• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine Learning-Based Gaze-Tracking and Its Application in Quadrotor Control on Mobile Device

    2023-11-22 09:11:20,*,,,

    ,*,,,

    1.College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics,Nanjing 210016, P.R.China;

    2.China Aeronautical Control System Research Institute, Wuxi 214000, P.R.China

    Abstract: A machine learning-based monocular gaze-tracking technology for mobile devices is proposed.This noninvasive, convenient, and low-cost gaze-tracking method can capture the gaze points of users on the screen of mobile devices in real time.Combined with the quadrotor’s 3D motion control, the user’s gaze information is converted into the quadrotor’s control signal, solving the limitations of previous control methods, which allows the user to manipulate the quadrotor through visual interaction.A complex quadrotor track is set up to test the feasibility of this method.Subjects are asked to intervene their gaze into the control flow to complete the flight tasks.Flight performance is evaluated by comparing with the joystick-based control method.Experimental results show that the proposed method can improve the smoothness and rationality of the quadrotor motion trajectory, and can introduce diversity, convenience, and intuitiveness to the quadrotor control.

    Key words:gaze-tracking; UAV control; machine learning; HRI; eye-gaze drive

    0 Introduction

    In our daily life, eyes are not only an important organ for us to obtain information, but also an important source for us to transmit our thoughts and emotions to the outside world.Recently, the gazetracking has been applied to the direct control of graphical interfaces.

    Using machine learning techniques, the mapping relationship between eye images and gaze information can be obtained.Among them, the method using convolutional neural network (CNN) is proven to be effective.In this method, information such as human eye image and head pose is input into CNN, and the gaze vector is decoded at the last fully connected layer.Theoretically, the network can be trained as long as there is sufficient data[1-2].

    However, even using deep neural network for regression analysis, its accuracy is usually limited to about six to ten degrees with high interindividual variance.This is due to many factors, including sparse calibration data, differences in human eye anatomy, and the introduction of head posture to complicate the model[3].In addition, unrestricted head motion is crucial for the generalization of gazetracking, and gaze trackers that improve prediction accuracy by fixing the head tend to have a very narrow application in reality[4-5].

    Advanced machine learning techniques are applied to this field.Recently, Huang et al.[6]used a residual network for feature extraction of eye images and treated the gaze difference as auxiliary information to improve the prediction accuracy.Zhuang et al.[7]proposed to use an attention mechanism to enhance the network effect and obtained excellent performance in a multi-camera multi-screen system.Nagpure et al.[8]proposed a compact model to accurately and efficiently solve the problem of gaze estimation by using a multi-resolution fusion transformer and improve the network performance.However,these large or complex inference process models make these technologies almost impossible to deploy on edge processors and mobile devices.In addition, easy personalization of the model is necessary for the application scenarios corresponding to this paper.

    The practical application of gaze-tracking technology has always been a vexing problem.Applications of this technology in fields such as psychology and cognition began more than a decade ago, but there are not many studies or products that use gaze information to drive mobile robots, especially in the field of eye-gaze driven quadrotors.

    In an earlier study, Hansen et al.[9]combined eye-gaze drive and a keyboard to control the quadrotor, but the gaze was only able to control two degrees of freedom (DOF) of the quadrotor, and it still could not get rid of the keyboard.Kim et al.[10]combined gaze-tracking and brain-computer interfaces to control quadrotors and obtained good results,but this work can only control a single DOF of the quadrotor at the same moment, and complex wearable devices seriously limit the diffusion of this control method.

    A novel object detection-based multi-rotor micro aerial vehicle (MAV) localization method in a human sensor framework has been proposed in recent years, which uses gaze to assist the quadrotor for spatial localization, but does not directly control the motion of the quadrotor and still uses a headmounted gaze-tracking device[11].

    Wang et al.[12]proposed GPA-teleoperation,an assisted teleoperation framework for gaze-enhanced perception that enables intent control and improves safety, but the wearing of VR glasses and the many requirements for quadrotor systems limit the application scenarios of this technology.

    To enhance the role of eye-gaze drive in real life, we apply the proposed gaze-tracking network to mobile devices.Therefore, this research work aims to develop a simple, easy-to-use, non-wearable, and low-cost gaze-tracking platform that interprets eye movements and enables real-time control of quadrotors in 3D environments.

    Therefore, the contribution of this study is to address the limitations of previous systems in a single system and provide the user with an additional,complete, and safe method of quadrotor control.The main contributions of this work are as follows:

    (1)A machine learning-based monocular gazetracking technique is proposed and deployed on mobile devices to improve the application prospects of eye-gaze drive.

