• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymmetric molecular engineering in recent nonfullerene acceptors for efficient organic solar cells

    2023-11-18 09:54:56JinshengSongZhishanBo
    Chinese Chemical Letters 2023年10期

    Jinsheng Song, Zhishan Bo

    a Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, China

    b Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China

    c College of Textiles & Clothing, Qingdao University, Qingdao 266071, China

    Keywords:Asymmetric strategy Organic photovoltaics Nonfullerene acceptor Side chain engineering Y-series acceptors

    ABSTRACT Nonfullerene acceptors (NFAs), which usually possess symmetric skeletons, have drawn great attention in recent years due to their pronounced advantages over the fullerene counterparts.Moreover, breaking the symmetry of NFAs could fine tune the molecular dipole, solubility, energy level, intermolecular interaction, molecular packing, crystallinity, etc., and give rise to improved photovoltaic performance.Currently,there are three main strategies for the design of asymmetric NFAs.This review highlights the recent advances of high-performance asymmetric NFAs and briefly outlooks the materials exploration for the future.

    1.Introduction

    Nonfullerene acceptor (NFA) as a new spark in the organic photovoltaic field breaks the long-term domination of the fullerenebased acceptors.In the past three years, great efforts have been devoted to the material design and the power conversion efficiencies (PCEs) of OSCs have been dramatically improved to over 19%, which has significantly surpassed the fullerene counterpart.The state-of-the-art NFAs are generally with a symmetry molecular skeleton to achieve the ordered molecular packing and form the efficient charge transporting channels.The molecules are commonly composed of three main segments: symmetric central conjugated electron-donating cores (D), outstretched side chains and two identical terminal electron-withdrawing end-groups (A).Chemists have conceived a variety of molecular engineering strategies on these three moieties [1,2], which great assisted the fast advance of organic photovoltaic (OPV)field.

    While, the strategy of symmetry breaking has been widely adopted in the field such as electro-optics [3], dye-sensitized solar cells [4] and light-emitting diode [5], where asymmetric conjugated skeletons are constructed to generate strong dipoles, produce efficient charge transfer, tune the molecular aggregation, improve the solubilityetc.Consequently, the absence or violation of symmetry at the three moieties of NFAs that are either expected to have significant impacts on the final molecular systems.Some early works were tried in the D-A small molecule [6] and perylenediimide acceptor [7], but researchers have not noticed the great potential of the asymmetric strategy at that stage due to the moderate photovoltaic performances of these molecular systems.Recently, the asymmetric molecular engineering is also applied on A-D-A-typed NFAs, which brings strong molecular dipole, induces antiparallel packing, forms enhancedπ-πstacking, produces effi-cient charge transport channel, adjusts the processability, achieves preferred morphology,etc.The asymmetric molecule strategy has also been verified among the A-DA’D-A-typed Y-series acceptors and PCE of 19% has been achieved [8–12].

    Generally, there are three mainstreams for the asymmetric strategy application in NFAs design: (1) asymmetric lateral chains,(2) asymmetric conjugated centers and (3) asymmetric electron deficient terminals.Additionally, some new emerged application in asymmetric polymeric acceptors are also included.In this review,the asymmetric molecules and the corresponding photovoltaic performances have been summarized and analyzed in Table 1; the challenges existing in the future molecular design for these asymmetric acceptors are discussed.

    Table 1 Energy levels and photovoltaic details for the asymmetric acceptors.

    2.Asymmetric molecular strategies: classification and application

    2.1. The strategy I: asymmetric lateral chains

    To achieve ideal nanoscale phase separation for the active layer of organic solar cells, the polymer donor should precipitate first and form a fibrous network to prevent the small-molecular acceptor from generating large domains.The competitive crystallization processes for the polymer donor and small-molecular acceptor would directly impact the morphology quality.To satisfy the above requirement, the small-molecular acceptor should have a good solubility in the processing solvent, a relatively slow crystallization rate during the drying of the active layer.As known, side chain engineering is a widely used method to adjust the molecular solubility.In 2017, Boet al.firstly designed a kind of asymmetric A-D-A type fused-ring electron acceptorIDT-OB, bearing asymmetric side chains at the same sp3bridged carbon (one alkyl and one aryl lateral chains) [13].Such strategy breaks the molecular symmetry without interference with the conjugation characteristics, guarantees good solubility during the processing, enables the acceptor molecules to pack closely in a dislocated way, and provides favorable phase separation when blended withPBDB-T.Interestingly, such asymmetricIDT-OBbased OSCs could achieve high photovoltaic performance thick-film devices (9.17% at thickness of 210 nm).When the IDT core inIDT-OBis replaced by a larger conjugated counterpart IDTT, even better performance thickfilm devices could be obtained byIDTT-OB(10.20% at thickness of 250 nm) [14].Additionally, this asymmetric side chain strategy is not only effective in the fused ring A-D-A acceptors, it is also applicable in noncovalently fused-ring electron acceptors (NCFREAs).Boet al.applied this asymmetric strategy to the simple NC-FREAs and a high-power conversion efficiency (PCE) of 12.36%is achieved forFOC2C6–2FIC[15].Recently, Bo and Song rationally designed two novel asymmetric NC-FREAsPCBM-C6andPCBMC10viaunilaterally introducing the phenyl-C61-butyric acid methyl ester (PCBM) as the pendent to fully take advantage of both nonfullerene and fullerene acceptors simultaneously.The bulky, spherical, and electronic isotropic fullerene pendent could effectively suppress severe molecular aggregation, form the preferred blend morphology and further improve the PCE to 13.55% relative to the symmetric control molecule [16].

