• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction of sub-micron eccentric Ag@PANI particles by interface and redox potential engineering

    2023-11-18 09:53:10MingmingSunWeiGuoMeiyuMengQiuyuZhang
    Chinese Chemical Letters 2023年10期

    Mingming Sun, Wei Guo, Meiyu Meng, Qiuyu Zhang

    Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material

    Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072,China

    Keywords:Ag@PANI Eccentric particles Redox potential Reaction interface Microwave absorption

    ABSTRACT Benefitting from the tunable heterogeneous interface and electronic interaction, metal-polymer-based hybrid composites have attracted wide attention.It is highly desired to develop advanced synthesis methodology and understand the structure-performance relationship.Herein, with the aniline oligomer as the key enabler, we resolve the inferior dynamics issue in the Ag+-aniline reaction system, and successfully fabricate a sub-micron anisotropic eccentric Ag@polyaniline (PANI) particle (an average size up to 340 nm) at room temperature.We demonstrate the synergy mechanism of polyvinyl pyrrolidone and insitu generated PANI for modifying the dynamic reaction interface.We further clarify the H+ concentration and the surfactant types serve as main descriptors to tune the reaction dynamics.Besides, by applying other aniline oligomers, a series of similar eccentric structures can also be obtained, indicative of the good applicability of our strategy.Such a sub-micron eccentric structure furnishes the Ag@PANI composites with sound performance for microwave absorption, as demonstrated by a minimum reflection loss(RL) value of -35 dB with an effective absorption bandwidth of 3.7 GHz.This study provides an inspiring scope/concept of eccentric microstructure engineering for better meeting the demands in the high-tech military, energy, environment fields, and beyond.

    With the merits of unique heterointerface and organic/inorganic synergistic effects, metal@polymer core-shell materials generally demonstrate promising properties, such as high physicochemical stability [1,2], improved optical properties [3,4], enhanced catalytic activity [5], and fascinating interfacial properties [6].Among them,Ag@polyaniline (PANI), integrated with the excellent conductivity and optical properties of Ag as well as low density, high mechanical flexibility and electrochemical properties of PANI, has been scrutinized as a promising hybrid material and investigated in many research fields [7–9].Besides the “win-win cooperation”, it has been evidenced that the modulation of organic/inorganic hybrid materials by rational design of their morphology and interface effects will further optimize the properties [10,11].

    Anisotropic particles hold fascinating features such as asymmetric shapes and outstanding physicochemical properties [12], thus attracting considerable attention to date [13–15].It is predicted that the precise configuration of Ag@PANI with an anisotropic microstructure will result in appealing features for wide applications[16,17].However, the development of the well-defined anisotropic Ag@PANI structure is far behind schedule and challenging.Generally, the inferior processability of the organic component (PANI)renders it hard to finely couple with the metal materials to form the required microstructure [18–20].On top of that, the low redox potential of Ag+/Ag (0.80 V) to aniline (1.02 V) is the main bottleneck in the organic/inorganic hybrid system [21], which makes it thermodynamically unfavorable for thein-situpolymerization and the formation of Ag@PANI composites.To facilitate their development, rationally balancing the redox potential of aniline precursor to guarantee the facile and controllable synthesis at room temperature is highly pursued.

    Generally speaking, aniline oligomers are formed at the early stage of the oxidation of aniline, with a shorter molecular chain and lower molecular weight [22].Aniline oligomers, such as aniline trimer and tetramer, can serve as building blocks for the synthesis of PANI and other functional molecular structure [22,23].Considering the lower redox potentials of aniline oligomers in comparison to that of aniline [24], it is expected that they may serve as the proper reductant of Ag+, favorable for the polymerization andinsitucoupling with the as-formed Ag0.

    Fig.1.(a1, a2) SEM images, (b1, b2) TEM images and (c) TEM and HAADF images of AP-Ag@PANI and the corresponding EDS elemental mapping, (d) line scanning(marked in c), (e) XRD pattern and (f) UV–vis-NIR spectrum of AP-Ag@PANI.Scale bar: 200 nm.

    In this contribution, inspired by the aforementioned information, aniline oligomers are adopted as the reductants in the organic/inorganic hybrid system, which lead to the successful formation of sub-micron eccentric Ag@PANI particles.We clarify that the polyvinyl pyrrolidone (PVP) is responsible for the modified reaction interface of appropriate microdroplets owing to its amphipathic groups.We also reveal that thein-situgenerated PANI as the hydrophobic layer on the Ag particle will be engulfed in the oil context gradually, leading to the homogeneous growth of eccentric Ag@PANI.More interestingly, the similar eccentric structure synthesized by different precursors of aniline oligomers demonstrates the good applicability of our strategy.It is proposed that a growth process is controlled by the joint effect of the reaction interface and diffusion kinetics, where the main descriptors are revealed.The geometric and interface synergy renders the eccentric Ag@PANI particles with superior performance when used as a microwave absorber, where a minimum reflection loss (RL) value of -35 dB at 10.5 GHz and an effective absorption bandwidth of 3.7 GHz (RL value<-10 dB) are realized.This work provides a successful formation craft of sub-micron metal-polymer eccentric particles, which helps advance the design and modulation of functional materials for diverse application scenarios.