    (2) An easy-to-learn and easy-to-use system:Users can convert their gaze information into control information for mobile robots in 3D space.

    (3) A non-intrusive, portable, low-cost device: Users can plan the flight trajectory of the quadrotor by gaze.

    1 System Overview

    Fig.1 Illustration of controlling a quadrotor using gaze-tracking on mobile platform

    In this section, we discuss the hardware components and software pipeline of our system.The system’s framework is shown in Fig.1, where the green, blue, and red coordinate systems represent the camera coordinate system, the head coordinate system, and the world coordinate system, respectively.This system needs to deal with the relationship between these coordinate systems.

    1.1 Hardware setup

    Our novel system is based on HONOR V7, an inexpensive Android tablet.This device is chosen because its front-facing camera is located in the middle of the long side of the screen for gaze-tracking.It has a MediaTek 1300T CPU that is capable of achieving the computing power needed for machine learning.The controlled object is DJI Mini2, a small quadcopter drone with a two-axis gimbal, a takeoff mass of less than 249 g, a maximum flight time of 31 min, support for satellite positioning and optical flow positioning, real-time image transmission at the maximum bit rate of 8 Mb/s.

    1.2 Algorithm pipeline

    As shown in Fig.2, we used the TNN inference framework provided by Tencent to provide a variety of different acceleration options for the mobile terminals on the premise of ensuring uniform models and interfaces.The optimized adaptation of face recognition and head pose detection based on the single shot multibox detector (SSD) machine learning model is finally achieved, and the computing speed of 50 Hz is reached for 1080P images.

    Fig.2 Diagram of our control system architecture

    Using the OpenCV and OpenCL libraries, the human eye image is cropped and transmitted together with the head pose and head position information to the gaze-tracking module.The Tensorflow library is used to build the gaze tracking module proposed in this paper, and the TensorflowlLite library is used to convert it into a mobile device-compatible model (.tflite) for inference.

    The result of the gaze-tracking model inference is an estimation of the user’s gaze point on the tablet screen at a rate of 25 Hz.And then the estimation of the gaze point is input to the motion analysis program module to get the expected value of the quadrotor motion, and the result is input to the quadrotor control module to get the actual amount of flight control.

    2 Method

    In this section, we describe the proposed method of gaze-tracking and the method for converting gaze information into a quadrotor control signal.

    2.1 2D monocular gaze tracking

    In this paper, a CNN model for free-head gaze point (2D) estimation is proposed.It has the characteristics of low computational demand and fast computation, as well as good prediction accuracy, and supports free rotation of the head within a certain range.The model architecture is shown in Fig.3.

    Before inference, the images captured by the front camera are processed by the face recognition model and the head pose detection model to obtain the left and right eye images, face frame and head pose.We flip one of the eye images horizontally and scale the two images to a size of 64×64.In particular, the coordinates of the upper left corner of the face frame in the image are used to indicate the position of the face relative to the screen, which is denoted by [xm,ym].The width of the face frame is used to indicate the distance of the face relative to the screen, which is denoted bywm.Finally, the eye images, face frame information, and head pose are fed into the three corresponding CNN channels of the network, and four fully connected layers are added at the end for obtaining the prediction results.

    Fig.3 Our gaze point estimation network structure

    In addition, we test the model performance on a generic dataset.The accuracy of the model tested on the MPIIFaceGaze dataset is 5.23 cm.It is superior to ITracker[2], Gaze-Net[13]and Mnist[1].

    2.2 User interface

    The user interface consists of eight parts, as shown in Fig.4, in which the view is returned by the on-board camera.The gimbal camera on the quadcopter streams the video back through the image transmission module and displays it full screen on the monitor.The transmission delay is around 200 ms, which is within the acceptable range.

    Fig.4 Components of the user interface

    There is a small box showing a face in the bottom right corner of the interface, allowing the user to determine whether they have the tablet in a reasonable position.We display the results of gazetracking (the user’s gaze point on the tablet screen)as a blue dot in the interface.The role of the distance ring is to limit the effect of the eye-gaze drive.The user can realize eye drive when the estimated result of the gaze point is outside the distance ring,otherwise the control of the quadrotor will not be triggered.

    Another prerequisite for starting eye-gaze control is that the activation button in the bottom left corner of the interface is pressed.To ensure the security of the control, the user needs to keep the button pressed.Note that the quadcopter’s DOF in the forward and backward directions are controlled manually.The forward speed of the quadcopter is adjusted by sliding up the green slider in the lower right corner, while sliding down the slider has the opposite effect.

