• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine Learning-Based Gaze-Tracking and Its Application in Quadrotor Control on Mobile Device

    2023-11-22 09:11:20,*,,,

    ,*,,,

    1.College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, P.R.China;

    2.China Aeronautical Control System Research Institute, Wuxi 214000, P.R.China

    Abstract: A machine learning-based monocular gaze-tracking technology for mobile devices is proposed.This noninvasive, convenient, and low-cost gaze-tracking method can capture the gaze points of users on the screen of mobile devices in real time.Combined with the quadrotor’s 3D motion control, the user’s gaze information is converted into the quadrotor’s control signal, solving the limitations of previous control methods, which allows the user to manipulate the quadrotor through visual interaction.A complex quadrotor track is set up to test the feasibility of this method.Subjects are asked to intervene their gaze into the control flow to complete the flight tasks.Flight performance is evaluated by comparing with the joystick-based control method.Experimental results show that the proposed method can improve the smoothness and rationality of the quadrotor motion trajectory, and can introduce diversity, convenience, and intuitiveness to the quadrotor control.

    Key words:gaze-tracking; UAV control; machine learning; HRI; eye-gaze drive

    0 Introduction

    In our daily life, eyes are not only an important organ for us to obtain information, but also an important source for us to transmit our thoughts and emotions to the outside world.Recently, the gazetracking has been applied to the direct control of graphical interfaces.

    Using machine learning techniques, the mapping relationship between eye images and gaze information can be obtained.Among them, the method using convolutional neural network (CNN) is proven to be effective.In this method, information such as human eye image and head pose is input into CNN, and the gaze vector is decoded at the last fully connected layer.Theoretically, the network can be trained as long as there is sufficient data[1-2].

    However, even using deep neural network for regression analysis, its accuracy is usually limited to about six to ten degrees with high interindividual variance.This is due to many factors, including sparse calibration data, differences in human eye anatomy, and the introduction of head posture to complicate the model[3].In addition, unrestricted head motion is crucial for the generalization of gazetracking, and gaze trackers that improve prediction accuracy by fixing the head tend to have a very narrow application in reality[4-5].

    Advanced machine learning techniques are applied to this field.Recently, Huang et al.[6]used a residual network for feature extraction of eye images and treated the gaze difference as auxiliary information to improve the prediction accuracy.Zhuang et al.[7]proposed to use an attention mechanism to enhance the network effect and obtained excellent performance in a multi-camera multi-screen system.Nagpure et al.[8]proposed a compact model to accurately and efficiently solve the problem of gaze estimation by using a multi-resolution fusion transformer and improve the network performance.However,these large or complex inference process models make these technologies almost impossible to deploy on edge processors and mobile devices.In addition, easy personalization of the model is necessary for the application scenarios corresponding to this paper.

    The practical application of gaze-tracking technology has always been a vexing problem.Applications of this technology in fields such as psychology and cognition began more than a decade ago, but there are not many studies or products that use gaze information to drive mobile robots, especially in the field of eye-gaze driven quadrotors.

    In an earlier study, Hansen et al.[9]combined eye-gaze drive and a keyboard to control the quadrotor, but the gaze was only able to control two degrees of freedom (DOF) of the quadrotor, and it still could not get rid of the keyboard.Kim et al.[10]combined gaze-tracking and brain-computer interfaces to control quadrotors and obtained good results,but this work can only control a single DOF of the quadrotor at the same moment, and complex wearable devices seriously limit the diffusion of this control method.

    A novel object detection-based multi-rotor micro aerial vehicle (MAV) localization method in a human sensor framework has been proposed in recent years, which uses gaze to assist the quadrotor for spatial localization, but does not directly control the motion of the quadrotor and still uses a headmounted gaze-tracking device[11].

    Wang et al.[12]proposed GPA-teleoperation,an assisted teleoperation framework for gaze-enhanced perception that enables intent control and improves safety, but the wearing of VR glasses and the many requirements for quadrotor systems limit the application scenarios of this technology.

    To enhance the role of eye-gaze drive in real life, we apply the proposed gaze-tracking network to mobile devices.Therefore, this research work aims to develop a simple, easy-to-use, non-wearable, and low-cost gaze-tracking platform that interprets eye movements and enables real-time control of quadrotors in 3D environments.

    Therefore, the contribution of this study is to address the limitations of previous systems in a single system and provide the user with an additional,complete, and safe method of quadrotor control.The main contributions of this work are as follows:

    (1)A machine learning-based monocular gazetracking technique is proposed and deployed on mobile devices to improve the application prospects of eye-gaze drive.

    (2) An easy-to-learn and easy-to-use system:Users can convert their gaze information into control information for mobile robots in 3D space.