    As illustrated in Fig.S1 (Supporting information), the aniline oligomers were formed with ammonium persulfate (APS) or Ag+as the oxidizer, namely AP-precursor and AG-precursor, respectively.Both of them perform high-activity of reducing Ag+ions towards the generation of Ag@PANI structures at room temperature.

    In a typical reaction with AP-precursor, we obtained eccentric AP-Ag@PANI particles with an average size of about 340 nm (Figs.1a and b, Fig.S2 in Supporting information).The AP-Ag@PANI particle possesses a highly eccentric Ag core in an irregular shape, encapsulated by the spherical PANI shell with a small nanotextured surface.The anisotropic coating thicknesses of the PANI shell for the thin and thick sides are 4 nm and above 100 nm, respectively.HRTEM image (Fig.S3 in Supporting information) demonstrates a lattice spacing is 0.23 nm, which can be indexed to the (111)plane of metallic Ag.Besides, the selected area electron diffraction(SAED) pattern demonstrates the polycrystalline structure of the eccentric particle (inset in Fig.S3).The unique morphology was also demonstrated by the high-angle annular dark-field scanning TEM (HAADF-STEM) image (Fig.1c).Besides, the corresponding energy dispersive spectroscopy (EDS) mapping and the line scanning demonstrate an even distribution of C, N and O elements from the PANI shell and Ag element from the core (Figs.1c and d).

    To further investigate the crystal structure of AP-Ag@PANI, Xray diffraction (XRD) characterization was conducted.As shown in Fig.1e, five distinct diffraction peaks can be detected, ascribed to the (111), (200), (220), (311) and (222) planes of Ag (JCPDS No.04–0783), respectively.Besides, a weak peak in the range of 20°-30° is observed, originating from the PANI shell [25].The optical property was characterized by UV–vis-NIR spectroscopy.As shown in Fig.1f,three characteristic bands at 282, 343 and 566 nm stem from PANI,assigned to aπ-π*transition of benzenoid (B) rings,π-π*transition and molecular exciton for polyaniline, respectively [26,27].The localized surface plasmon resonance (LSPR) peak at 450–480 nm is associated with the inner Ag core.These results manifest that Ag particles are successfully immobilized within the polyaniline matrix.To evidence the applicability of this strategy, we performed a contrast experiment where the AG-precursor was used as a reductant.As a result, eccentric AG-Ag@PANI particles with an average size of about 210 nm were obtained (more details in Figs.S2 and S4 in Supporting information).These results validate that we can utilize aniline oligomers oxidized by diverse oxidants to fabricate special eccentric structures.

    The composite structures were further investigated by FTIR measurement as shown in Fig.2a.The peaks at 3354 and 3359 cm-1are assigned to the N–H stretching vibrations of PANI[28].The peaks at 2927 and 2849 cm-1are ascribed to the C–H stretching vibrations of PANI [29].The peaks at 1467 and 1597 cm-1can be attributed to the C=C stretching vibrations of B and quinonoid (Q) rings, respectively [29].The peak at 1384 cm-1is assigned to C–N stretching vibration in the bipolaronic and polaronic units [29].And the strong band at 1638 cm-1corresponds to the stretching of C=O group, attributed to the hydrolysis of PANI[30].The peaks at 1293 and 1306 cm-1are attributed to the N–H bending mode [31].The Raman spectra of the AP-Ag@PANI and AGAg@PANI nanocomposites (Fig.2b) display a series of characteristic peaks of PANI in emeraldine salt form.Specifically, the peaks at 870 and 1160 cm-1can be attributed to the C–H bending vibration of the Q and B rings, respectively [29].The peaks at 1252 and 1352 cm-1are ascribed to the C–N stretching vibration of the polaronic and bipolaronic moieties, respectively [29].The peak of about 1384 cm-1is assigned to C~N·+stretching vibration of the polaronic moieties [32].The peak of about 1430 cm-1is attributed to C=N stretching vibration of the Q rings [32].The two peaks of about 1592 and 1624 cm-1originate from the C=C and C–C stretching vibrations of the Q and B rings, respectively [29].The shoulder band of about 1660 cm-1is assigned to the C=O stretching vibration from the hydrolysis of PANI.The band of 246 cm-1can be attributed to the Ag-N band among PANI and Ag particles(Fig.S5 in Supporting information) [33].

    Fig.2.(a) FTIR spectra, (b) Raman spectra, (c) XPS survey spectra, (d) high-resolution Ag 3d XPS spectra, (e) C 1s XPS spectra, (f) N 1s XPS spectra, (g) O 1s XPS spectra and(h) the comparison of different groups percentage and size of AP-Ag@PANI and AG-Ag@PANI, respectively.

    Fig.3.(a) TOF-MS of AP-precursor and AG-precursor, (b) FTIR spectra of AP-precursor, AG-precursor and pure aniline, and (c) schematic diagram of the proposed formation process of eccentric Ag@PANI structure in an oil/water biphasic system.