    2.3 Quadrotor flight control

    In this work, the predicted result of the gazetracking model is the user’s gaze point (x,y) on the tablet display.Since 2D gaze-tracking is used, the quadrotor can only be controlled simultaneously by the human eye in two DOF of motion.

    By summarizing previous research works, we find a better mapping logic: (1) The motion of gaze in the vertical direction maps to the motion of the quadrotor in the altitude direction.(2) The motion of gaze in the horizontal direction maps to the motion of the quadrotor in the yaw direction.We believe that such a mapping method is the most intuitive and more in line with the user’s operation habits.

    Because the motion of the quadrotor in the vertical direction and its yaw have been determined by the gaze direction, other control methods are needed to determine the motion of the quadrotor in other directions.

    We use the roll angle of the head to determine the roll angle of the quadrotor, and use the slider on the interface to control the movement of the quadrotor in the forward and backward directions.The overall control method is shown in Fig.5.

    Fig.5 The overall control method

    We first introduce the implementation of gaze control of the quadrotor motion in the vertical and yaw directions.In Fig.5(a), the blue gaze point is located outside the distance ring with coordinates(x,y), so it can trigger eye-gaze drive.

    Let the radius of the distance ring bed1, the distance from the gaze point toOsisd1+d2, the distance from the gaze point to axisxsis set todv,and the distance from the gaze point to axisysis set tody.BecauseOsis the midpoint of the screen and the resolution of the screen is 2 560×1 600,dv=800-yganddx=1 280-xg.

    The values ofdvanddxreflect the user’s expectation on the direction of the quadrotor motion.The larger thedv, the larger the quadrotor motion in the vertical direction should be, and the larger thedx, the larger the quadrotor motion in the yaw direction should be.

    We useCvandCyto represent the value of user control over the quadrotor in the vertical and yaw directions, so whend2is larger than 0,Cv=θ1dvandCy=θ2dx.The coefficientsθ1andθ2indicate the control rate.

    The movement of the quadrotor over the roll angle is controlled by the roll of the user’s head,which is denoted by rollh.The user’s head angle is detected by the SSD machine learning model.With the head tilted to the left, the quadrotor flies to the left, and the opposite to the right.

    We useCrto represent the value of user control over the quadrotor in the roll angle direction, soCr=θ3rollh.The coefficientθ3indicates the control rate.

    As mentioned above, we manually control the forward and backward of the quadrotor, and the slider on the user interface helps us to achieve this purpose.In this research, the quadrotor is controlled simultaneously by gaze, head pose, and manual.Fig.5(b) shows the functions achieved by each control method.

    3 Experiments

    In order to conduct flight control experiments,an adequately large physical space is required.We set up the experimental environment in an open area of the school.Fig.6 illustrates the layout of the physical environment.

    Fig.6 Test grounds with multiple obstacles

    3.1 Experimental setup

    We place four types of obstacles in the field,six in total: three knife flags, a tunnel, a round hole, and an archway.Subjects are asked to turn their backs to the field and steer the quadcopter from the tarmac and back through each obstacle.They are not allowed to directly observe the field, and could only adjust the quadcopter’s flight conditions via video streams from the quadcopter’s onboard camera.

    In this experiment, each subject is required to control the quadrotor using a joystick and the proposed control method (eye-gaze drive).

    3.2 Performance evaluation

    To evaluate the effect of eye-gaze drive quadrotors, we set up the following evaluation methods with Ref.[10]: Flight distance, total time, and smooth curve deviation.Our goal is to test whether the proposed system can adequately convert gaze information into control information for the quadrotor, improve the control of the quadrotor, and thus replace the traditional joystick with eye-gaze drive.

    To compare the manipulation efficiency of the two control methods, we calculate the total time(TT) and flight distance(FD) of subjects for each completed task.

    The smooth curve deviation (SCD) can reflect the smoothness of the quadrotor flight path, as shown in Fig.7.By processing the real flight path,we can get the smoothed path.piis the point on the real path at timei,psiis the point on the smoothed path at timei.Therefore, the SCD is calculated as

    wherenis the number of quadrotor trajectory points.The quadrotor records its position once every 0.1 s.

    Fig.7 The smooth curve deviation

    4 Results and Discussion

    In this section, we analyze and compare the effectiveness of the two control methods.We collect data from five subjects, and for each control method, each subject has 20 opportunities.And the average test results are shown in Table 1.

    Table 1 The summarized performance of two control methods

    For the TT, all ten sets of data are within 2 min.The comparison reveals that all five subjects are faster in completing the flight task using the joystick than using the eye-gaze drive with average of about 15.9%.Four of the subjects show little divergence in the two control modes, but the fourth subject shows a significant difference in TT because this subject could not adapt to eye-gaze drive in a short time.