    Fig.1.Representative asymmetric A-D-A-typed NFAs designed via strategy I in literature [13–18].

    Besides, side chain tailoring could be another route to fulfill the purpose of asymmetric side chain.Sunet al.built one asymmetric wide-bandgap small molecular acceptorC6-IDTT-Tviashearing one hexyl side chain from the end of the donor core and prominent red-shifted absorption is achieved, which should be ascribed to the intenseπ–πintermolecular interactions in the solid state[17].Very recently, Zhenget al.built an asymmetric NFAsM14with one alkoxy side-chain and one alkylthio side-chain at the conjugated ladder core, which endows the molecules with increased solubility, enhanced the intermolecular interactions and thereby improved charge transport, and a high PCE 16.46% is achieved by this A-D-A type asymmetric NFAs [18].In short, though there are not many examples of asymmetric side chains in A-D-A molecules as shown in Fig.1, the above examples do demonstrate that constructing a ladder-type backbone structure with asymmetric side chains is promising in designing high-performance acceptors with better solubility and more compact molecular packing, which is also especially successful in thickness-insensitive based photovoltaic devices.

    2.2. The strategy II: asymmetric conjugated centers

    Asymmetric lateral chains mainly improve the processability and tuning molecular packing through changing the surrounding environment of the conjugated skeletons.As the OPV field experienced a long period of development, a variety of symmetric conjugated ladder cores with fused rings have been explored.By tailoring the ladder skeletons from one side, the asymmetric central cores could be acquired and the varied dipole moments between the end group and half of the donor unit will break the dipole counterbalance and induce a new dipole moment for the whole molecule with tunable orientations.IDT and IDTT are the commonly used symmetric ladder core in A-D-A type nonfullerene acceptors and one simple cutting at one sp3carbon in the ring(Fig.2) could introduce asymmetry in the D core, which could be inherited into the final acceptor molecules.For example, Zhenget al.developed the indenothiophene coreviathis skeleton shearing strategy and the correspondingITDImolecule presents significantly improved photovoltaic performances in comparison with the symmetric analogue, which also presents good stability for the encapsulated device with 93% initial value after storage for 30 days in air [19].

    Ring-fusion could be treated as an alternative molecular design route to achieve the same result as ring-shearing, which alters the core’s conjugation length.Yanget al.constructed the asymmetric ladder core through the ring-extension by fusing a new thiophene or thieno[3,2-b]thiophene unit onto the IDT block [20–22].As a result, the induced dipoles forMeIC1,IDT6CN-MandIDT8CNMby asymmetry, strong intermolecular interactions can be generated, leading to a favorable antiparallel packing, high fill factors (FF) of around 80% and the highest PCEs among the OSCs devices.Sun and Yi [23] verified this idea through DFT quantum prediction and found abundant terminal packing probability might exist in the asymmetric molecule aggregates ofTPTT-IC, two of which (with similar binding energies and more stable configurations) present much stronger intermolecular interactions than that of symmetric one, suggesting that a high electron mobility would be achieved by asymmetric molecules.In some cases, unilaterally inserting oneπunit at the symmetric ladder core can also produce asymmetry to the skeleton.Zhanget al.utilized the unilateral alkylthio-substituted thiophene unit to construct the asymmetric A-D-π-A acceptorIDST-4F[24].Such structural alteration would induce the dipole change, reinforce the intermolecular interaction, redshift the absorption spectra and achieve a final high PCE of 14.3%.Notably, these devices, displaying improved storage and thermal stability, could retain 82% of the original PCE with no obvious morphological changes after thermal treatment at 150 °C for 1200 min.Viamoving the phenyl to the lateral terminals, a further enhanced PCE of 15.45% could be achieved byWA1[25].

    Additionally, the unilateral incorporating heteroatom could also disrupt the skeleton symmetry along with the change of chemical constitution and electronic structure.Viathe simple replacement of the sulfur atom with the selenium atom, Sunet al.reported a new asymmetric analogue to IDT and the corresponding asymmetric acceptorSePT-INpresents a bathochromic absorption spectrum, increased intermolecularπ-πstacking and a decent PCE of 10.20% in relative to the symmetric counterpart [26].In some cases, the incorporation of heteroatom is combined with the ringfusion and side chain engineering.For example, Tanget al.[27] reported that the fusion of the thienopyrrole moiety with the IDT unit, which forms a new asymmetric IPT block with an alkyl side chain at the nitrogen atom, whose stronger dipole interactions trigger a closer lamellar packing.It is advantageous to fine-tune the morphology in the active layer for more efficient OSCs by using an S type molecule skeleton as thisIPT-2Fmolecule and a more effi-cient OSCs with a high PCE of 14% is achieved.Afterwards, terminal derivation [28,29] and side chain engineering [30,31] were utilized on this pyrrole modified asymmetric core by several groups.High FF values above 70% are very common for these acceptors and PCEs of ~15% are achieved [28,32].Zhenget al.synthesized the asymmetricMQ6bearing a heteroheptacene core with one selenophene heterocycle, which can make best use of the enhanced O···Se noncovalent interaction without interference of the 3D network packing in relative to the symmetric counterpart, and a comparable PCE of 16.39% to Y-series acceptors is achieved [33].