    XPS characterization was performed to gain some insights into the electronic structure of the as-synthesized eccentric structures.For both AP-Ag@PANI and AG-Ag@PANI, the characteristic peaks of C, N and O elements were detected, manifesting the introduction of PANI (Fig.2c).As shown in Fig.2d, the spectra of the Ag 3d consist of two spin-orbit components Ag 3d5/2and Ag 3d3/2at 367.6 and 373.6 eV with an energy separation of 6.0 eV, confirming the average valence state of 0 [34].It evidences the successful formation of Ag particles.The high-resolution C 1s XPS spectra of AP-Ag@PANI and AG-Ag@PANI can be divided into three distinct peaks at 284.8, 285.7 and 288.0 eV, originating from C–C/C=C, C–N and C=O bonds, respectively (Fig.2e).The N 1s spectra are deconvoluted into four component peaks at 398.9, 399.6, 400.4 and 401.1 eV, assigned to =N-, -NH-, -NH+- and =N+-, respectively (Fig.2f) [29].The presence of protonated nitrogen suggests that the PANI was obtained in the emeraldine salt form.The O 1s spectra can be deconvoluted into three subpeaks at 531.3, 532.6 and 534.1 eV, which are assigned as C=O, C–OH and chemisorbed oxygen and/or water bonding states, respectively (Fig.2g).As depicted in Fig.2h, the aforementioned results demonstrate that the relative group contents display negligible difference for AP-Ag@PANI and AG-Ag@PANI, further manifesting the great promise of this redox potential-matching strategy.

    The mass spectrometry of the aniline precursors was studied to understand their composition.As shown in Fig.3a and Fig.S6 (Supporting information), aniline (m/z=94.04), aniline dimer(m/z=185.12), trimer (m/z=274.13) and tetramer (m/z=366.16)were detected [35].Moreover, the fragments atm/z=441.21 and 530.23 arise from the pentamer and hexamer, with a loss of NH2·[35,36].The FTIR spectra of both AP-precursor and AG-precursor exhibit an extra C=O band (1654 cm-1) compared with the pure aniline, indicative of the existence of PVP residues in the aniline precursors (Fig.3b).

    As mentioned above, the special biphasic system composed of the oil phase (aniline oligomers in toluene) and water phase(Ag+and H+in water), is the key to fabricated eccentric Ag@PANI structure (Fig.3c).After blending the oil and water phases, there are numerous microdroplets with the assistance of PVP from the aniline oligomers, which serve as the reaction centers.Notably,Ag+ions are easily absorbed on PVP [37], further initiating the polymerization of oligomers.Due to the high activity of aniline oligomers, Ag+ions will be fast reduced and grow into primary Ag particles.Subsequently, thein-situformed PANI will coat the surface of Ag particles and be embedded in the oil phase owing to their hydrophobicity [38].Then, Ag particles further grow and are coated with swollen PANI shells.Finally, the eccentric Ag@PANI composites formed after the Ag particle was engulfed in the PANI matrix.The formation process of the eccentric Ag@PANI structure is also proven by the defective products as shown in Fig.S7 (Supporting information).

    It was demonstrated that the PVP played a key role in the system.Without PVP, the as-formed Ag@PANI particles exhibit irregular shapes and small sizes (Figs.S8a and b in Supporting information), originating from the unstable oil/water interface of micelles in the absence of PVP.The effect on the reaction interface was further studied by adding appropriate sodium dodecyl benzene sulfonate (SDBS) instead of PVP as the surfactant.The uneven Ag@PANI particle structure with thin shells is formed (Fig.S8c in Supporting information), which may come from small micelles assisted by SDBS.That is to say, the PVP, which is conducive to fabricating appropriate microdroplets and stabilizing oil-water interfaces [39], serves as a significant role in manufacturing the eccentric Ag@PANI structure.

    To gain more insights on the formation of eccentric Ag@PANI structure, the reaction was further conducted under different H+concentrations with consideration of tuning the nucleation of PANI[40].Under a high concentration (80 mmol/L), more than one core inside the PANI shell was observed the as-formed AP-Ag@PANI particles (Fig.S8d in Supporting information).It indicates that the potential interaction of adjacent AP-Ag@PANI particles appears, due to the accelerated reaction as the increased protonation of aniline oligomers under high H+concentration.As the H+concentration further increases to 120 mmol/L (Fig.S8e in Supporting information), the obtained AP-Ag@PANI particles exhibit ordinary coreshell structure with agglomeration, originating from the fast reaction between Ag+and aniline oligomers.Besides, there was no obvious product under a low H+concentration of 30 mmol/L because of the inadequate protonation of aniline oligomers.Therefore, the types of surfactants and the H+concentration are two main descriptors (Fig.S8f in Supporting information), contributing to modulating the interfaces of microdroplets and the reaction kinetics,respectively.