    In our control system, the forward speed of the quadrotor is determined by the position of the slider on the screen.For safety reasons, we set the speed corresponding to the slider at the maximum position to be relatively small, which, we believe, is one of the reasons for the larger TT obtained by the eyegaze control relative to that obtained by the joystick.

    Generally speaking, the shorter the flight time, the shorter the flight distance, but the experimental results of FD are counter-intuitive.The FD obtained using the eye-gaze control is nearly 4.13%lower than the FD obtained using the joystick.Using eye-gaze control mode, the subject can control the UAV to complete the flight mission through a shorter flight distance.This phenomenon is difficult to understand, but combined with the experimental results of SCD, the reason can be found out.

    Using the eye-gaze control, we can get lower FD and SCD, where SCD is reduced by almost 6.57%, and SCD can reflect the degree of trajectory fluctuation.This shows that although the TT obtained by this control method is larger, the flight trajectory of the controlled quadrotor is shorter and the trajectory is smoother.Therefore, we can conclude to a certain extent that the eye-gaze control method is smoother and more controllable, and the quadrotor travels a more efficient trajectory.

    In the experiment, we also find that by using the eye-gaze drive, subjects are able to plan their routes more proactively based on the obstacles.Because of the reduced reliance on hand movements,subjects could focus more on the route.

    The results from this study show that using gaze movements and simple body motions is still sufficient to perform a challenging task: Controlling a quadcopter in 3D physical space.The self-developed software and hardware find that an inexpensive interface is possible.

    We assign two DOF of the quadrotor to the eye to achieve intuitive gaze intervention.However,the other DOF of the quadrotor still requires limb intervention, which is believed as an area in dire need of improvement.

    In addition to using brain-computer interfaces or other bio-signals, we believe that with the interface setup, the eye is capable of controlling the quadrotor flight alone.

    5 Conclusions

    We present a mobile platform-based gaze interaction system that tracks eye movements while converting gaze information into control information for a quadrotor.The proposed interaction enables the user to manipulate the quadrotor through the eyes to accomplish complex flight tasks in 3D space.With this low-cost and mobile device, people can control their flying machines naturally and easily in their daily lives.From the results of our study, we have succeeded in demonstrating the potential of this interaction method.We believe that our solution can expand new ways of human-computer interaction and create a new dimension of quadrotor control.

