Hong S H, et al. Microplastics as a vector of hydrophobic contaminants: Importance of hydrophobic additives [J]. Integrated Environmental Assessment and Management, 2017,13(3): 494-499.
[102]Schiavo S, Oliviero M, Chiavarini S, et al. Adverse effects of oxo- degradable plastic leachates in freshwater environment [J]. Environmental Science and Pollution Research, 2020,27(8):8586- 8595.
[103]Wu X, Liu P, Shi H, et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater [J]. Water Research, 2021,188:116456.
[104]Liu P, Wu X, Peng J, et al. Critical effect of iron red pigment on photoaging behavior of polypropylene microplastics in artificial seawater [J]. Journal of Hazardous Materials, 2021,404:124209.
[105]Hartmann N B, Rist S, Bodin J, et al. Microplastics as vectors for environmental contaminants: Exploring sorption, desorption, and transfer to biota [J]. Integrated Environmental Assessment and Management, 2017,13(3):488-493.
[106]Ter Halle A, Ladirat L, Gendre X, et al. Understanding the fragmentation pattern of marine plastic debris [J]. Environmental Science & Technology, 2016,50(11):5668-5675.
[107]Velzeboer I, Kwadijk C J A F, Koelmans A A. Strong sorption of PCBs to nanoplastics, microplastics, carbon nanotubes, and fullerenes [J]. Environmental Science & Technology, 2014,48(9): 4869-4876.
[108]吳小偉.水環(huán)境中聚丙烯微塑料的光老化過程及影響因素 [D]. 南京:南京大學(xué), 2021. Wu X W. The photo aging process of polypropylene microplastics and related impact factors in aquatic environment [D]. Nanjing: Nanjing University, 2021.
[109]Guan S, Zhang X, Ma Y, et al. Field based studies on aging characteristics of pristine and aged plastic debris in a coastal environment, Bohai Bay, China [J]. Environmental Science: Processes & Impacts. 2023,25(1):110-118.
[110]潘偉亮,羅玲利,敖良根,等.微塑料在水土環(huán)境中的來源、危害及其檢測方法評述 [J]. 應(yīng)用化工, 2022,51(5):1508-1513.
[111]Jung S, Cho S, Kim K, et al. Progress in quantitative analysis of microplastics in the environment: A review [J]. Chemical Engineering Journal, 2021,422:130154.
[112]張佩玉.海洋環(huán)境微塑料混合物成分快速定量分析方法研究 [D]. 北京:北京化工大學(xué), 2022.Zhang P Y. Research on rapid quantitative method for plastic composition of marine microplastics mixture [D]. Beijing: Beijing Universityof Chemical Technolog, 2022.
[113]冉泰山,廖洪凱,龍 健,等.微塑料在土壤環(huán)境中的分離和檢測方法研究進展 [J]. 塑料科技, 2022,50(7):101-104. Ran T S, Liao H K, Long J, et al. Research progress on separation and detection methods of microplastics in soil environment [J]. Plastics Science and Technology, 2022,50(7):101-104.
[114]Kurouski D, Dazzi A, Zenobi R, et al. Infrared and Raman chemical imaging and spectroscopy at the nanoscale [J]. Chemical Society reviews, 2020,49(11):3315-3347.
[115]Guo X, Lin H, Xu S, et al. Recent advances in spectroscopic techniques for the analysis of microplastics in food [J]. Journal of Agricultural and Food Chemistry, 2022,70(5):1410-1422.
[116]李愛峰,閆 晨,邱江兵.微塑料浸出液的主要成分、檢測方法及環(huán)境效應(yīng)研究進展與展望 [J]. 中國海洋大學(xué)學(xué)報, 2022,52(10):1-14. Li A F, Yan C, Qiu J B. Progress on the main components, analytical methods and adverse effects of microplastic leachate [J]. Periodical of Ocean University of China, 2022,52(10):1-14.
[117]Lee Y K, Murphy K R, Hur J. Fluorescence signatures of dissolved organic matter leached from microplastics: Polymers and additives [J]. Environmental Science & Technology, 2020,54(19):11905-11914.
[118]王婷婷,陳 榮.海綿動物對微塑料的生物累積和排出 [J]. 生態(tài)毒理學(xué)報, 2022,17(6):29-36. Wang T T, Chen R. Bioaccumulation and elimination of microplastics by sponges [J]. Asian Journal of Ecotoxicology, 2022,17(6):29-36.
[119]Choi J S, Jung Y, Hong N, et al. Toxicological effects of irregularly shaped and spherical microplastics in a marine teleost, the sheepshead minnow (Cyprinodon variegatus) [J]. Marine Pollution Bulletin, 2018,129(1):231-240.
[120]趙淑江,王海雁,劉 健.微塑料污染對海洋環(huán)境的影響.海洋科學(xué), 2009,33(3):84-86. Zhao S J, Wang H Y, Liu J. Influence of microplastics pollution on marine environment [J]. Marine Sciences, 2009,33(3):84-86.