    AP-Ag@PANI was adopted as the microwave absorbent to evaluate the microwave absorption (MA) property of this kind of special eccentric structure by the RL value.The pure PANI only exhibits the maximal absorption of -12 dB with an effective absorption bandwidth of 3.4 GHz (Figs.4a and b, Fig.S9 in Supporting information).By contrast, the eccentric AP-Ag@PANI particles exhibit an absorption of -22 dB with an effective MA bandwidth of 3.5 GHz under a sample thickness of only 1.5 mm (Figs.4c and d).More importantly, the maximal absorption reaches -35 dB at the frequency of 10.4 GHz under a sample thickness of only 2.1 mm, and the effective absorption bandwidth of 3.7 GHz is achieved (from 9.3 GHz to 13.0 GHz).Encouragingly, this absorption efficiency is higher than many previously reported Ag-polymer-based materials in literature(Fig.S10 in Supporting information), indicative of the good potential of these eccentric AP-Ag@PANI nanostructures as a highperformance microwave absorber.

    To clarify the origin of the enhanced microwave absorption,the permittivity of these eccentric AP-Ag@PANI nanostructures was evaluated.As shown in Figs.S11a and b (Supporting information),the high value ofε′suggests a high electric storage capability[41].Besides, the high value ofε′′also manifests that the special eccentric structure of AP-Ag@PANI can enhance the dissipation loss of electromagnetic energy [41].The dielectric loss value(tanδε=ε′′/ε′) of AP-Ag@PANI is displayed in Fig.S11c (Supporting information), indicative of a high dielectric loss of electromagnetic waves.As shown in Fig.S11d (Supporting information), there are several semicircles from the Cole-Cole plot ofε′andε′′of APAg@PANI, which are related to the Debye relaxation process due to the interface polarization between Ag nanoparticle and PANI [42].Moreover, AP-Ag@PANI exhibits high impedance matching, owing to the excellent microwave absorption performance (Fig.S11e in Supporting information) [43].Therefore, both the high dielectric loss and sound impedance match contribute to enhanced absorption performance.

    Fig.4.(a, c) Reflection loss curves and (b, d) three-dimensional reflection loss representations of the pure PANI and AP-Ag@PANI.(e) Schematic illustration of the absorption mechanism of eccentric Ag@PANI composites.

    The underlying mechanisms for the excellent absorption performance of the eccentric AP-Ag@PANI structure are summarized (Fig.4e).First, the eccentric AP-Ag@PANI structure shows an enhanced impedance matching characteristic compared with pure Ag particles.This enables more microwaves to get in and facilitates the contact interaction between the microwaves and the AP-Ag@PANI[41].Also, thanks to the abundant Ag/PANI hybrid interfaces, interfacial polarization and the corresponding relaxation further enlarge the dielectric loss and microwave absorption performance.Besides, the special eccentric AP-Ag@PANI can introduce multiple reflections, which would ensure the efficient attenuation of the incident microwave.Moreover, the electromagnetic waves are attenuated through the charge transfer course in the Ag/PANI interfaces.Generally speaking, the enhanced microwave absorption performance is primarily accredited to the novel eccentric Ag@PANI structure and the related interfacial effect between Ag and PANI components.

    In summary, through the precise modulation of redox potential and the dynamic reaction interface, we have successfully synthesized the sub-micron eccentric Ag@PANI particles at room temperature.Our strategy shows sound applicability, evidenced by the successful formation of similar eccentric structures with different aniline oligomers as the precursors.We have further revealed that the surfactant types and H+concentration serve as the main descriptors of the formation of eccentric Ag@PANI composites by modulating the reaction interface and kinetic process, respectively.The growth process of the eccentric Ag@PANI, guided by the PVPmodulated dynamic reaction interface, has been refined as three steps: (1) the initial nucleation & growth of small Ag particles, (2)thein-situcoating of PANI, accompanied by further growth of Ag to form Ag@PANI, and (3) the generation of large Ag@PANI with Ag particle fully engulfed.The special eccentric composite with multiple interfaces as well as the synergetic effect of Ag and PANI feature excellent MA performance, such as a minimum RL value of-35 dB and an effective absorption bandwidth of 3.7 GHz.With the advanced modulation/manipulation strategy in terms of microstructure and surface chemistry of the metal@polymer system,this work is believed to facilitate the development of promising and novel functional materials to meet different requirements.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    The authors are grateful for the support and funding from the National Natural Science Foundation of China (Nos.51673156,52202301), the Natural Science Basic Research Plan in Shaanxi Province of China (No.2022JQ-143), China Postdoctoral Science Foundation (No.2022TQ0256) and the Fundamental Research Funds for the Central Universities (No.D5000210607).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108147.