    国产成人啪精品午夜网站| 欧美另类亚洲清纯唯美| 全区人妻精品视频| 亚洲人成网站在线播放欧美日韩| 日韩精品青青久久久久久| 国产野战对白在线观看| 久久99热这里只有精品18| 亚洲无线在线观看| 嫩草影院入口| 首页视频小说图片口味搜索| 夜夜夜夜夜久久久久| 蜜桃亚洲精品一区二区三区| 亚洲不卡免费看| 国产伦在线观看视频一区| 亚洲va日本ⅴa欧美va伊人久久| 又粗又爽又猛毛片免费看| 色综合亚洲欧美另类图片| 极品教师在线免费播放| 简卡轻食公司| 国产在视频线在精品| 国产色婷婷99| 激情在线观看视频在线高清| 欧美日韩综合久久久久久 | 乱人视频在线观看| 国产精品女同一区二区软件 | 最近视频中文字幕2019在线8| 欧美成人性av电影在线观看| 嫁个100分男人电影在线观看| 国产成人aa在线观看| 欧美成人免费av一区二区三区| 9191精品国产免费久久| 久久人人精品亚洲av| 亚洲av电影在线进入| 日韩 亚洲 欧美在线| 欧美最黄视频在线播放免费| 我的老师免费观看完整版| 国产成年人精品一区二区| 性色avwww在线观看| 欧美国产日韩亚洲一区| 在线观看66精品国产| 国产免费一级a男人的天堂| 亚洲av.av天堂| 免费看美女性在线毛片视频| www.www免费av| 婷婷丁香在线五月| 99国产精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 一个人免费在线观看电影| aaaaa片日本免费| 午夜视频国产福利| 午夜福利18| 极品教师在线免费播放| 午夜免费激情av| 国产精品免费一区二区三区在线| 成人美女网站在线观看视频| 99久久成人亚洲精品观看| 人妻久久中文字幕网| 国产成人av教育| 免费在线观看亚洲国产| 欧美高清性xxxxhd video| 国产色婷婷99| 少妇高潮的动态图| 全区人妻精品视频| 精品不卡国产一区二区三区| 18+在线观看网站| 内射极品少妇av片p| 人妻夜夜爽99麻豆av| 久久久久久久久久黄片| 狂野欧美白嫩少妇大欣赏| 成人精品一区二区免费| 五月伊人婷婷丁香| 嫁个100分男人电影在线观看| 最近最新中文字幕大全电影3| 一区二区三区激情视频| 亚洲无线在线观看| 一卡2卡三卡四卡精品乱码亚洲| 黄色配什么色好看| 美女黄网站色视频| 狂野欧美白嫩少妇大欣赏| 午夜日韩欧美国产| 日本免费一区二区三区高清不卡| av在线老鸭窝| 成年女人看的毛片在线观看| 在现免费观看毛片| 亚洲人成电影免费在线| 欧美高清性xxxxhd video| 黄色配什么色好看| 免费电影在线观看免费观看| 可以在线观看的亚洲视频| 午夜免费男女啪啪视频观看 | 亚洲成a人片在线一区二区| 亚洲精品乱码久久久v下载方式| 免费观看精品视频网站| 亚洲国产精品合色在线| av天堂在线播放| 波多野结衣高清作品| 国产精品久久久久久人妻精品电影| 亚洲七黄色美女视频| 精品久久国产蜜桃| 国产精品一区二区三区四区免费观看 | 亚洲精品一区av在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲欧美清纯卡通| 久久久国产成人精品二区| 国产在视频线在精品| 国产精品一区二区三区四区免费观看 | 欧美激情在线99| 欧美xxxx性猛交bbbb| 又爽又黄a免费视频| 99国产精品一区二区三区| 国产精品影院久久| 中亚洲国语对白在线视频| 黄色丝袜av网址大全| 日本黄色视频三级网站网址| 极品教师在线免费播放| 日韩欧美在线二视频| 夜夜看夜夜爽夜夜摸| 床上黄色一级片| 国内精品久久久久久久电影| 亚洲av五月六月丁香网| 亚洲精品粉嫩美女一区| 两人在一起打扑克的视频| 老司机深夜福利视频在线观看| av国产免费在线观看| 久久午夜福利片| 国产成人a区在线观看| 亚洲 国产 在线| 欧美日韩乱码在线| 天堂网av新在线| 又粗又爽又猛毛片免费看| 国产精品女同一区二区软件 | 99久久九九国产精品国产免费| 国产免费av片在线观看野外av| 久久九九热精品免费| 美女被艹到高潮喷水动态| 国内少妇人妻偷人精品xxx网站| 麻豆久久精品国产亚洲av| 色哟哟·www| 波多野结衣高清作品| 国产一区二区在线av高清观看| 熟女人妻精品中文字幕| 精品99又大又爽又粗少妇毛片 | av在线老鸭窝| 国产黄片美女视频| 久久国产乱子伦精品免费另类| 女生性感内裤真人,穿戴方法视频| 美女cb高潮喷水在线观看| 可以在线观看毛片的网站| 国产野战对白在线观看| 欧美乱妇无乱码| 18+在线观看网站| 