    Fig.2.Representative asymmetric A-D-A-typed NFAs designed via strategy II in literature [19–33].

    Fig.3.Representative asymmetric A-D-A-typed NFAs designed via strategy III in literature [34–38].

    2.3. The strategy III: asymmetric electron deficient terminals

    Side chain engineering and conjugated skeleton tailoring/fusion would produce conformation asymmetry in the final acceptor molecule and slightly change the electrostatic potential or dipole moment for the whole molecule.In the A-D-A type molecules, the whole and regional dipole moments of the molecules would impact the molecular interactions and aggregation [34] which is directly correlated to the acceptor moieties.Stronger intermolecular dipole interactions have been detected, formed by dipole-driven self-assembly in the NLO molecules previously.Consequently, it would be natural for the researchers to consider utilizing the terminal asymmetric strategy for the A1-D-A2type acceptor molecule design as shown in Fig.3.Houet al.build the asymmetric moleculeIT-3Fwith different F substitution number at each terminal [35] and the corresponding OSCs demonstrated a better photovoltaic performance with a PCE of 13.41% in relative to the symmetric counterparts ofIT-2FandIT-4F.Songet al.adopted the consecutive addition method to construct the asymmetrica-IT-2OM,which combined the general 1,1-dicyanomethylene-3-indanone (IC)with the dimethoxy modified IC.Such molecular design enabled fine tuning of the regional and whole molecular dipole moments,enhancing the intermolecular interactions and achieving encouraging photovoltaic performances bya-IT-2OMeven in thick film devices (>9% at thickness of 450 nm) [34].Wanget al.developed asymmetric acceptorsviautilizing the synergistic effect of asymmetry and halogenation, which shows the shallowest lowest unoccupied molecular orbital energy level and tight molecular packing from the molecular simulation.When blended with the polymer donors,IDTT-Cl-2F[36] andIDTT-Br-2F[37] based OSCs yield the PCEs of 12.1% and 13.3%, respectively.Zhuet al.reported an asymmetric A–D–A-type nonfullereneZITI-3Fbased on the dithienocyclopentaindenoindene core [38].A PCE of 13.15% was achieved by theJ71:ZITI-3Fbased devices and further improved PCE of 13.85%was obtained by the “one-pot synthesized composite” due to the synergistic effect and electronic alloy nature of the symmetric and asymmetric moieties.In the meantime, the reversibility of endgroup condensation for these asymmetric molecules has been noticed during the synthesis, which may aid the concise preparation of terminal diverse acceptors by one-pot reaction [39].In short, different D-A terminal combinations would bring varied asymmetry and dipole moments to the whole molecule, ultimately impacting the intermolecular interactions, crystallization properties, blended microscopic morphology and charge transporting process.Though there are only a few A-D-A examples reported utilizing the asymmetric terminal strategy, it is proved to be the most efficient route in Y-series high-efficiency acceptor design (vide infra).

    2.4. Application of asymmetric strategies in Y-series acceptors

    Fig.4.Representative asymmetric Y-series acceptors in literature [8,9,40-50].

    During the past three years, the fast advance of NFAs has revolutionized the field of OSCs and the photovoltaic performances have been significantly improved to near 19% since the Y-series acceptor have been explored.In the meantime, the three asymmetric strategies for molecular design are also employed during the Y-series acceptor construction as shown in Fig.4.Yanet al.utilized the asymmetric alkyl and alkoxy terminal substitution strategy to balance the solubility and morphology of the final acceptorY6–1O, which finally achieved a PCE of 16.1% and 17.6% in binary and ternary OSCs, respectively [40].Huanget al.introduced asymmetric branched side chains at the nitrogen of the central core ofEH–HD-4F, which efficiently affected the absorption spectra, induced more favorable face-on orientation, improved charge transport and reduced recombination losses, and a high PCE of 18.38% with aJSCof 27.48 mA/cm2was accomplished by the photovoltaic devices [41].As mentioned, asymmetric side chain modification on NFAs is an effective and promising method to realize high device efficiencies.Yanget al.developed an asymmetric side-chain functionalized Y typed analoguesBTP-PhC6-C11[42], which enables a 3D network with hydrogen bond assisted crystal packing.The enhanced electronic coupling, larger and more symmetric charge mobility, longer carrier lifetime and enhanced molecular packing guarantees the best photovoltaic performance for the blend based onBTP-PhC6-C11with a PCE of 18.33%.