    午夜精品一区二区三区免费看| 琪琪午夜伦伦电影理论片6080| 夜夜看夜夜爽夜夜摸| 国产成+人综合+亚洲专区| 午夜久久久久精精品| 成人国语在线视频| 欧洲精品卡2卡3卡4卡5卡区| 亚洲欧洲精品一区二区精品久久久| 人妻久久中文字幕网| 精品一区二区三区四区五区乱码| 国产精品亚洲av一区麻豆| 狂野欧美白嫩少妇大欣赏| 久久久国产成人免费| 成人亚洲精品av一区二区| 精品高清国产在线一区| 亚洲中文字幕日韩| av欧美777| 91成年电影在线观看| а√天堂www在线а√下载| 成人手机av| aaaaa片日本免费| 亚洲欧洲精品一区二区精品久久久| 在线观看舔阴道视频| 日本黄色视频三级网站网址| 久久亚洲精品不卡| 欧美日韩亚洲综合一区二区三区_| 免费一级毛片在线播放高清视频| 脱女人内裤的视频| 精品福利观看| 人人妻,人人澡人人爽秒播| 在线免费观看的www视频| 亚洲av第一区精品v没综合| 久99久视频精品免费| 国内久久婷婷六月综合欲色啪| 91在线观看av| 悠悠久久av| 他把我摸到了高潮在线观看| 最近最新免费中文字幕在线| 亚洲国产中文字幕在线视频| 国产精品一区二区精品视频观看| 男女做爰动态图高潮gif福利片| 亚洲狠狠婷婷综合久久图片| 欧美成狂野欧美在线观看| 99精品久久久久人妻精品| 九色国产91popny在线| 亚洲欧美日韩东京热| 久久精品人妻少妇| 国产一区二区激情短视频| 在线观看午夜福利视频| 国产精品久久电影中文字幕| 成人永久免费在线观看视频| 村上凉子中文字幕在线| 精品免费久久久久久久清纯| 人妻久久中文字幕网| 韩国av一区二区三区四区| 亚洲全国av大片| 老汉色av国产亚洲站长工具| 在线观看免费午夜福利视频| 欧美高清成人免费视频www| 伊人久久大香线蕉亚洲五| 床上黄色一级片| 一级作爱视频免费观看| 9191精品国产免费久久| 日本五十路高清| 一个人免费在线观看的高清视频| 欧美丝袜亚洲另类 | 中文字幕最新亚洲高清| 亚洲 欧美 日韩 在线 免费| 欧美黑人欧美精品刺激| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 日本精品一区二区三区蜜桃| 精品欧美国产一区二区三| 夜夜躁狠狠躁天天躁| 在线观看www视频免费| 免费在线观看完整版高清| 99riav亚洲国产免费| 伦理电影免费视频| 人妻夜夜爽99麻豆av| 91麻豆精品激情在线观看国产| 免费看十八禁软件| 一级毛片女人18水好多| 国产av在哪里看| 久久人妻福利社区极品人妻图片| 亚洲男人的天堂狠狠| 国语自产精品视频在线第100页| 日本 av在线| 夜夜爽天天搞| 亚洲av成人精品一区久久| 不卡一级毛片| 嫩草影院精品99| 国产成人一区二区三区免费视频网站| 国产亚洲精品综合一区在线观看 | 老司机福利观看| 国产午夜精品论理片| 久久人人精品亚洲av| 免费看美女性在线毛片视频| √禁漫天堂资源中文www| 欧美精品啪啪一区二区三区| 我的老师免费观看完整版| 麻豆成人av在线观看| 国内少妇人妻偷人精品xxx网站 | 超碰成人久久| 免费在线观看完整版高清| 欧美黄色片欧美黄色片| 神马国产精品三级电影在线观看 | 国产精品 国内视频| 一本久久中文字幕| 老汉色av国产亚洲站长工具| 少妇人妻一区二区三区视频| 老汉色∧v一级毛片| 男人舔奶头视频| 国产精品,欧美在线| 我要搜黄色片| 久久久久九九精品影院| 桃色一区二区三区在线观看| 久久热在线av| 国产伦一二天堂av在线观看| 色哟哟哟哟哟哟| 日本 av在线| 淫秽高清视频在线观看| 1024手机看黄色片| 欧美日韩国产亚洲二区| 男女下面进入的视频免费午夜| av超薄肉色丝袜交足视频| 级片在线观看| 欧美又色又爽又黄视频| a级毛片在线看网站| 九色国产91popny在线| 国产高清视频在线播放一区| 精品久久久久久久毛片微露脸| 国产69精品久久久久777片 | 亚洲国产看品久久| 久久九九热精品免费| 一级毛片女人18水好多| 巨乳人妻的诱惑在线观看| 狠狠狠狠99中文字幕| 午夜成年电影在线免费观看| 精品少妇一区二区三区视频日本电影| 九色成人免费人妻av| 老司机午夜十八禁免费视频| 99久久无色码亚洲精品果冻| 精品免费久久久久久久清纯| 麻豆成人午夜福利视频| 国产精品久久电影中文字幕| 亚洲中文日韩欧美视频| 国产乱人伦免费视频| 最好的美女福利视频网| 国产免费av片在线观看野外av| 国产一区二区三区在线臀色熟女| 十八禁人妻一区二区| 婷婷丁香在线五月| 韩国av一区二区三区四区| 