欧美bdsm另类| 亚洲欧美日韩高清专用| 亚洲欧美日韩东京热| 国产蜜桃级精品一区二区三区| 1024手机看黄色片| 欧美日韩瑟瑟在线播放| 国产精品日韩av在线免费观看| 女人被狂操c到高潮| 黄色日韩在线| 有码 亚洲区| 亚洲人与动物交配视频| 网址你懂的国产日韩在线| 丰满人妻一区二区三区视频av| 可以在线观看的亚洲视频| 99久久99久久久精品蜜桃| 丁香欧美五月| 能在线免费观看的黄片| 亚洲av二区三区四区| 长腿黑丝高跟| 亚洲欧美日韩高清专用| 波多野结衣巨乳人妻| 日韩中字成人| 51国产日韩欧美| 在线十欧美十亚洲十日本专区| 久久久久久久久大av| 亚洲成人久久爱视频| 免费看光身美女| 在线免费观看的www视频| 日韩 亚洲 欧美在线| 国内精品一区二区在线观看| 久久久久久久午夜电影| 一本精品99久久精品77| 91av网一区二区| 午夜免费激情av| 在线播放无遮挡| 久久这里只有精品中国| 男人和女人高潮做爰伦理| 9191精品国产免费久久| 国产成年人精品一区二区| 最新在线观看一区二区三区| 1000部很黄的大片| 搡老妇女老女人老熟妇| 国产伦精品一区二区三区四那| 欧美在线黄色| 午夜精品久久久久久毛片777| 免费看光身美女| 亚洲18禁久久av| 国产69精品久久久久777片| 女同久久另类99精品国产91| а√天堂www在线а√下载| 99热这里只有是精品50| 亚洲自拍偷在线| 免费观看的影片在线观看| 在线观看舔阴道视频| 精品一区二区免费观看| 热99re8久久精品国产| 国产精品国产高清国产av| 免费高清视频大片| 别揉我奶头 嗯啊视频| 日韩免费av在线播放| 免费搜索国产男女视频| 91狼人影院| 欧美黄色片欧美黄色片| 亚洲男人的天堂狠狠| 国产精品综合久久久久久久免费| 久久久久九九精品影院| 久久久久国产精品人妻aⅴ院| 哪里可以看免费的av片| 国产精品久久电影中文字幕| 国产乱人视频| 青草久久国产| 欧美不卡视频在线免费观看| 极品教师在线免费播放| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲内射少妇av| 色av中文字幕| 村上凉子中文字幕在线| 可以在线观看的亚洲视频| 一个人看的www免费观看视频| 欧美性猛交黑人性爽| 亚洲avbb在线观看| 久久人人精品亚洲av| 久久午夜亚洲精品久久| 在线a可以看的网站| 欧美性感艳星| 99热精品在线国产| 精品国产三级普通话版| 在线看三级毛片| 精品一区二区三区视频在线观看免费| 天天躁日日操中文字幕| 欧美绝顶高潮抽搐喷水| 国产一区二区在线av高清观看| 日本在线视频免费播放| 亚洲成人中文字幕在线播放| 色视频www国产| 国产极品精品免费视频能看的| а√天堂www在线а√下载| av专区在线播放| 精品一区二区免费观看| 一卡2卡三卡四卡精品乱码亚洲| 成人国产一区最新在线观看| 麻豆成人午夜福利视频| 精品不卡国产一区二区三区| 男女视频在线观看网站免费| netflix在线观看网站| 日韩大尺度精品在线看网址| 午夜免费成人在线视频| 国产黄色小视频在线观看| 午夜激情欧美在线| 免费在线观看日本一区| 亚洲最大成人中文| 日韩欧美精品v在线| 宅男免费午夜| 69av精品久久久久久| 老司机午夜福利在线观看视频| 亚洲av五月六月丁香网| 国产私拍福利视频在线观看| 别揉我奶头~嗯~啊~动态视频| 韩国av一区二区三区四区| 91av网一区二区| 日本一二三区视频观看| 美女被艹到高潮喷水动态| 国产伦精品一区二区三区视频9| 亚洲欧美激情综合另类| 日韩精品青青久久久久久| 久久九九热精品免费| 亚洲经典国产精华液单 | 亚洲国产精品合色在线| 51午夜福利影视在线观看| 国产在线男女| 国产一区二区在线av高清观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产成人aa在线观看| 国产亚洲精品久久久久久毛片| 69人妻影院| 国产av麻豆久久久久久久| 男女做爰动态图高潮gif福利片| 特级一级黄色大片| 噜噜噜噜噜久久久久久91| 夜夜躁狠狠躁天天躁| 国产精品久久久久久精品电影| 色视频www国产| 亚洲专区中文字幕在线| 欧美日韩福利视频一区二区| 1000部很黄的大片| 亚洲七黄色美女视频| 中文在线观看免费www的网站| 亚洲欧美日韩无卡精品| 18禁黄网站禁片午夜丰满| 国产午夜福利久久久久久| 男女之事视频高清在线观看| 观看免费一级毛片| 