    Aiming at the ladder core, Jenet al.built asymmetric Y-type acceptors through shearing or fusing one more thiophene unit at the terminal ofπ-conjugated skeleton and two distinct molecular conformations (Z-shape and W shape) for NFAs (BP5T-4FandABP4T-4F) [43] are obtained, which could achieve appropriate micromorphology, suppress the nonradiative recombination loss and give high PCEs of 16.7% and 15.2%, respectively.Boet al.unilateral introduced a thiophene alkoxy units resulting in an asymmetric skeleton ofL5, which endows the acceptor with a slightly twisted molecular conformation in solution but a planar one in the solid state.Such dynamic transformation properties facilitate the good processability in solution while maintaining a dense molecular packing in a thin film.Hence, the binary as-cast devices based on L5 generate a high PCE of 15.2% and ternary devices ofPM6:L5:Y6achieved a higher PCE of 17.14% [44].Recently, researchers also noticed that high nonradiative recombination energy loss (ΔEnr) is one of the significant factors that limit efficiencies of organic solar cells (OSCs), Chenet al.developed an acceptorNQFwith an asymmetric and extended conjugation at the central electron deficient core [45].The asymmetry inNQFincreases the dipole moment of the acceptor and strengthen the rigidity of the molecule, resulting in a high-power conversion efficiency (PCE) of 17.57% with a rather lowΔEnrof 0.177 eV.

    As mentioned above, the asymmetric electron terminals would create permanent dipoles in the A-D-A type NFAs and tune the molecular stacking.Very recently, Boet al.developed a threedimensional shape-persistent CBIC terminal group to pair with the chlorinated IC terminal groups and an asymmetric acceptorLL3could be constructed.The novelLL3design could effectively improve the solubility and regulated the molecular packing mode as well, which finally reaches a PCE of 16.83% [46].Through utilizing the thiophene fused terminal (CPTCN–Cl) at one end inBTP-2F-ThCl, a minimal energy offset and sufficient charge separation could be achieved, which realizing a PCE approaching 17%with a balance betweenVOCandJSC[47].Chenet al.demonstrated highly efficient OSCs with improved luminescenceviathe introduction of electron-poor terminals in the asymmetric acceptor moleculesBTP-S1,BTP-S2[48] andBO-5Cl, which generates dual nature of the interfacial electronic states and brings combined low non-radiative voltage losses and high charge generation efficiency when the resulted acceptor was used as the third component [49,50].Encouragingly, some other terminal functionalized asymmetric guest acceptors asBTP-2F2Cl[9] andBTP-S9[8] could achieve high PCEs around 19% due to the improved the exciton behaviors and reduced energetic disorder, respectively.Additionally,not only the experimental results demonstrate the photovoltaic performance improvement for the asymmetric Y-series acceptors,quantum chemistry prediction also confirms that these asymmetric acceptors possess enhanced light absorption ability, improved interfacial properties with more CT states and strong interactions with the donor [51], contributing to such excellent photovoltaic performances.

    Fig.5.Examples of asymmetric strategy in PSMAs in literature [52,53].

    2.5. Application of asymmetric strategies in polymer acceptors

    In the field of electron acceptors, polymer counterpart as another potential branch attracted more attention in organic photovoltaics.Recently, Liet al.conceived a new strategy for NFAs designviapolymerizing the small molecular acceptors (PSMAs) and the widely used monomers are from Y-series acceptors, which achieves good film quality, stable morphology, high absorption coefficients and high photovoltaic performance.During the PSMAs design, they also borrowed the asymmetric concept from small molecular NFAs(Fig.5).For example, Liet al.developed an asymmetry concept forPA1-o[52] designviarandom polymerization of two different symmetric SMA building blocks with a thiophene linking unit.ThePM6:PA1-o-based all-PSC achieved the highest PCE of 16.0%,suggesting that asymmetric copolymerization is an effective strategy for synthesizing high-performance PSMAs.Jenet al.adopted a vinylene-inserted asymmetric monomer for the preparation of PSMA,PY3Se-1V [53], whose absorption onset reached 1000 nm.Due to the enhanced electron-donating ability and quinoidal character of such a DA’D-V-type core, the corresponding asymmetricPY3Se-1V with an ultra-low bandgap of 1.25 eV still maintains a moderate LUMO energy level of -3.90 eV and the corresponding all-PSCs based onPBDB-T:PY3Se-1V achieved a high PCE of 13.2%.Both examples demonstrate the asymmetric strategy could be transplanted to the polymeric PSMAs design for high performance of all polymer solar cells.

    3.Conclusion and perspective

    In conclusion, the current asymmetric molecular engineering could endow the nonfullerene acceptors with further improved performances by virtue of enhanced dipole, tunable intermolecular interaction, adjustable packing mode, balanced processability,improved luminescence, reduced energetic disorder andetc., and guarantee the final device with thickness insensitivity.Although progressive advancements with remarkable PCEs around 19% have been accomplished by the asymmetric nonfullerene acceptors, the fast advances of this branch are highly dependent on the symmetric counterpart.The key points towards the future exploration may include the following aspects:

    (1) Accurate combination rules of these asymmetric strategies are demand to fulfill the fine tune of the processability and crystallinity, charge transportation, staking properties for excellent photovoltaic performances.

    (2) The current studies related to the asymmetric acceptors are still lack of crystals and only a few studies include the molecular stacking information; the molecular design combined with the quantum chemistry prediction may provide some deep insights for this strategy.

    (3) Systematic guide for the asymmetric molecular design should be devoted more efforts to further understand the impacts of conjugated skeleton, terminal, and side chain type on the detailed photovoltaic parameters.

    (4) Take advantage of the intermolecular tunability by this asymmetric strategy and extend it to some newly reported potential systems (e.g., noncovalent fused ring acceptors and fully nonfused acceptors) for intensive study.