在线国产一区二区在线| 两个人看的免费小视频| 久久 成人 亚洲| 岛国在线观看网站| 亚洲一区中文字幕在线| 一边摸一边做爽爽视频免费| 亚洲成人中文字幕在线播放| a级毛片a级免费在线| 欧美成狂野欧美在线观看| 成人18禁在线播放| www日本在线高清视频| 神马国产精品三级电影在线观看 | 亚洲天堂国产精品一区在线| 日本熟妇午夜| 久久人人精品亚洲av| 九九热线精品视视频播放| 久久香蕉激情| 天堂影院成人在线观看| 国产精品乱码一区二三区的特点| 婷婷精品国产亚洲av在线| 国产精品九九99| 国产熟女午夜一区二区三区| 久久人妻av系列| 少妇熟女aⅴ在线视频| 国内揄拍国产精品人妻在线| 午夜老司机福利片| 国产亚洲精品久久久久久毛片| 日韩三级视频一区二区三区| 色综合欧美亚洲国产小说| 中文亚洲av片在线观看爽| 久久久久久国产a免费观看| 热99re8久久精品国产| 亚洲欧美日韩东京热| 欧美黄色片欧美黄色片| 非洲黑人性xxxx精品又粗又长| 亚洲va日本ⅴa欧美va伊人久久| 国产主播在线观看一区二区| 99精品久久久久人妻精品| 老司机深夜福利视频在线观看| 日韩欧美精品v在线| 啪啪无遮挡十八禁网站| 9191精品国产免费久久| 国产成年人精品一区二区| av片东京热男人的天堂| 精品少妇一区二区三区视频日本电影| av有码第一页| 久久这里只有精品19| 日韩国内少妇激情av| av欧美777| 亚洲欧美日韩高清专用| 欧美乱色亚洲激情| 十八禁网站免费在线| 久久精品国产99精品国产亚洲性色| av免费在线观看网站| av有码第一页| 熟女少妇亚洲综合色aaa.| 成人特级黄色片久久久久久久| videosex国产| 校园春色视频在线观看| 身体一侧抽搐| 一个人观看的视频www高清免费观看 | 中文字幕熟女人妻在线| 午夜久久久久精精品| 伊人久久大香线蕉亚洲五| 久久亚洲真实| 女人爽到高潮嗷嗷叫在线视频| 少妇被粗大的猛进出69影院| 日本撒尿小便嘘嘘汇集6| 成人国产综合亚洲| 国产精品一区二区三区四区久久| www国产在线视频色| 国产一区二区三区视频了| 久久人妻福利社区极品人妻图片| 欧美最黄视频在线播放免费| 国产一区二区在线观看日韩 | 欧美黑人欧美精品刺激| 蜜桃久久精品国产亚洲av| 亚洲全国av大片| 久久精品91无色码中文字幕| 99国产精品一区二区三区| 男女做爰动态图高潮gif福利片| 嫁个100分男人电影在线观看| 午夜老司机福利片| 国产精品自产拍在线观看55亚洲| 高清毛片免费观看视频网站| 色综合欧美亚洲国产小说| 高潮久久久久久久久久久不卡| 一边摸一边做爽爽视频免费| 精品国产美女av久久久久小说| 免费观看人在逋| www.精华液| 天天一区二区日本电影三级| 久久欧美精品欧美久久欧美| 淫秽高清视频在线观看| 18禁裸乳无遮挡免费网站照片| 国产精品 欧美亚洲| 国产熟女xx| 日本黄大片高清| 一进一出抽搐gif免费好疼| 亚洲国产看品久久| 男女之事视频高清在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| www.熟女人妻精品国产| 在线十欧美十亚洲十日本专区| 男人舔女人的私密视频| 精品乱码久久久久久99久播| 欧美在线一区亚洲| 少妇的丰满在线观看| 亚洲专区字幕在线| 村上凉子中文字幕在线| 最近视频中文字幕2019在线8| 国产欧美日韩一区二区精品| 午夜精品一区二区三区免费看| 国产一级毛片七仙女欲春2| 男女床上黄色一级片免费看| 好男人在线观看高清免费视频| 级片在线观看| 日本黄大片高清| 久久久久久久午夜电影| 免费在线观看亚洲国产| 国产免费男女视频| 两个人免费观看高清视频| 成人手机av| 日日摸夜夜添夜夜添小说| 波多野结衣高清无吗| 国产亚洲精品久久久久5区| 国产激情久久老熟女| 日韩国内少妇激情av| 国产野战对白在线观看| 成人av在线播放网站| 亚洲欧美精品综合一区二区三区| 久久精品国产亚洲av高清一级| 麻豆一二三区av精品| 他把我摸到了高潮在线观看| 日韩欧美在线二视频| 国产亚洲精品第一综合不卡| 免费在线观看亚洲国产| 97碰自拍视频| 一进一出抽搐动态| 精品国产亚洲在线| 这个男人来自地球电影免费观看| 欧美性长视频在线观看| 欧美日韩乱码在线| 久久精品亚洲精品国产色婷小说| 天天添夜夜摸| 真人做人爱边吃奶动态| 丰满人妻一区二区三区视频av | 日韩欧美一区二区三区在线观看| 成熟少妇高潮喷水视频| 搡老岳熟女国产| 热99re8久久精品国产| 久久久久久免费高清国产稀缺| 国产精品久久久久久人妻精品电影| 亚洲午夜理论影院| a级毛片a级免费在线| 怎么达到女性高潮| 国产高清视频在线观看网站| 久久热在线av| 久久久久久久久久黄片| 欧美久久黑人一区二区| 亚洲激情在线av| 熟女少妇亚洲综合色aaa.