    (3) A non-intrusive, portable, low-cost device: Users can plan the flight trajectory of the quadrotor by gaze.

    1 System Overview

    Fig.1 Illustration of controlling a quadrotor using gaze-tracking on mobile platform

    In this section, we discuss the hardware components and software pipeline of our system.The system’s framework is shown in Fig.1, where the green, blue, and red coordinate systems represent the camera coordinate system, the head coordinate system, and the world coordinate system, respectively.This system needs to deal with the relationship between these coordinate systems.

    1.1 Hardware setup

    Our novel system is based on HONOR V7, an inexpensive Android tablet.This device is chosen because its front-facing camera is located in the middle of the long side of the screen for gaze-tracking.It has a MediaTek 1300T CPU that is capable of achieving the computing power needed for machine learning.The controlled object is DJI Mini2, a small quadcopter drone with a two-axis gimbal, a takeoff mass of less than 249 g, a maximum flight time of 31 min, support for satellite positioning and optical flow positioning, real-time image transmission at the maximum bit rate of 8 Mb/s.

    1.2 Algorithm pipeline

    As shown in Fig.2, we used the TNN inference framework provided by Tencent to provide a variety of different acceleration options for the mobile terminals on the premise of ensuring uniform models and interfaces.The optimized adaptation of face recognition and head pose detection based on the single shot multibox detector (SSD) machine learning model is finally achieved, and the computing speed of 50 Hz is reached for 1080P images.

    Fig.2 Diagram of our control system architecture

    Using the OpenCV and OpenCL libraries, the human eye image is cropped and transmitted together with the head pose and head position information to the gaze-tracking module.The Tensorflow library is used to build the gaze tracking module proposed in this paper, and the TensorflowlLite library is used to convert it into a mobile device-compatible model (.tflite) for inference.

    The result of the gaze-tracking model inference is an estimation of the user’s gaze point on the tablet screen at a rate of 25 Hz.And then the estimation of the gaze point is input to the motion analysis program module to get the expected value of the quadrotor motion, and the result is input to the quadrotor control module to get the actual amount of flight control.

    2 Method

    In this section, we describe the proposed method of gaze-tracking and the method for converting gaze information into a quadrotor control signal.

    2.1 2D monocular gaze tracking

    In this paper, a CNN model for free-head gaze point (2D) estimation is proposed.It has the characteristics of low computational demand and fast computation, as well as good prediction accuracy, and supports free rotation of the head within a certain range.The model architecture is shown in Fig.3.

    Before inference, the images captured by the front camera are processed by the face recognition model and the head pose detection model to obtain the left and right eye images, face frame and head pose.We flip one of the eye images horizontally and scale the two images to a size of 64×64.In particular, the coordinates of the upper left corner of the face frame in the image are used to indicate the position of the face relative to the screen, which is denoted by [xm,ym].The width of the face frame is used to indicate the distance of the face relative to the screen, which is denoted bywm.Finally, the eye images, face frame information, and head pose are fed into the three corresponding CNN channels of the network, and four fully connected layers are added at the end for obtaining the prediction results.

    Fig.3 Our gaze point estimation network structure

    In addition, we test the model performance on a generic dataset.The accuracy of the model tested on the MPIIFaceGaze dataset is 5.23 cm.It is superior to ITracker[2], Gaze-Net[13]and Mnist[1].

    2.2 User interface

    The user interface consists of eight parts, as shown in Fig.4, in which the view is returned by the on-board camera.The gimbal camera on the quadcopter streams the video back through the image transmission module and displays it full screen on the monitor.The transmission delay is around 200 ms, which is within the acceptable range.

    Fig.4 Components of the user interface

    There is a small box showing a face in the bottom right corner of the interface, allowing the user to determine whether they have the tablet in a reasonable position.We display the results of gazetracking (the user’s gaze point on the tablet screen)as a blue dot in the interface.The role of the distance ring is to limit the effect of the eye-gaze drive.The user can realize eye drive when the estimated result of the gaze point is outside the distance ring,otherwise the control of the quadrotor will not be triggered.

    Another prerequisite for starting eye-gaze control is that the activation button in the bottom left corner of the interface is pressed.To ensure the security of the control, the user needs to keep the button pressed.Note that the quadcopter’s DOF in the forward and backward directions are controlled manually.The forward speed of the quadcopter is adjusted by sliding up the green slider in the lower right corner, while sliding down the slider has the opposite effect.

    2.3 Quadrotor flight control

    In this work, the predicted result of the gazetracking model is the user’s gaze point (x,y) on the tablet display.Since 2D gaze-tracking is used, the quadrotor can only be controlled simultaneously by the human eye in two DOF of motion.