    (5) Accompany with the development of the asymmetric acceptors, the exploration of donor components either polymers or oligomers should also catch up so as to generate matched and efficient charge transport channels.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22075069, 51933001), Natural Science Foundation of Henan Province (No.212300410002) and Program sponsored by Henan Province (Nos.23ZX002, ZYQR201912163).

    干丝袜人妻中文字幕| 岛国毛片在线播放| 我的老师免费观看完整版| 国产精品成人在线| 欧美少妇被猛烈插入视频| 大香蕉97超碰在线| 最近最新中文字幕大全电影3| 国产在线免费精品| 最新中文字幕久久久久| 天美传媒精品一区二区| 99热全是精品| 联通29元200g的流量卡| av在线蜜桃| 一级毛片 在线播放| 亚洲aⅴ乱码一区二区在线播放| 日本一二三区视频观看| 国产精品久久久久成人av| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩东京热| 亚洲三级黄色毛片| 久久婷婷青草| 免费看不卡的av| 久热这里只有精品99| 亚洲av中文字字幕乱码综合| 日韩一区二区视频免费看| 国产精品国产av在线观看| 日日啪夜夜爽| 成人美女网站在线观看视频| 久久精品熟女亚洲av麻豆精品| 日韩视频在线欧美| 一级毛片aaaaaa免费看小| 国产精品麻豆人妻色哟哟久久| 成年免费大片在线观看| 久久人人爽人人片av| 亚洲精品中文字幕在线视频 | 久久久久国产精品人妻一区二区| 国产欧美日韩精品一区二区| 亚洲精品视频女| 少妇的逼好多水| 久久国内精品自在自线图片| 在线观看人妻少妇| 男女免费视频国产| 一级毛片电影观看| 欧美精品亚洲一区二区| 亚洲国产精品999| 亚洲精品乱码久久久久久按摩| 亚洲内射少妇av| 在线 av 中文字幕| 欧美变态另类bdsm刘玥| 亚洲精品视频女| 成人特级av手机在线观看| av女优亚洲男人天堂| 在线观看一区二区三区激情| 亚洲精品aⅴ在线观看| 亚洲av福利一区| 国产精品熟女久久久久浪| 中文字幕人妻熟人妻熟丝袜美| 免费av不卡在线播放| 亚洲av成人精品一二三区| 日日摸夜夜添夜夜爱| 18禁动态无遮挡网站| 国产探花极品一区二区| 一区二区av电影网| 国产亚洲精品久久久com| 精品亚洲成a人片在线观看 | 热re99久久精品国产66热6| 亚洲精品一二三| 亚洲精品视频女| 亚洲精品国产色婷婷电影| 少妇 在线观看| 国产成人午夜福利电影在线观看| 一区在线观看完整版| 国产高清有码在线观看视频| 国产91av在线免费观看| 五月开心婷婷网| 日韩一本色道免费dvd| 成年美女黄网站色视频大全免费 | 久久精品国产鲁丝片午夜精品| 中文在线观看免费www的网站| 欧美97在线视频| a级一级毛片免费在线观看| 国产成人freesex在线| av福利片在线观看| 亚洲成人av在线免费| 1000部很黄的大片| 久久久久久久久久久丰满| 男人狂女人下面高潮的视频| 久久精品国产亚洲av天美| 日韩成人伦理影院| 日韩不卡一区二区三区视频在线| 国产成人a∨麻豆精品| 在线亚洲精品国产二区图片欧美 | 久热这里只有精品99| 日韩av不卡免费在线播放| 免费av中文字幕在线| 少妇 在线观看| 国产毛片在线视频| 日日撸夜夜添| 久久久久精品性色| 伦精品一区二区三区| 日本色播在线视频| 亚洲欧美清纯卡通| 国产又色又爽无遮挡免| 日韩精品有码人妻一区| 五月天丁香电影| 秋霞伦理黄片| 美女主播在线视频| 日韩免费高清中文字幕av| 久久久久久久亚洲中文字幕| 免费高清在线观看视频在线观看| 99精国产麻豆久久婷婷| 国产乱人视频| 日日摸夜夜添夜夜爱| 国产久久久一区二区三区| 国产精品一区二区在线观看99| 亚洲av男天堂| 亚洲精品成人av观看孕妇| 中国美白少妇内射xxxbb| 欧美精品一区二区免费开放| 欧美成人一区二区免费高清观看| 一级毛片aaaaaa免费看小| 亚洲av国产av综合av卡| av卡一久久| 亚洲精品一区蜜桃| 欧美精品人与动牲交sv欧美| 