[121]Lu Y, Zhang Y, Deng Y, et al. Uptake and accumulation of polystyrene microplastics in zebrafish () and toxic effects in liver [J]. Environmental Science & Technology, 2016,50(7):4054- 4060.
[122]Wang S, Zheng L, Shen M, et al. Habitual feeding patterns impact polystyrene microplastic abundance and potential toxicity in edible benthic mollusks [J]. Science of The Total Environment, 2023,866: 161341.
[123]Zhang B, Chao J, Chen L, et al. Research progress of nanoplastics in freshwater [J]. Science of The Total Environment, 2021,757:143791.
[124]Yin K, Wang Y, Zhao H, et al. A comparative review of microplastics and nanoplastics: Toxicity hazards on digestive, reproductive and nervous system [J]. Science of The Total Environment, 2021,774: 145758.
[125]于國欣,邵旭東,曾平平,等.不同粒徑聚苯乙烯微球?qū)﹂L額象鼻溞的毒性效應(yīng)對長額象鼻溞的毒性效應(yīng) [J]. 大連海洋大學(xué)學(xué)報, 2023,38(2):284-290.Yu G X, Shao X D, Zeng P P, et al. Toxic effects of different particle sizes polystyrene microspheres on Bosmina longirostris [J]. Journal of Dalian Ocean University, 2023,38(2):284-290.
[126]Frankel R, Ekvall M T, Kelpsiene E, et al. Controlled protein mediated aggregation of polystyrene nanoplastics does not reduce toxicity towardsDaphnia magna [J]. Environmental Science: Nano, 2020,7(5): 1518-1524.
[127]Forte M, Iachetta G, Tussellino M, et al. Polystyrene nanoparticles internalization in human gastric adenocarcinoma cells [J]. Toxicology in Vitro, 2016,31:126-136.
[128]Rubio L, Barguilla I, Domenech J, et al. Biological effects, including oxidative stress and genotoxic damage, of polystyrene nanoparticles in different human hematopoietic cell lines [J]. Journal of Hazardous Mater, 2020,398:122900.
[129]Fr?hlich E, Meindl C, Roblegg E, et al. Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity [J]. Particle and Fibre Toxicology, 2012,9(1):26.
[130]Deng C, Seidi F, Yong Q, et al. Virucidal and biodegradable specialty cellulose nonwovens as personal protective equipment against COVID-19 pandemic [J]. Journal of Advanced Research, 2022,39: 147-156.
[131]Xin X, Chen B, Yang M, et al. A critical review on the interaction of polymer particles and co-existing contaminants: Adsorption mechanism, exposure factors, effects on plankton species [J]. Journal of Hazardous Materials, 2023,445.
[132]Huang Z, Xiao X, Wang D, et al. joint effects of micro-sized polystyrene and chlorpyrifos on zebrafish based on multiple endpoints and gut microbial effects [J]. Journal of Environmental Sciences, 2023,126:184-197.
[133]Araújo A P D C, Luz T M D, Ahmed M A I, et al. Toxicity assessment of polyethylene microplastics in combination with a mix of emerging pollutants on Physalaemus cuvieri tadpoles [J]. Journal of Environmental Sciences, 2023,127:465-482.
[134]Davarpanah E, Guilhermino L. Are gold nanoparticles and microplastics mixtures more toxic to the marine microalgae Tetraselmis chuii than the substances individually? [J]. Ecotoxicology and Environmental Safety, 2019,181:60-68.
[135]Fu D, Zhang Q, Fan Z, et al. Aged microplastics polyvinyl chloride interact with copper and cause oxidative stress towards microalgae Chlorella vulgaris [J]. Aquatic Toxicology, 2019,216.
[136]Wang F, Wang B, Qu H, et al. The influence of nanoplastics on the toxic effects, bioaccumulation, biodegradation and enantioselectivity of ibuprofen in freshwater algae Chlorella pyrenoidosa [J]. Environmental Pollution, 2020,263:114593.
[137]Leslie H A, van Velzen M J M, Brandsma S H, et al. Discovery and quantification of plastic particle pollution in human blood [J]. Environment International, 2022,163:107199.
[138]Wu D, Feng Y, Wang R, et al. Pigment microparticles and microplastics found in human thrombi based on Raman spectral evidence [J]. Journal of advanced research, 2022,15:S2090-1232(22) 00206-5.
[139]Huang S, Huang X, Bi R, et al. Detection and analysis of microplastics in human sputum [J]. Environmental Science & Technology, 2022, 56(4):2476-2486.
[140]Lambert S, Wagner M. Characterisation of nanoplastics during the degradation of polystyrene [J]. Chemosphere, 2016,145:265-268.