    By summarizing previous research works, we find a better mapping logic: (1) The motion of gaze in the vertical direction maps to the motion of the quadrotor in the altitude direction.(2) The motion of gaze in the horizontal direction maps to the motion of the quadrotor in the yaw direction.We believe that such a mapping method is the most intuitive and more in line with the user’s operation habits.

    Because the motion of the quadrotor in the vertical direction and its yaw have been determined by the gaze direction, other control methods are needed to determine the motion of the quadrotor in other directions.

    We use the roll angle of the head to determine the roll angle of the quadrotor, and use the slider on the interface to control the movement of the quadrotor in the forward and backward directions.The overall control method is shown in Fig.5.

    Fig.5 The overall control method

    We first introduce the implementation of gaze control of the quadrotor motion in the vertical and yaw directions.In Fig.5(a), the blue gaze point is located outside the distance ring with coordinates(x,y), so it can trigger eye-gaze drive.

    Let the radius of the distance ring bed1, the distance from the gaze point toOsisd1+d2, the distance from the gaze point to axisxsis set todv,and the distance from the gaze point to axisysis set tody.BecauseOsis the midpoint of the screen and the resolution of the screen is 2 560×1 600,dv=800-yganddx=1 280-xg.

    The values ofdvanddxreflect the user’s expectation on the direction of the quadrotor motion.The larger thedv, the larger the quadrotor motion in the vertical direction should be, and the larger thedx, the larger the quadrotor motion in the yaw direction should be.

    We useCvandCyto represent the value of user control over the quadrotor in the vertical and yaw directions, so whend2is larger than 0,Cv=θ1dvandCy=θ2dx.The coefficientsθ1andθ2indicate the control rate.

    The movement of the quadrotor over the roll angle is controlled by the roll of the user’s head,which is denoted by rollh.The user’s head angle is detected by the SSD machine learning model.With the head tilted to the left, the quadrotor flies to the left, and the opposite to the right.

    We useCrto represent the value of user control over the quadrotor in the roll angle direction, soCr=θ3rollh.The coefficientθ3indicates the control rate.

    As mentioned above, we manually control the forward and backward of the quadrotor, and the slider on the user interface helps us to achieve this purpose.In this research, the quadrotor is controlled simultaneously by gaze, head pose, and manual.Fig.5(b) shows the functions achieved by each control method.

    3 Experiments

    In order to conduct flight control experiments,an adequately large physical space is required.We set up the experimental environment in an open area of the school.Fig.6 illustrates the layout of the physical environment.

    Fig.6 Test grounds with multiple obstacles

    3.1 Experimental setup

    We place four types of obstacles in the field,six in total: three knife flags, a tunnel, a round hole, and an archway.Subjects are asked to turn their backs to the field and steer the quadcopter from the tarmac and back through each obstacle.They are not allowed to directly observe the field, and could only adjust the quadcopter’s flight conditions via video streams from the quadcopter’s onboard camera.

    In this experiment, each subject is required to control the quadrotor using a joystick and the proposed control method (eye-gaze drive).

    3.2 Performance evaluation

    To evaluate the effect of eye-gaze drive quadrotors, we set up the following evaluation methods with Ref.[10]: Flight distance, total time, and smooth curve deviation.Our goal is to test whether the proposed system can adequately convert gaze information into control information for the quadrotor, improve the control of the quadrotor, and thus replace the traditional joystick with eye-gaze drive.

    To compare the manipulation efficiency of the two control methods, we calculate the total time(TT) and flight distance(FD) of subjects for each completed task.

    The smooth curve deviation (SCD) can reflect the smoothness of the quadrotor flight path, as shown in Fig.7.By processing the real flight path,we can get the smoothed path.piis the point on the real path at timei,psiis the point on the smoothed path at timei.Therefore, the SCD is calculated as

    wherenis the number of quadrotor trajectory points.The quadrotor records its position once every 0.1 s.

    Fig.7 The smooth curve deviation

    4 Results and Discussion

    In this section, we analyze and compare the effectiveness of the two control methods.We collect data from five subjects, and for each control method, each subject has 20 opportunities.And the average test results are shown in Table 1.

    Table 1 The summarized performance of two control methods

    For the TT, all ten sets of data are within 2 min.The comparison reveals that all five subjects are faster in completing the flight task using the joystick than using the eye-gaze drive with average of about 15.9%.Four of the subjects show little divergence in the two control modes, but the fourth subject shows a significant difference in TT because this subject could not adapt to eye-gaze drive in a short time.