| 午夜福利18| 国产成人一区二区三区免费视频网站| 日本免费一区二区三区高清不卡| 国产真实乱freesex| 国产视频一区二区在线看| 一个人免费在线观看电影 | 日韩精品青青久久久久久| tocl精华| 久久婷婷成人综合色麻豆| 久久精品成人免费网站| www日本在线高清视频| 欧美性猛交╳xxx乱大交人| 国产激情偷乱视频一区二区| 亚洲精品美女久久av网站| xxx96com| 亚洲成人国产一区在线观看| 91大片在线观看| 国产高清激情床上av| 狂野欧美激情性xxxx| 婷婷精品国产亚洲av在线| 女警被强在线播放| 成人国产一区最新在线观看| 狂野欧美白嫩少妇大欣赏| 悠悠久久av| 久久九九热精品免费| 久久香蕉精品热| 男女视频在线观看网站免费 | 麻豆av在线久日| 免费无遮挡裸体视频| 亚洲欧美一区二区三区黑人| 超碰成人久久| av视频在线观看入口| 两性午夜刺激爽爽歪歪视频在线观看 | 美女扒开内裤让男人捅视频| av欧美777| 色av中文字幕| 亚洲美女视频黄频| 亚洲欧洲精品一区二区精品久久久| 亚洲精品久久成人aⅴ小说| 欧美成人免费av一区二区三区| 日韩成人在线观看一区二区三区| 欧美黄色淫秽网站| 亚洲国产精品sss在线观看| 成年免费大片在线观看| 久久久国产欧美日韩av| 婷婷丁香在线五月| 男女下面进入的视频免费午夜| 精品日产1卡2卡| 精品久久久久久,| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久av美女十八| 欧美日韩亚洲国产一区二区在线观看| 久久亚洲精品不卡| 国产人伦9x9x在线观看| 美女黄网站色视频| 中文字幕久久专区| 久久久久久久久久黄片| 久久精品国产99精品国产亚洲性色| 亚洲国产高清在线一区二区三| 九九热线精品视视频播放| 欧美色视频一区免费| 91九色精品人成在线观看| www日本黄色视频网| 日韩av在线大香蕉| 欧美久久黑人一区二区| 亚洲 国产 在线| 亚洲狠狠婷婷综合久久图片| 丰满人妻熟妇乱又伦精品不卡| 午夜视频精品福利| 性色av乱码一区二区三区2| 男女那种视频在线观看| 久久人人精品亚洲av| 亚洲色图 男人天堂 中文字幕| 91在线观看av| 精品国产美女av久久久久小说| 非洲黑人性xxxx精品又粗又长| 精品不卡国产一区二区三区| 天堂√8在线中文| 国产精华一区二区三区| 欧美中文综合在线视频| 嫩草影视91久久| 精品久久久久久久末码| 好看av亚洲va欧美ⅴa在| 亚洲美女黄片视频| av在线天堂中文字幕| 制服人妻中文乱码| 午夜免费成人在线视频| 欧美色视频一区免费| 国产午夜福利久久久久久| 亚洲五月婷婷丁香| 亚洲一区二区三区色噜噜| 精品欧美国产一区二区三| 999精品在线视频| 1024手机看黄色片| 又粗又爽又猛毛片免费看| 非洲黑人性xxxx精品又粗又长| 此物有八面人人有两片| av片东京热男人的天堂| 美女免费视频网站| 国产精品久久电影中文字幕| 亚洲激情在线av| 日本三级黄在线观看| 国产蜜桃级精品一区二区三区| 亚洲第一电影网av| 久久中文看片网| 国产在线精品亚洲第一网站| 亚洲精品粉嫩美女一区| 久久精品国产综合久久久| 久久中文字幕人妻熟女| 国内精品一区二区在线观看| 日本 欧美在线| 国产精品亚洲一级av第二区| 亚洲色图 男人天堂 中文字幕| 两个人的视频大全免费| 精品一区二区三区四区五区乱码| 色在线成人网| 婷婷丁香在线五月| 99久久精品热视频| 99热这里只有是精品50| 国产一区二区在线av高清观看| 级片在线观看| 精品人妻1区二区| 麻豆成人午夜福利视频| 亚洲色图av天堂| 亚洲无线在线观看| 男女那种视频在线观看| 国内揄拍国产精品人妻在线| 女人被狂操c到高潮| 成人国产一区最新在线观看| 香蕉国产在线看| 免费无遮挡裸体视频| 日韩欧美免费精品| 国产精品野战在线观看| 丰满人妻一区二区三区视频av | 妹子高潮喷水视频| 18美女黄网站色大片免费观看| 免费在线观看视频国产中文字幕亚洲| 久久久久久国产a免费观看| 日本一本二区三区精品| 亚洲精品粉嫩美女一区| 欧美日本视频| 免费人成视频x8x8入口观看| 妹子高潮喷水视频| 免费在线观看成人毛片| 男女下面进入的视频免费午夜| 国产人伦9x9x在线观看| 