[141]王 琳,馬旖旎,季 榮.PS和PVC微塑料對小球藻的生長抑制效應(yīng)及其影響途徑 [J]. 環(huán)境科學(xué)學(xué)報, 2021,41(4):1538-1544.Wang L, Ma Y N, Ji R. Effects of PS and PVC microplastics on the growth of Chlorella sp. [J]. Acta Scientiae Circumstantiae, 2021,41(4): 1538-1544.
[142]Luo H, Xiang Y, He D, et al. Leaching behavior of fluorescent additives from microplastics and the toxicity of leachate to Chlorella vulgaris [J]. Science of The Total Environment, 2019,678:1-9.
[143]Romera-Castillo C, Birnstiel S, álvarez-Salgado X A, et al. Aged plastic leaching of dissolved organic matter is two orders of magnitude higher than virgin plastic leading to a strong uplift in marine microbial activity [J]. Frontiers in Marine Science, 2022,9:861557.
[144]Romera-Castillo C, Pinto M, Langer T M, et al. Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean [J]. Nature Communications. 2018,9:1430.
[145]Gunaalan K, Fabbri E, Capolupo M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms [J]. Water Research, 2020,184:116170.
[146]Moran M A, Kujawinski E B, Stubbins A, et al. Deciphering ocean carbon in a changing world [J]. Proceedings of the National Academy, 2016,113(12):3143-3151.
[147]Wu M, Ma Y, Xie H, et al. Photodissolution of submillimeter-sized microplastics and its dependences on temperature and light composition [J]. Science of The Total Environment, 2022,848:157714.
[148]Cheng Z, Nie X, Wang H, et al. Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption [J]. Environment International, 2013,57-58:75-80.
[149]Tanaka K, van Franeker J A, Deguchi T, et al. Piece-by-piece analysis of additives and manufacturing byproducts in plastics ingested by seabirds: Implication for risk of exposure to seabirds [J]. Marine Pollution Bulletin, 2019,145:36-41.
[150]Groh K J, Backhaus T, Carney-Almroth B, et al. Overview of known plastic packaging-associated chemicals and their hazards [J]. Science of The Total Environment, 2019,651:3253-3268.
[151]Luo H, Li Y, Zhao Y, et al. Effects of accelerated aging on characteristics, leaching, and toxicity of commercial lead chromate pigmented microplastics [J]. Environmental Pollution, 2020,257: 113475.
[152]Schrank I, Trotter B, Dummert J, et al. Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna [J]. Environmental Pollution, 2019,255:113233.
[153]Gandara E Silva P P, Nobre C R, Resaffe P, et al. Leachate from microplastics impairs larval development in brown mussels [J]. Water Research, 2016,106:364-370.
[154]Farrell P, Nelson K. Trophic level transfer of microplastic:(L.) to(L.) [J]. Environmental Pollution, 2013,177:1-3.
Research progress on the aging process, leachates of microplastics and their environmental effects.
MIAO Ling-zhan1*, DENG Xiao-ya1, YANG Zheng2, LI Wan-yi1, HOU Jun1
(1.Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;2.Yunnan branch of Guangzhou Urban Construction Planning and Design Institute Co., Ltd., Kunming 650011, China).2023,43(11):6156~6171
Effects of photo-degradation, thermal-degradation, physical abrasion and biodegradation on the aging process of microplastics were reviewed. The relevant laboratory research methods and the key conclusions were discussed. Furthermore, the detection methods of the particulate and dissolved leachates of aged microplastics were summarized, and the toxicity of micro/nano-plastics, their pollutant carrying effects and the impacts of plastic’s leachates on aquatic ecosystem and organisms were analyzed. Finally, the future research focuses were proposed. It is suggested that future research should take into account the multiple factors to simulate the natural environment, screen the plastic degrading microbes, establish the technical and methodological standards for plastic’s leachates, and reveal the toxic mechanism of leachates from microplastics.
microplastics;aging;analytical methods;leachate;environmental effect
X131
A
1000-6923(2023)11-6156-16
苗令占(1988-),男,河南省鄭州人,教授,博士,主要從事河湖水質(zhì)改善與生態(tài)修復(fù)工程、河流微生物生態(tài)學(xué)、新污染物特性及環(huán)境效應(yīng)等方面的研究與應(yīng)用工作.發(fā)表論文60余篇.lzmiao@hhu.edu.cn.
苗令占,鄧肖雅,楊 錚,等.微塑料的老化過程、產(chǎn)物及其環(huán)境效應(yīng)研究進展 [J]. 中國環(huán)境科學(xué), 2023,43(11):6156-6171.
Miao L Z, Deng X Y, Yang Z, et al. Research progress on the aging process, leachates of microplastics and their environmental effects [J]. China Environmental Science 2023,43(11):6156-6171.
2023-03-16
西藏科技廳重點研發(fā)計劃項目(XZ202101ZY0016G)
* 責(zé)任作者, 教授, lzmiao@hhu.edu.cn