    In our control system, the forward speed of the quadrotor is determined by the position of the slider on the screen.For safety reasons, we set the speed corresponding to the slider at the maximum position to be relatively small, which, we believe, is one of the reasons for the larger TT obtained by the eyegaze control relative to that obtained by the joystick.

    Generally speaking, the shorter the flight time, the shorter the flight distance, but the experimental results of FD are counter-intuitive.The FD obtained using the eye-gaze control is nearly 4.13%lower than the FD obtained using the joystick.Using eye-gaze control mode, the subject can control the UAV to complete the flight mission through a shorter flight distance.This phenomenon is difficult to understand, but combined with the experimental results of SCD, the reason can be found out.

    Using the eye-gaze control, we can get lower FD and SCD, where SCD is reduced by almost 6.57%, and SCD can reflect the degree of trajectory fluctuation.This shows that although the TT obtained by this control method is larger, the flight trajectory of the controlled quadrotor is shorter and the trajectory is smoother.Therefore, we can conclude to a certain extent that the eye-gaze control method is smoother and more controllable, and the quadrotor travels a more efficient trajectory.

    In the experiment, we also find that by using the eye-gaze drive, subjects are able to plan their routes more proactively based on the obstacles.Because of the reduced reliance on hand movements,subjects could focus more on the route.

    The results from this study show that using gaze movements and simple body motions is still sufficient to perform a challenging task: Controlling a quadcopter in 3D physical space.The self-developed software and hardware find that an inexpensive interface is possible.

    We assign two DOF of the quadrotor to the eye to achieve intuitive gaze intervention.However,the other DOF of the quadrotor still requires limb intervention, which is believed as an area in dire need of improvement.

    In addition to using brain-computer interfaces or other bio-signals, we believe that with the interface setup, the eye is capable of controlling the quadrotor flight alone.

    5 Conclusions

    We present a mobile platform-based gaze interaction system that tracks eye movements while converting gaze information into control information for a quadrotor.The proposed interaction enables the user to manipulate the quadrotor through the eyes to accomplish complex flight tasks in 3D space.With this low-cost and mobile device, people can control their flying machines naturally and easily in their daily lives.From the results of our study, we have succeeded in demonstrating the potential of this interaction method.We believe that our solution can expand new ways of human-computer interaction and create a new dimension of quadrotor control.