高清av免费在线| 午夜激情福利司机影院| 不卡视频在线观看欧美| 亚洲美女视频黄频| 一级二级三级毛片免费看| 激情五月婷婷亚洲| 日本欧美视频一区| 成人综合一区亚洲| 久久鲁丝午夜福利片| 亚洲成人一二三区av| 王馨瑶露胸无遮挡在线观看| 国产成人aa在线观看| 亚洲精品国产av蜜桃| 免费少妇av软件| 国产探花极品一区二区| 你懂的网址亚洲精品在线观看| 婷婷色麻豆天堂久久| 久久久久视频综合| 国产av国产精品国产| 国产深夜福利视频在线观看| 国产高潮美女av| 深爱激情五月婷婷| 丝瓜视频免费看黄片| 成年美女黄网站色视频大全免费 | 亚洲精品,欧美精品| 偷拍熟女少妇极品色| 在线亚洲精品国产二区图片欧美 | 黄色一级大片看看| 国产精品三级大全| 女的被弄到高潮叫床怎么办| 亚洲欧美一区二区三区黑人 | 国产精品一二三区在线看| 黄色配什么色好看| 欧美国产精品一级二级三级 | 国产在线视频一区二区| av又黄又爽大尺度在线免费看| 国产美女午夜福利| 亚洲中文av在线| 国产成人91sexporn| 男人爽女人下面视频在线观看| 欧美老熟妇乱子伦牲交| 高清日韩中文字幕在线| 国产精品一二三区在线看| 成人免费观看视频高清| 伦理电影免费视频| 老师上课跳d突然被开到最大视频| 国产爱豆传媒在线观看| 在线观看免费高清a一片| 最近最新中文字幕大全电影3| 男女啪啪激烈高潮av片| 久久青草综合色| 亚洲精品一二三| 一区二区三区精品91| 丰满乱子伦码专区| 新久久久久国产一级毛片| 天天躁夜夜躁狠狠久久av| 色视频在线一区二区三区| 亚洲国产精品国产精品| 男女边摸边吃奶| 我要看日韩黄色一级片| 国产老妇伦熟女老妇高清| 国产有黄有色有爽视频| 一个人看的www免费观看视频| 亚洲国产高清在线一区二区三| av免费观看日本| 国国产精品蜜臀av免费| 国产成人免费无遮挡视频| 在线免费十八禁| 亚洲图色成人| 精品一区二区三卡| h日本视频在线播放| 精品人妻偷拍中文字幕| 多毛熟女@视频| 成人无遮挡网站| 欧美精品亚洲一区二区| 在线观看一区二区三区激情| 在线观看av片永久免费下载| 亚洲av福利一区| 久久久久网色| 大香蕉久久网| 久久久久人妻精品一区果冻| 精品亚洲成国产av| 精华霜和精华液先用哪个| 色婷婷久久久亚洲欧美| 国产黄片美女视频| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 99久久精品热视频| 超碰97精品在线观看| 全区人妻精品视频| 国产成人免费无遮挡视频| h视频一区二区三区| 黄片wwwwww| 亚洲国产色片| 黑丝袜美女国产一区| 久久影院123| 观看免费一级毛片| 精品久久久久久久久亚洲| 一本一本综合久久| 三级经典国产精品| 偷拍熟女少妇极品色| 久久久久久久亚洲中文字幕| 欧美日韩视频精品一区| 国产中年淑女户外野战色| 亚洲成色77777| 激情 狠狠 欧美| 中文字幕人妻熟人妻熟丝袜美| av在线观看视频网站免费| 能在线免费看毛片的网站| 亚洲无线观看免费| 啦啦啦在线观看免费高清www| 少妇熟女欧美另类| 在线看a的网站| 欧美zozozo另类| 黄色一级大片看看| 免费黄网站久久成人精品| 久久6这里有精品| 韩国av在线不卡| 精品一区二区免费观看| 久久久久视频综合| 亚州av有码| 中文乱码字字幕精品一区二区三区| h视频一区二区三区| 男人舔奶头视频| 舔av片在线| 中文字幕亚洲精品专区| 日韩电影二区| 日本与韩国留学比较| 亚洲婷婷狠狠爱综合网| 精品一品国产午夜福利视频| 国内少妇人妻偷人精品xxx网站| 国产亚洲最大av| 干丝袜人妻中文字幕| h日本视频在线播放| 亚洲精品自拍成人| 久久韩国三级中文字幕| 久久精品国产亚洲av天美| 国内少妇人妻偷人精品xxx网站| 精品少妇久久久久久888优播| 婷婷色av中文字幕| 欧美日本视频| 亚洲精品久久久久久婷婷小说| av一本久久久久| 欧美丝袜亚洲另类| 久久鲁丝午夜福利片| 国产伦精品一区二区三区视频9| 亚洲成人手机| 国产日韩欧美在线精品| 男女啪啪激烈高潮av片| 大片免费播放器 马上看| 赤兔流量卡办理| 久久精品国产自在天天线| 老司机影院成人| 在线观看一区二区三区激情| 国产女主播在线喷水免费视频网站| 青青草视频在线视频观看| 99热这里只有是精品50| 精品人妻视频免费看| 又粗又硬又长又爽又黄的视频| 热99国产精品久久久久久7| 久久久a久久爽久久v久久| av在线蜜桃| 亚洲美女视频黄频| 亚洲精品国产av成人精品| 亚洲精品国产av蜜桃| 大陆偷拍与自拍| 午夜福利网站1000一区二区三区| 