国产精品九九99| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品久久二区二区91| 女同久久另类99精品国产91| 免费在线观看黄色视频的| 亚洲乱码一区二区免费版| 亚洲欧美精品综合久久99| 少妇被粗大的猛进出69影院| 欧美最黄视频在线播放免费| 久久中文字幕人妻熟女| 国产精品免费视频内射| 国产真实乱freesex| 国产三级在线视频| √禁漫天堂资源中文www| 99精品欧美一区二区三区四区| 啦啦啦韩国在线观看视频| 亚洲性夜色夜夜综合| 少妇熟女aⅴ在线视频| 亚洲精华国产精华精| 一二三四在线观看免费中文在| 国产精华一区二区三区| 午夜福利在线在线| 欧美另类亚洲清纯唯美| 99热只有精品国产| 一区二区三区国产精品乱码| 久久久久久久精品吃奶| 999精品在线视频| 在线看三级毛片| 欧美在线黄色| 国产又黄又爽又无遮挡在线| av有码第一页| 婷婷亚洲欧美| 麻豆成人午夜福利视频| 亚洲国产精品999在线| 国产高清videossex| 久久久水蜜桃国产精品网| 成人永久免费在线观看视频| 日韩大码丰满熟妇| 日韩精品青青久久久久久| 欧美成人免费av一区二区三区| 国产一区在线观看成人免费| x7x7x7水蜜桃| 久久久久久人人人人人| 亚洲国产精品999在线| 老鸭窝网址在线观看| 国产精品98久久久久久宅男小说| 69av精品久久久久久| 无限看片的www在线观看| 日本a在线网址| 欧美日本视频| 搡老妇女老女人老熟妇| 国产精品国产高清国产av| 欧美黑人巨大hd| 精品福利观看| 麻豆av在线久日| 国产精品久久久久久久电影 | 妹子高潮喷水视频| 别揉我奶头~嗯~啊~动态视频| 嫩草影视91久久| 免费在线观看黄色视频的| 男女午夜视频在线观看| 人妻久久中文字幕网| 午夜福利18| 亚洲精品国产一区二区精华液| 一进一出好大好爽视频| 国产av一区在线观看免费| 国产主播在线观看一区二区| 女人被狂操c到高潮| 国产精品久久久久久亚洲av鲁大| 一本一本综合久久| 在线观看免费视频日本深夜| 国产精品久久久久久人妻精品电影| 激情在线观看视频在线高清| 日韩欧美免费精品| 国产精品乱码一区二三区的特点| 成在线人永久免费视频| 日韩大尺度精品在线看网址| 在线免费观看的www视频| 国产成人av激情在线播放| 国产黄a三级三级三级人| 色综合婷婷激情| 日本免费a在线| 欧美日韩精品网址| 日韩高清综合在线| 国产99白浆流出| 欧美日韩一级在线毛片| 国产男靠女视频免费网站| 特大巨黑吊av在线直播| www日本黄色视频网| www.精华液| 国产高清视频在线观看网站| 天堂av国产一区二区熟女人妻 | 久久久精品国产亚洲av高清涩受| 欧美一区二区精品小视频在线| 桃色一区二区三区在线观看| 色噜噜av男人的天堂激情| www.精华液| 国产精品久久久久久精品电影| 一本精品99久久精品77| 深夜精品福利| 亚洲人成网站高清观看| 波多野结衣高清作品| 国产精品野战在线观看| 亚洲av电影在线进入| 好看av亚洲va欧美ⅴa在| 狠狠狠狠99中文字幕| 婷婷精品国产亚洲av| 成人手机av| 男人舔女人的私密视频| 国产视频内射| av欧美777| 中文在线观看免费www的网站 | 两个人看的免费小视频| 亚洲精品美女久久av网站| 看黄色毛片网站| 久久中文字幕人妻熟女| 熟妇人妻久久中文字幕3abv| 亚洲aⅴ乱码一区二区在线播放 | 18美女黄网站色大片免费观看| 亚洲国产高清在线一区二区三| 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 成年免费大片在线观看| 国产不卡一卡二| 欧美中文综合在线视频| 免费在线观看完整版高清| 精品国内亚洲2022精品成人| 成在线人永久免费视频| 成人国产综合亚洲| 俺也久久电影网| 国产精品综合久久久久久久免费| 亚洲成a人片在线一区二区| 18禁黄网站禁片免费观看直播| 成人18禁在线播放| or卡值多少钱| 国产午夜福利久久久久久| 校园春色视频在线观看| 精品久久久久久久毛片微露脸| 欧美三级亚洲精品| 午夜福利成人在线免费观看| 久久久久久大精品| 在线观看www视频免费| 欧美日韩亚洲国产一区二区在线观看| 90打野战视频偷拍视频| 在线观看www视频免费| 成熟少妇高潮喷水视频| 一个人免费在线观看的高清视频| 久久精品91蜜桃| 亚洲人成伊人成综合网2020| 美女黄网站色视频| 日韩精品中文字幕看吧| 亚洲欧美激情综合另类| 十八禁网站免费在线|