    18+在线观看网站| 免费黄色在线免费观看| 免费黄色在线免费观看| 久久毛片免费看一区二区三区| 色网站视频免费| av免费观看日本| 亚洲精品国产色婷婷电影| 大片免费播放器 马上看| 蜜桃国产av成人99| 亚洲精品美女久久av网站| 2022亚洲国产成人精品| 欧美精品国产亚洲| 老司机影院成人| 精品亚洲成a人片在线观看| 亚洲国产日韩一区二区| 欧美日韩视频精品一区| 9色porny在线观看| 亚洲欧美日韩另类电影网站| 在线观看免费视频网站a站| 人人妻人人澡人人爽人人夜夜| 香蕉国产在线看| 国产成人精品婷婷| 欧美日韩av久久| 亚洲国产毛片av蜜桃av| 午夜福利网站1000一区二区三区| 多毛熟女@视频| 亚洲精品国产av成人精品| 久久精品国产亚洲av天美| 国产在线免费精品| 国产精品秋霞免费鲁丝片| 亚洲色图综合在线观看| 国产深夜福利视频在线观看| 波野结衣二区三区在线| 国产97色在线日韩免费| a级毛片黄视频| 久久久久久久亚洲中文字幕| 午夜福利网站1000一区二区三区| 久久ye,这里只有精品| 国产黄色视频一区二区在线观看| 亚洲第一青青草原| 99香蕉大伊视频| 看免费av毛片| 国产欧美日韩一区二区三区在线| 久久女婷五月综合色啪小说| 日韩大片免费观看网站| 亚洲欧美中文字幕日韩二区| 1024香蕉在线观看| 波多野结衣一区麻豆| 黄片播放在线免费| 久久久久久久国产电影| 久久久久国产网址| 99香蕉大伊视频| 日日爽夜夜爽网站| 国产乱人偷精品视频| 人人妻人人澡人人爽人人夜夜| 日韩不卡一区二区三区视频在线| 亚洲欧美一区二区三区久久| 日韩视频在线欧美| av在线观看视频网站免费| 国产精品一区二区在线不卡| 日韩中文字幕欧美一区二区 | 亚洲综合精品二区| 91成人精品电影| 叶爱在线成人免费视频播放| 久久久国产一区二区| 久久久久网色| 18+在线观看网站| av在线观看视频网站免费| 亚洲情色 制服丝袜| 免费看av在线观看网站| videosex国产| 各种免费的搞黄视频| 欧美 亚洲 国产 日韩一| 丝袜喷水一区| 午夜福利网站1000一区二区三区| 精品第一国产精品| 熟妇人妻不卡中文字幕| 寂寞人妻少妇视频99o| 日韩三级伦理在线观看| 韩国av在线不卡| 宅男免费午夜| 人人妻人人澡人人看| av国产精品久久久久影院| 久久久久久久国产电影| 天堂中文最新版在线下载| 亚洲综合色网址| 亚洲欧美中文字幕日韩二区| 亚洲久久久国产精品| 只有这里有精品99| 啦啦啦在线观看免费高清www| 久久97久久精品| 激情视频va一区二区三区| 精品人妻一区二区三区麻豆| 人妻 亚洲 视频| 久久久久国产网址| 国产熟女欧美一区二区| 国产成人精品久久二区二区91 | 波野结衣二区三区在线| 国产高清国产精品国产三级| 毛片一级片免费看久久久久| 老司机亚洲免费影院| 麻豆乱淫一区二区| 97在线人人人人妻| 人妻一区二区av| 电影成人av| 精品一区二区三区四区五区乱码 | 亚洲国产精品一区二区三区在线| 9色porny在线观看| 999久久久国产精品视频| 久久久久精品人妻al黑| 成人毛片a级毛片在线播放| 国产麻豆69| 免费久久久久久久精品成人欧美视频| 毛片一级片免费看久久久久| 亚洲五月色婷婷综合| 日韩 亚洲 欧美在线| 亚洲精品国产av蜜桃| 亚洲第一av免费看| 高清视频免费观看一区二区| 日本免费在线观看一区| 国产欧美日韩综合在线一区二区| 久久热在线av| 九色亚洲精品在线播放| 成年人午夜在线观看视频| 五月伊人婷婷丁香| 免费av中文字幕在线| 亚洲欧美一区二区三区久久| 飞空精品影院首页| 在线观看免费视频网站a站| 你懂的网址亚洲精品在线观看| 日韩av在线免费看完整版不卡| 日本黄色日本黄色录像| 黄频高清免费视频| 一区二区av电影网| 我的亚洲天堂| 在线免费观看不下载黄p国产| 自线自在国产av| 欧美在线黄色| 国产免费现黄频在线看| 一级片免费观看大全| 一本—道久久a久久精品蜜桃钙片| 黑人欧美特级aaaaaa片| 国产精品99久久99久久久不卡 | 欧美av亚洲av综合av国产av | 国产成人一区二区在线| 一级黄片播放器| 少妇 在线观看| 999久久久国产精品视频| 亚洲视频免费观看视频| 中文字幕另类日韩欧美亚洲嫩草| 免费观看a级毛片全部| 夫妻性生交免费视频一级片| 边亲边吃奶的免费视频| 免费播放大片免费观看视频在线观看| 搡老乐熟女国产| 