色噜噜av男人的天堂激情| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 免费高清视频大片| 国产在线精品亚洲第一网站| 国产蜜桃级精品一区二区三区| 91麻豆av在线| av国产免费在线观看| xxxwww97欧美| av在线观看视频网站免费| 精品人妻熟女av久视频| 日本免费一区二区三区高清不卡| 能在线免费观看的黄片| 国内少妇人妻偷人精品xxx网站| 国产亚洲精品久久久com| 免费无遮挡裸体视频| 国产伦人伦偷精品视频| 亚洲,欧美,日韩| 国产精品爽爽va在线观看网站| 99精品在免费线老司机午夜| 床上黄色一级片| 淫妇啪啪啪对白视频| 久久久成人免费电影| 亚洲欧美精品综合久久99| av中文乱码字幕在线| 熟女人妻精品中文字幕| 久久精品人妻少妇| 少妇人妻精品综合一区二区 | 亚洲精品久久国产高清桃花| 欧美日韩综合久久久久久 | 国产真实乱freesex| 国产精品久久久久久久电影| 亚洲精品久久国产高清桃花| 久久香蕉精品热| 一个人观看的视频www高清免费观看| 国产精品99久久久久久久久| 性色av乱码一区二区三区2| 亚洲一区二区三区不卡视频| 亚洲性夜色夜夜综合| 欧美潮喷喷水| 久久久久久久午夜电影| 午夜免费男女啪啪视频观看 | 欧美黄色片欧美黄色片| 成人美女网站在线观看视频| 国产国拍精品亚洲av在线观看| 久久久久久久亚洲中文字幕 | 欧美高清成人免费视频www| 国产精品三级大全| 赤兔流量卡办理| www.999成人在线观看| 午夜久久久久精精品| 亚洲片人在线观看| 欧美极品一区二区三区四区| 国产一区二区在线观看日韩| 日韩欧美在线二视频| 亚洲片人在线观看| 国产在视频线在精品| 亚洲综合色惰| 久久国产精品人妻蜜桃| 久久久久久久久大av| 国产在视频线在精品| 香蕉av资源在线| 在线播放国产精品三级| 免费电影在线观看免费观看| 国产精品一区二区免费欧美| 亚洲18禁久久av| 成人美女网站在线观看视频| 麻豆国产97在线/欧美| 成人一区二区视频在线观看| 国产精品日韩av在线免费观看| a级一级毛片免费在线观看| 少妇的逼好多水| 国产色婷婷99| a级毛片免费高清观看在线播放| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 色综合婷婷激情| 舔av片在线| 国产熟女xx| 深爱激情五月婷婷| 国产毛片a区久久久久| 日韩av在线大香蕉| 久久香蕉精品热| 免费观看的影片在线观看| 亚洲精品在线美女| 国产美女午夜福利| 免费看a级黄色片| 成人鲁丝片一二三区免费| 精品人妻视频免费看| 性欧美人与动物交配| 深夜a级毛片| 特大巨黑吊av在线直播| www.色视频.com| 国产成人啪精品午夜网站| av欧美777| 中出人妻视频一区二区| 亚洲欧美日韩无卡精品| 成人亚洲精品av一区二区| 少妇被粗大猛烈的视频| 亚洲男人的天堂狠狠| 日韩欧美一区二区三区在线观看| 成人美女网站在线观看视频| 亚洲av日韩精品久久久久久密| 色综合婷婷激情| 18禁在线播放成人免费| 成人高潮视频无遮挡免费网站| 啪啪无遮挡十八禁网站| 全区人妻精品视频| 精品一区二区三区视频在线| 人人妻,人人澡人人爽秒播| 美女高潮的动态| 五月伊人婷婷丁香| 精品久久久久久久久久久久久| 黄片小视频在线播放| 怎么达到女性高潮| 我要看日韩黄色一级片| 天天一区二区日本电影三级| 久久久久国内视频| 我的老师免费观看完整版| bbb黄色大片| 人人妻人人澡欧美一区二区| 欧美日韩亚洲国产一区二区在线观看| 九九久久精品国产亚洲av麻豆| 亚洲天堂国产精品一区在线| 哪里可以看免费的av片| 久久久久免费精品人妻一区二区| 69人妻影院| 免费av不卡在线播放| 嫁个100分男人电影在线观看| 我的老师免费观看完整版| 三级毛片av免费| 少妇人妻一区二区三区视频| 国产av一区在线观看免费| 亚洲18禁久久av| 赤兔流量卡办理| 午夜亚洲福利在线播放| 亚洲专区国产一区二区| 一级作爱视频免费观看| 人人妻人人澡欧美一区二区| 精品久久久久久成人av| 日本精品一区二区三区蜜桃| 人人妻人人看人人澡| 一个人免费在线观看电影| 网址你懂的国产日韩在线| 国产精华一区二区三区| 神马国产精品三级电影在线观看| 午夜福利成人在线免费观看| 在线免费观看的www视频| av专区在线播放| 国产精品女同一区二区软件 | 色噜噜av男人的天堂激情| 中文在线观看免费www的网站| 天堂√8在线中文| 国产精品不卡视频一区二区 | 麻豆久久精品国产亚洲av| 国产中年淑女户外野战色| 亚洲第一区二区三区不卡| 