亚洲精品色激情综合| 久久久久网色| 欧美变态另类bdsm刘玥| 一级毛片黄色毛片免费观看视频| 99久久中文字幕三级久久日本| 大片免费播放器 马上看| 伊人久久国产一区二区| 伊人久久精品亚洲午夜| 欧美xxxx性猛交bbbb| 国产欧美日韩精品一区二区| 精品国产一区二区三区久久久樱花 | 国产成人精品一,二区| 性高湖久久久久久久久免费观看| 日本av免费视频播放| 国产亚洲午夜精品一区二区久久| 97精品久久久久久久久久精品| 国产av一区二区精品久久 | 成人影院久久| 亚洲欧美一区二区三区国产| 久久这里有精品视频免费| 日韩av在线免费看完整版不卡| 中国国产av一级| av不卡在线播放| 久久鲁丝午夜福利片| 噜噜噜噜噜久久久久久91| 亚洲丝袜综合中文字幕| 高清av免费在线| 99热这里只有是精品50| av又黄又爽大尺度在线免费看| 97在线人人人人妻| 亚洲av.av天堂| 久久久久久久国产电影| 视频区图区小说| 一级av片app| 免费高清在线观看视频在线观看| 免费在线观看成人毛片| 这个男人来自地球电影免费观看 | 亚洲国产最新在线播放| 国产一区二区三区综合在线观看 | 国产男女超爽视频在线观看| 欧美zozozo另类| 亚洲在久久综合| 99九九线精品视频在线观看视频| 国产av一区二区精品久久 | 乱码一卡2卡4卡精品| 美女主播在线视频| 国产爽快片一区二区三区| 亚洲精品日韩av片在线观看| 丝袜脚勾引网站| 国产成人精品福利久久| 男男h啪啪无遮挡| 久久鲁丝午夜福利片| 久久久久久久精品精品| 久久久久国产网址| 在线观看免费高清a一片| 色综合色国产| 欧美成人一区二区免费高清观看| 国产有黄有色有爽视频| 一级毛片我不卡| 三级经典国产精品| 最后的刺客免费高清国语| 网址你懂的国产日韩在线| 一二三四中文在线观看免费高清| 三级经典国产精品| 性色avwww在线观看| 99视频精品全部免费 在线| 18禁在线无遮挡免费观看视频| 国产黄片美女视频| 插阴视频在线观看视频| 亚洲av日韩在线播放| 国产精品嫩草影院av在线观看| 亚洲欧美精品自产自拍| 男人爽女人下面视频在线观看| 高清黄色对白视频在线免费看 | 亚洲三级黄色毛片| 欧美另类一区| 91狼人影院| 在线观看国产h片| 中国美白少妇内射xxxbb| 丰满迷人的少妇在线观看| 亚洲精华国产精华液的使用体验| 美女xxoo啪啪120秒动态图| 麻豆成人av视频| 午夜免费鲁丝| 性高湖久久久久久久久免费观看| 丰满少妇做爰视频| 亚洲av日韩在线播放| 麻豆成人午夜福利视频| 国产乱人视频| 国产69精品久久久久777片| 亚洲精品,欧美精品| 欧美3d第一页| 精品国产三级普通话版| 免费黄频网站在线观看国产| 在线观看三级黄色| 成人午夜精彩视频在线观看| 我要看日韩黄色一级片| 国产一区二区三区综合在线观看 | 美女xxoo啪啪120秒动态图| 日本欧美视频一区| 熟女av电影| 2022亚洲国产成人精品| 女人十人毛片免费观看3o分钟| 国产色婷婷99| 国产免费一级a男人的天堂| 少妇的逼好多水| 亚洲人成网站在线播| 日本黄色日本黄色录像| 观看av在线不卡| 欧美日韩国产mv在线观看视频 | 少妇丰满av| 最近2019中文字幕mv第一页| 熟女电影av网| 在现免费观看毛片| 亚洲精品日韩在线中文字幕| 婷婷色av中文字幕| 日本wwww免费看| 又爽又黄a免费视频| 亚州av有码| 亚洲丝袜综合中文字幕| 18禁在线播放成人免费| 成人免费观看视频高清| 美女cb高潮喷水在线观看| 国产成人精品久久久久久| 丝袜脚勾引网站| 男人舔奶头视频| 免费看av在线观看网站| 日本wwww免费看| 国产高清三级在线| 丰满乱子伦码专区| 亚洲欧美日韩东京热| 欧美成人a在线观看| 亚洲成人av在线免费| 日本欧美国产在线视频| 久久精品人妻少妇| 国产精品伦人一区二区| 久久久成人免费电影| 国产高清三级在线| 精品一区在线观看国产| 一个人看视频在线观看www免费| 一区二区三区四区激情视频| 精品国产一区二区三区久久久樱花 | 高清毛片免费看| 国产精品一及| 免费在线观看成人毛片| 3wmmmm亚洲av在线观看| 国产色爽女视频免费观看| 亚洲内射少妇av| 久久亚洲国产成人精品v| 一区二区三区四区激情视频| 欧美日韩综合久久久久久| 久久国内精品自在自线图片| 午夜日本视频在线| 久热久热在线精品观看| 日韩大片免费观看网站| 亚洲人成网站在线观看播放| 校园人妻丝袜中文字幕| 熟女电影av网| 亚洲精品第二区| 深夜a级毛片| 亚洲美女搞黄在线观看| 大片电影免费在线观看免费| 高清视频免费观看一区二区| 好男人视频免费观看在线| 日本-黄色视频高清免费观看| 最近2019中文字幕mv第一页| 日韩中字成人| 国产日韩欧美在线精品| 成人漫画全彩无遮挡| 国产精品.