丝袜脚勾引网站| 日韩视频在线欧美| 国产成人精品久久二区二区91 | 90打野战视频偷拍视频| 久久免费观看电影| 免费久久久久久久精品成人欧美视频| 超碰成人久久| 久久精品国产a三级三级三级| 熟女av电影| 大话2 男鬼变身卡| 日本vs欧美在线观看视频| 国产精品女同一区二区软件| 一本大道久久a久久精品| 日韩制服丝袜自拍偷拍| 熟女av电影| 一级片免费观看大全| 日韩大片免费观看网站| 热re99久久国产66热| 亚洲av综合色区一区| 日韩欧美一区视频在线观看| 99国产综合亚洲精品| 观看av在线不卡| 国产精品免费大片| 成年av动漫网址| 男女下面插进去视频免费观看| 久久综合国产亚洲精品| 新久久久久国产一级毛片| 男女边摸边吃奶| av国产精品久久久久影院| 午夜影院在线不卡| 国产国语露脸激情在线看| 又黄又粗又硬又大视频| 日本黄色日本黄色录像| 啦啦啦在线观看免费高清www| 久久精品久久久久久久性| 叶爱在线成人免费视频播放| 校园人妻丝袜中文字幕| 秋霞伦理黄片| 桃花免费在线播放| 欧美亚洲日本最大视频资源| 欧美精品人与动牲交sv欧美| 精品国产国语对白av| 欧美变态另类bdsm刘玥| 中国三级夫妇交换| 18禁观看日本| 免费高清在线观看视频在线观看| 高清欧美精品videossex| 熟女av电影| 国产97色在线日韩免费| 中文字幕制服av| 制服丝袜香蕉在线| 王馨瑶露胸无遮挡在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲国产精品成人久久小说| 免费高清在线观看日韩| av天堂久久9| 国产日韩欧美亚洲二区| 一级片免费观看大全| 国产高清国产精品国产三级| 国产精品久久久久久精品古装| 热99久久久久精品小说推荐| 日韩熟女老妇一区二区性免费视频| 国产一区二区三区av在线| 一级毛片 在线播放| 夜夜骑夜夜射夜夜干| 女人被躁到高潮嗷嗷叫费观| 久久免费观看电影| 在线观看国产h片| 日韩一区二区三区影片| 国产淫语在线视频| 亚洲第一区二区三区不卡| 欧美日韩亚洲国产一区二区在线观看 | 精品一区二区三卡| 午夜av观看不卡| 天天躁日日躁夜夜躁夜夜| 巨乳人妻的诱惑在线观看| 国产成人精品无人区| 18禁裸乳无遮挡动漫免费视频| 免费在线观看视频国产中文字幕亚洲 | 久热这里只有精品99| 汤姆久久久久久久影院中文字幕| 一级毛片电影观看| 激情视频va一区二区三区| 久久女婷五月综合色啪小说| 免费久久久久久久精品成人欧美视频| 不卡av一区二区三区| 80岁老熟妇乱子伦牲交| 少妇被粗大猛烈的视频| videossex国产| 国产亚洲精品第一综合不卡| 国产女主播在线喷水免费视频网站| 男女高潮啪啪啪动态图| 黄色 视频免费看| 国产高清不卡午夜福利| 亚洲av男天堂| 五月天丁香电影| 国产又色又爽无遮挡免| 91aial.com中文字幕在线观看| 午夜福利视频精品| 波多野结衣av一区二区av| 成人毛片60女人毛片免费| 伦理电影免费视频| 国产精品蜜桃在线观看| 波野结衣二区三区在线| 午夜激情久久久久久久| 侵犯人妻中文字幕一二三四区| 亚洲成av片中文字幕在线观看 | 超碰成人久久| 18+在线观看网站| 久久精品国产自在天天线| 午夜老司机福利剧场| 久久狼人影院| 欧美精品一区二区免费开放| 国产成人免费无遮挡视频| 国产精品麻豆人妻色哟哟久久| 亚洲精品视频女| 亚洲 欧美一区二区三区| 午夜福利视频在线观看免费| 母亲3免费完整高清在线观看 | 精品亚洲乱码少妇综合久久| 永久网站在线| 两个人看的免费小视频| 日韩制服丝袜自拍偷拍| 1024视频免费在线观看| 91久久精品国产一区二区三区| 欧美日韩亚洲高清精品| 午夜福利在线观看免费完整高清在| 国产视频首页在线观看| 丁香六月天网| 亚洲精品,欧美精品| 亚洲欧美清纯卡通| 午夜福利,免费看| 女人精品久久久久毛片| 少妇熟女欧美另类| 色94色欧美一区二区| 日韩av免费高清视频| 麻豆乱淫一区二区| 免费大片黄手机在线观看| 纵有疾风起免费观看全集完整版| 熟女少妇亚洲综合色aaa.