日本三级黄在线观看| 深夜精品福利| 国产熟女xx| 最近中文字幕高清免费大全6 | 国产乱人视频| 免费看日本二区| 精品一区二区免费观看| 国产伦精品一区二区三区四那| 制服丝袜大香蕉在线| 亚洲专区国产一区二区| 熟女人妻精品中文字幕| 日韩中字成人| 男女那种视频在线观看| 亚洲精品粉嫩美女一区| 少妇熟女aⅴ在线视频| 97热精品久久久久久| ponron亚洲| 老司机午夜福利在线观看视频| 亚洲激情在线av| 精品久久久久久久人妻蜜臀av| а√天堂www在线а√下载| 久久香蕉精品热| 国产成人av教育| 久久精品国产自在天天线| 久久久久久久亚洲中文字幕 | 波野结衣二区三区在线| 亚洲成人久久爱视频| www日本黄色视频网| 九色国产91popny在线| 欧美性猛交黑人性爽| 婷婷亚洲欧美| 久久午夜亚洲精品久久| 日韩欧美精品v在线| 又爽又黄a免费视频| 欧美一区二区国产精品久久精品| 99久久九九国产精品国产免费| 一本一本综合久久| 久久国产乱子免费精品| 精品一区二区三区av网在线观看| 美女xxoo啪啪120秒动态图 | 一进一出抽搐动态| 精华霜和精华液先用哪个| 男女那种视频在线观看| 超碰av人人做人人爽久久| 欧美日韩综合久久久久久 | 亚洲久久久久久中文字幕| 国产精品一区二区三区四区久久| 欧美激情国产日韩精品一区| 日本一二三区视频观看| 亚洲美女黄片视频| 国产在线精品亚洲第一网站| 亚洲av一区综合| 国产精品亚洲一级av第二区| 在线看三级毛片| 他把我摸到了高潮在线观看| 99久久99久久久精品蜜桃| 中亚洲国语对白在线视频| 中文字幕av成人在线电影| 午夜福利成人在线免费观看| 床上黄色一级片| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线| 久久精品国产自在天天线| 欧美最黄视频在线播放免费| 欧美zozozo另类| 91久久精品电影网| 老司机福利观看| 久久精品影院6| 人妻制服诱惑在线中文字幕| 国产亚洲精品久久久com| 亚洲成人精品中文字幕电影| 成年女人毛片免费观看观看9| av欧美777| 精品久久久久久久久久久久久| 热99在线观看视频| 午夜福利成人在线免费观看| 国产一区二区在线观看日韩| 最新在线观看一区二区三区| 人人妻人人澡欧美一区二区| 午夜激情欧美在线| 久久欧美精品欧美久久欧美| 免费在线观看亚洲国产| 亚洲精品一区av在线观看| 夜夜夜夜夜久久久久| 日韩欧美精品v在线| 色av中文字幕| 国产蜜桃级精品一区二区三区| 精品人妻一区二区三区麻豆 | 国产精品亚洲av一区麻豆| 国产三级在线视频| 最新在线观看一区二区三区| 成人av一区二区三区在线看| 国产精品嫩草影院av在线观看 | 高潮久久久久久久久久久不卡| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 欧美一区二区亚洲| 少妇高潮的动态图| 俺也久久电影网| 亚洲成人久久性| 很黄的视频免费| 少妇人妻一区二区三区视频| 亚洲男人的天堂狠狠| 宅男免费午夜| 国产av麻豆久久久久久久| 我要看日韩黄色一级片| 少妇熟女aⅴ在线视频| 中亚洲国语对白在线视频| 精品国产亚洲在线| 精品人妻熟女av久视频| 亚洲乱码一区二区免费版| 欧美日韩亚洲国产一区二区在线观看| 色综合亚洲欧美另类图片| 精品一区二区三区av网在线观看| 成年女人永久免费观看视频| 亚洲一区二区三区不卡视频| 嫩草影院新地址| 久久精品国产亚洲av涩爱 | 免费观看的影片在线观看| 一区二区三区高清视频在线| 一级作爱视频免费观看| 国产精品影院久久| 精品午夜福利视频在线观看一区| 丰满的人妻完整版| 国产探花在线观看一区二区| 舔av片在线| 成年版毛片免费区| 欧美成狂野欧美在线观看| 又粗又爽又猛毛片免费看| 91麻豆av在线| 我的女老师完整版在线观看| 欧美最黄视频在线播放免费| 18禁在线播放成人免费| 国产精品1区2区在线观看.| 欧美色视频一区免费| 国产野战对白在线观看| 亚洲国产精品久久男人天堂| 五月玫瑰六月丁香| 在线观看舔阴道视频| 夜夜爽天天搞| 身体一侧抽搐| 午夜福利成人在线免费观看| 亚洲最大成人av| 亚洲一区二区三区色噜噜| 亚洲男人的天堂狠狠| 99国产综合亚洲精品| av在线蜜桃| 丰满人妻熟妇乱又伦精品不卡| 超碰av人人做人人爽久久| 久久久久久九九精品二区国产| 中文字幕人妻熟人妻熟丝袜美| 精品免费久久久久久久清纯| 日本免费一区二区三区高清不卡| 国产综合懂色| 欧美在线一区亚洲|