久久久| 美女cb高潮喷水在线观看| 日韩av在线免费看完整版不卡| 国产一级毛片在线| 一本—道久久a久久精品蜜桃钙片| 免费人成在线观看视频色| 美女xxoo啪啪120秒动态图| 国产黄片美女视频| 亚洲四区av| 天天躁夜夜躁狠狠久久av| 干丝袜人妻中文字幕| 久久99热这里只有精品18| 国产免费又黄又爽又色| 青青草视频在线视频观看| av福利片在线观看| 亚洲人与动物交配视频| 日本猛色少妇xxxxx猛交久久| 国产成人午夜福利电影在线观看| 在线观看免费高清a一片| 国产免费福利视频在线观看| 妹子高潮喷水视频| 十分钟在线观看高清视频www | 色综合色国产| 久久久久网色| 亚洲天堂av无毛| 最近最新中文字幕大全电影3| 一级毛片电影观看| 性高湖久久久久久久久免费观看| 成年人午夜在线观看视频| 欧美精品一区二区免费开放| 国产亚洲av片在线观看秒播厂| 日本猛色少妇xxxxx猛交久久| 精品少妇黑人巨大在线播放| 国语对白做爰xxxⅹ性视频网站| 午夜福利高清视频| 国产欧美日韩一区二区三区在线 | 日本vs欧美在线观看视频 | 亚洲精品久久久久久婷婷小说| 狠狠精品人妻久久久久久综合| 亚洲一级一片aⅴ在线观看| 成年女人在线观看亚洲视频| 国产精品三级大全| 久久久精品免费免费高清| 久久av网站| 各种免费的搞黄视频| 久久精品国产a三级三级三级| 日韩中字成人| 如何舔出高潮| 国产精品无大码| 国产69精品久久久久777片| 国产精品国产三级专区第一集| 99热全是精品| 国产黄频视频在线观看| 人妻系列 视频| 亚洲精品视频女| 国产精品国产三级国产专区5o| 亚洲精品视频女| 麻豆精品久久久久久蜜桃| 2022亚洲国产成人精品| 成年免费大片在线观看| 深夜a级毛片| 在线亚洲精品国产二区图片欧美 | 尤物成人国产欧美一区二区三区| 亚洲综合色惰| tube8黄色片| av又黄又爽大尺度在线免费看| 精品一品国产午夜福利视频| 久久ye,这里只有精品| 91精品一卡2卡3卡4卡| 91精品国产国语对白视频| 国产爱豆传媒在线观看| 高清毛片免费看| 丰满乱子伦码专区| 色网站视频免费| 免费黄色在线免费观看| 亚洲综合色惰| 人妻一区二区av| 我要看黄色一级片免费的| 亚洲美女黄色视频免费看| 99热这里只有是精品50| av国产精品久久久久影院| 纵有疾风起免费观看全集完整版| 狠狠精品人妻久久久久久综合| 一级a做视频免费观看| 久久久久国产网址| 水蜜桃什么品种好| 菩萨蛮人人尽说江南好唐韦庄| 国产成人午夜福利电影在线观看| 午夜老司机福利剧场| 日产精品乱码卡一卡2卡三| 丝瓜视频免费看黄片| 丰满乱子伦码专区| 九九在线视频观看精品| 亚洲av综合色区一区| 亚洲综合色惰| 一级毛片aaaaaa免费看小| 一级二级三级毛片免费看| 看免费成人av毛片| 夜夜骑夜夜射夜夜干| 国产一级毛片在线| 亚洲成人中文字幕在线播放| 蜜桃亚洲精品一区二区三区| 美女国产视频在线观看| 免费人成在线观看视频色| 欧美少妇被猛烈插入视频| 国产又色又爽无遮挡免| 日本爱情动作片www.在线观看| 黄色日韩在线| 男人和女人高潮做爰伦理| 只有这里有精品99| 在线亚洲精品国产二区图片欧美 | 18禁动态无遮挡网站| 视频区图区小说| 丝瓜视频免费看黄片| 日韩中文字幕视频在线看片 | a级毛片免费高清观看在线播放| 97超碰精品成人国产| 日本爱情动作片www.在线观看| 一个人看的www免费观看视频| 免费观看的影片在线观看| 欧美精品人与动牲交sv欧美| 韩国高清视频一区二区三区| 亚洲成人中文字幕在线播放| 尤物成人国产欧美一区二区三区| 国产成人精品婷婷| 国产在线男女| 久久青草综合色| 精品国产一区二区三区久久久樱花 | 日韩欧美精品免费久久| 91久久精品电影网| 亚洲av综合色区一区| 精品一区二区免费观看| 久久精品熟女亚洲av麻豆精品| 欧美一区二区亚洲| 波野结衣二区三区在线| 在线免费十八禁| 深夜a级毛片| 精品人妻一区二区三区麻豆| 大码成人一级视频| 亚洲国产精品999| 卡戴珊不雅视频在线播放| 黑丝袜美女国产一区| av女优亚洲男人天堂| 街头女战士在线观看网站| 成年av动漫网址| 亚洲内射少妇av| 国产精品.久久久| 熟女人妻精品中文字幕| 精品国产乱码久久久久久小说| 老师上课跳d突然被开到最大视频| 日本猛色少妇xxxxx猛交久久| 大陆偷拍与自拍| 国产精品蜜桃在线观看| 舔av片在线|