| 国产成人aa在线观看| 一区二区日韩欧美中文字幕| 五月开心婷婷网| 免费在线观看黄色视频的| 国产精品 欧美亚洲| 亚洲,一卡二卡三卡| 18禁观看日本| 国产有黄有色有爽视频| 欧美精品av麻豆av| 97在线人人人人妻| 久久99蜜桃精品久久| 午夜福利视频精品| 国产淫语在线视频| 免费观看a级毛片全部| 人人妻人人添人人爽欧美一区卜| 校园人妻丝袜中文字幕| 五月天丁香电影| kizo精华| 中文欧美无线码| 99久久精品国产国产毛片| kizo精华| 中文精品一卡2卡3卡4更新| 老汉色∧v一级毛片| 免费观看在线日韩| 男女高潮啪啪啪动态图| 麻豆精品久久久久久蜜桃| 在线天堂中文资源库| 最黄视频免费看| av国产久精品久网站免费入址| 国产精品麻豆人妻色哟哟久久| 丝袜人妻中文字幕| 免费观看性生交大片5| 天天影视国产精品| 69精品国产乱码久久久| 91精品伊人久久大香线蕉| 青春草视频在线免费观看| 亚洲精品久久久久久婷婷小说| 好男人视频免费观看在线| 久久婷婷青草| 国产熟女午夜一区二区三区| 日本爱情动作片www.在线观看| 99久久人妻综合| 日韩人妻精品一区2区三区| 青青草视频在线视频观看| 高清在线视频一区二区三区| 母亲3免费完整高清在线观看 | 狂野欧美激情性bbbbbb| 亚洲精品美女久久av网站| 十分钟在线观看高清视频www| 欧美日韩av久久| 国产白丝娇喘喷水9色精品| 成人国产av品久久久| 国产女主播在线喷水免费视频网站| 久久影院123| 国产在线一区二区三区精| 纵有疾风起免费观看全集完整版| 人人澡人人妻人| 久久久a久久爽久久v久久| 免费人妻精品一区二区三区视频| 国产精品一二三区在线看| 日韩人妻精品一区2区三区| 美女国产高潮福利片在线看| 伊人亚洲综合成人网| 在线 av 中文字幕| 久久久久久久久久久久大奶| 亚洲五月色婷婷综合| 一级,二级,三级黄色视频| a级毛片黄视频| 边亲边吃奶的免费视频| 免费黄色在线免费观看| 大香蕉久久成人网| 黄色 视频免费看| 欧美人与性动交α欧美精品济南到 | 国产精品国产av在线观看| 男女边吃奶边做爰视频| 国产精品不卡视频一区二区| 青青草视频在线视频观看| 欧美+日韩+精品| 在线观看美女被高潮喷水网站| 亚洲,欧美,日韩| 久久久久久久久免费视频了| 亚洲久久久国产精品| 人人澡人人妻人| 99国产精品免费福利视频| 黄片播放在线免费| 国产在线免费精品| 午夜老司机福利剧场| 熟女电影av网| 婷婷色综合www| 永久网站在线| 亚洲欧美精品综合一区二区三区 | 2021少妇久久久久久久久久久| 成年美女黄网站色视频大全免费| 亚洲欧美中文字幕日韩二区| 丝袜人妻中文字幕| 老汉色∧v一级毛片| av福利片在线| 极品少妇高潮喷水抽搐| 欧美精品国产亚洲| 久久久欧美国产精品| 久久影院123| 中文字幕人妻丝袜一区二区 | 欧美 日韩 精品 国产| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久久久久免| 精品一区二区三区四区五区乱码 | 又黄又粗又硬又大视频| 欧美精品一区二区大全| 少妇人妻精品综合一区二区| 如日韩欧美国产精品一区二区三区| 999精品在线视频| 26uuu在线亚洲综合色| 亚洲精品国产av蜜桃| 亚洲国产av新网站| 国产又爽黄色视频| 国产亚洲最大av| 亚洲,欧美精品.| 亚洲情色 制服丝袜| 国产探花极品一区二区| 亚洲婷婷狠狠爱综合网| 寂寞人妻少妇视频99o| 人妻少妇偷人精品九色| 超色免费av| 成人二区视频| 少妇人妻 视频| 女人高潮潮喷娇喘18禁视频| 午夜激情久久久久久久| a级片在线免费高清观看视频| 久久综合国产亚洲精品| 久久久国产精品麻豆| 一区二区三区乱码不卡18| 国产白丝娇喘喷水9色精品| 天堂8中文在线网| 一区二区日韩欧美中文字幕| 久久久久久伊人网av| 久久久久久久大尺度免费视频| 欧美日韩成人在线一区二区| 在现免费观看毛片| 色网站视频免费| 高清不卡的av网站| 国产不卡av网站在线观看| 国产成人91sexporn| 香蕉精品网在线| 国产有黄有色有爽视频| 欧美中文综合在线视频| 亚洲少妇的诱惑av| 亚洲色图 男人天堂 中文字幕| 免费黄色在线免费观看| 美女午夜性视频免费| av在线观看视频网站免费| 女人被躁到高潮嗷嗷叫费观| 成人国语在线视频| 欧美变态另类bdsm刘玥| 亚洲,一卡二卡三卡| 美女脱内裤让男人舔精品视频| 国产片特级美女逼逼视频| freevideosex欧美| 天天躁夜夜躁狠狠躁躁| 国产男人的电影天堂91| 亚洲视频免费观看视频| 成人影院久久| 久久久精品免费免费高清| 亚洲综合色网址| 久久狼人影院| 2018国产大陆天天弄谢| 久久国产精品男人的天堂亚洲| 日韩一卡2卡3卡4卡2021年| 婷婷色av中文字幕| 欧美亚洲 丝袜 人妻 在线| 欧美日韩精品网址| 高清黄色对白视频在线免费看| 春色校园在线视频观看| 亚洲成色77777| 久久 成人 亚洲| 捣出白浆h1v1| 美女xxoo啪啪120秒动态图| 80岁老熟妇乱子伦牲交| 国产激情久久老熟女| 午夜影院在线不卡| 国产一区亚洲一区在线观看| 亚洲少妇的诱惑av| 国产精品秋霞免费鲁丝片| 中文字幕制服av| 哪个播放器可以免费观看大片| 亚洲三区欧美一区| 超色免费av| 韩国高清视频一区二区三区| 91午夜精品亚洲一区二区三区| 老司机亚洲免费影院| 久久人妻熟女aⅴ| av国产久精品久网站免费入址| 免费高清在线观看日韩| 亚洲婷婷狠狠爱综合网| 看十八女毛片水多多多| 国产精品久久久久成人av| 久久久亚洲精品成人影院| 国产精品久久久久久精品古装| 国产成人免费观看mmmm| 亚洲精品一二三| 色播在线永久视频| 日韩一本色道免费dvd| 欧美日韩亚洲高清精品| 国产成人精品婷婷| 国产在线视频一区二区| 一级毛片我不卡| 国产精品av久久久久免费| 亚洲 欧美一区二区三区| videosex国产| 午夜日韩欧美国产| 1024香蕉在线观看| 人妻少妇偷人精品九色| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 美女视频免费永久观看网站| av福利片在线| 丝瓜视频免费看黄片| 亚洲国产av影院在线观看| 亚洲国产最新在线播放| h视频一区二区三区| 大码成人一级视频| 免费黄频网站在线观看国产| 日日撸夜夜添| 波多野结衣av一区二区av| 美女脱内裤让男人舔精品视频| 99香蕉大伊视频| 久久精品国产a三级三级三级| 日韩不卡一区二区三区视频在线| 亚洲色图综合在线观看| 欧美激情高清一区二区三区 | 欧美人与性动交α欧美软件| 丝袜美腿诱惑在线| av不卡在线播放| 久久精品国产亚洲av高清一级| 国产精品99久久99久久久不卡 | 亚洲精品乱久久久久久| 午夜影院在线不卡| 免费久久久久久久精品成人欧美视频| 18禁国产床啪视频网站| 国产精品一区二区在线不卡| a级片在线免费高清观看视频| 久久久久久久久免费视频了| 亚洲,欧美,日韩| 免费观看性生交大片5| 九草在线视频观看| 日日爽夜夜爽网站| 夫妻性生交免费视频一级片| 一本久久精品| 久久人妻熟女aⅴ| 成年人午夜在线观看视频| 天天躁夜夜躁狠狠久久av| 一边摸一边做爽爽视频免费| 国产一区二区三区av在线| 亚洲国产欧美日韩在线播放| 视频区图区小说| 涩涩av久久男人的天堂| 欧美日韩亚洲国产一区二区在线观看 | 免费黄频网站在线观看国产| 在线观看三级黄色| 精品人妻在线不人妻| 国产人伦9x9x在线观看 | 综合色丁香网| 久久久久久久久久久免费av| 97人妻天天添夜夜摸| 又大又黄又爽视频免费| 国产又色又爽无遮挡免| 亚洲欧美清纯卡通| 亚洲天堂av无毛| 欧美在线黄色| 毛片一级片免费看久久久久| 亚洲人成电影观看| 国产成人精品一,二区| 亚洲,一卡二卡三卡| 一级,二级,三级黄色视频| 亚洲少妇的诱惑av| 色视频在线一区二区三区| 亚洲精品aⅴ在线观看| 丝瓜视频免费看黄片| 青春草亚洲视频在线观看| 亚洲第一区二区三区不卡| 久久久久久久大尺度免费视频| 人人妻人人澡人人看| 日日啪夜夜爽| www.精华液| 999精品在线视频| 国产精品二区激情视频| 久久人人爽av亚洲精品天堂| 亚洲精品美女久久久久99蜜臀 | 国产成人精品福利久久| 精品少妇内射三级| 人体艺术视频欧美日本| 免费日韩欧美在线观看| 亚洲精品自拍成人| 国产无遮挡羞羞视频在线观看| 人人妻人人澡人人看| 国产成人精品一,二区| 国产高清国产精品国产三级| 看免费成人av毛片| 欧美 亚洲 国产 日韩一| 午夜日本视频在线| 中文字幕制服av| 日韩中文字幕视频在线看片| 国产午夜精品一二区理论片| 久久精品久久精品一区二区三区| 精品国产一区二区三区久久久樱花| 国产精品嫩草影院av在线观看| 午夜日本视频在线| 亚洲美女搞黄在线观看| 一边亲一边摸免费视频| 91精品三级在线观看| 性色avwww在线观看| 男的添女的下面高潮视频| 久久精品久久久久久久性| 国产成人91sexporn| 少妇被粗大的猛进出69影院| 啦啦啦在线免费观看视频4| 亚洲av日韩在线播放| 啦啦啦啦在线视频资源| 美女国产视频在线观看| 少妇被粗大的猛进出69影院| 免费观看无遮挡的男女|