• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Oxidative cyclopalladation triggers the hydroalkylation of alkynes?

    2023-11-18 09:27:28KngboZhongShihnLiuXioqinHeHoNiWeiLiWentingGongChunhuiShnZhungZhoYuLnRuopengBi
    Chinese Chemical Letters 2023年10期

    Kngbo Zhong, Shihn Liu, Xioqin He, Ho Ni, Wei Li, Wenting Gong,Chunhui Shn, Zhung Zho, Yu Ln,b,*, Ruopeng Bi,*

    a School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing 400030, China

    b College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, China

    c College of Chemistry, Chongqing Normal University, Chongqing 401331, China

    Keywords:Pd catalysis Alkynes activation Hydrazones activation Oxidation state DFT

    ABSTRACT This report describes the oxidative cyclopalladation activation of a C≡C bond during the Pd-catalyzed hydroalkylation of alkynes and analyzes potential reaction pathways based on density functional theory calculations.The more favorable pathway in-volves an oxidative cyclopalladation to generate a palladacyclopropene intermediate, which is rarely examined in Pd-catalyzed alkyne transformations.The reaction pathway proposed herein is kinetically favorable relative to the commonly proposed alkyne insertion mode.Furthermore, the Laplacians of the electron density, interaction region indicators, Mayer bond orders, and localized orbital bonding are evaluated to determine the reaction processes and characterize the key intermediates.Theoretical calculations indicate covalent bonding between a Pd(II) center and the two C-atoms in three-membered palladacycle species.Finally, electrostatic potential analysis reveals that the regioselectivity is governed by the charge distribution on the palladacycle moiety during the protonation step.

    Alkynes are key building blocks in organic synthesis because they are widely used to obtain valuable compounds, including alkanes, alkenes, ketones, and cyclic hydrocarbons, which are prevalent in pharmaceuticals, natural products, optical materials,and pesticides [1–10].Owing to the highly reactive nature of C≡C bonds, alkynes can easily react with transition metal catalysts (e.g.,Pd, Rh, Cu, Ag, and Au, among others), where the metals often serve asπ-acids [11–22,3,23].Numerous important synthetic methods relating to alkyne transformations (e.g., Fujiwara Reaction,Pauson-Khand Reaction, and Larock Reaction) have been developed[24–28].Over the past few decades, the metal-catalyzed transformation of alkynes to multi-substituted alkenes has emerged as a direct and efficient strategy for producing multi-functionalized alkenes [29–35].Targeted multi-substituted alkenes represent one of the most useful building blocks for organic synthesis, owing to their abundance and versatile reactivity [36–41].Scheme 1 summarizes the established reaction pathways for converting internal alkynes to multi-substituted alkenes.When an M–H or M–Nu intermediate is generated, insertion of the alkyne C≡C bond into the M–H/M–Nu bond could yield vinyl-metal intermediates, where the intermediates, where the two substituents (R1 and R2) from the alkyne typically adopt cis-positions in the product alkene (Scheme 1, Mode A) [42–47].Alternatively, alkynes could act asπ-ligands coordinating to the transition metal centers; in this case, the C≡C bond would be activated, leading to intermolecular nucleometallation, which generates vinyl-metal intermediates.The R1 and R2 groups following this reaction would likely adopt trans-positions in the product (Scheme 1, Mode B) [48–52].Alkyne transformation reactions catalyzed by Ti, Zr, Ta, and other early transition metals typically involve an oxidative cyclometallation of the C≡C bond with the metal center to form three- or five-membered ring metallacycle intermediates [53–60].However, although there are limited reports describing oxidative cyclopalladationviafivemembered palladacycle intermediates [61–65], even fewer examples involving three-membered palladacycles have been reported[66].Thus, herein we propose a novel alkyne activation model,whereby oxidative cyclopalladation of a C≡C bond yields an active three-membered palladacycle intermediate.Subsequent electrophilic attack or hydrogen atom transfer can generate multisubstituted alkenes (Scheme 1, Mode C).

    To better understand this reaction, we focused on the Pdcatalyzed hydroalkylation of alkynes recently reported by Li and co-workers to validate our proposal (Scheme 2) [67].In this work,hydrazones were selected as the hydroalkylation partners, and trisubstituted alkenes were obtained in moderate-to-high yield,with high regioselectivity.The present study employed density functional theory (DFT) to investigate the potential mechanisms of the Pd-catalyzed hydroakylation reaction, while focusing on the mode of activation and the transformation of alkynes.

    Scheme 1.Reaction modes for the conversion of alkynes to multi-substituted alkenes.

    Scheme 2.Pd-catalyzed hydroalkylation of alkynes with hydrazones.

    All of the DFT calculations were performed using the Gaussian 16 [68] series of programs in the solution phase with the solvationmodel density (SMD) [69–71] model (solvent=1,4-dioxane).The B3LYP-D3 functional [72–75] was applied with the standard def2-SVP [76–78] basis set for all atoms to conduct geometry optimizations in 1,4-dioxane.Harmonic vibrational frequency calculations were performed for all stationary points to (i) determine whether they corresponded to local minima or transition state structures and (ii) derive thermochemical corrections for the enthalpies and free energies.The M06 [79–82] functional proposed by Truhlar and co-workers was used with the def2-TZVP [76–78] basis set for all atoms to calculate the single-point energies in 1,4-dioxane, thus providing accurate energy information.The solvent effects were considered based on single-point calculations of the solution-phase stationary points simulated with the SMD continuum model.The Gibbs free energies (ΔGM06(1,4-dioxane)) reported in this paper were obtained using Eq.1,

    Scheme 3.Competitive Pd-catalyzed reaction pathways: acetylene activation and hydrazone activation.

    whereΔG(correction)is the thermochemical correction for the Gibbs free energy calculated at the B3LYP-D3/def2-SVP level in the solution phase (solvent=1,4-dioxane), andΔEM06(1,4-dioxane)is the single-point energy calculated at the M06/def2-TZVP level in 1,4-dioxane relative to stationary points in the 1,4-dioxane solvent.TheΔGM06(1,4-dioxane)values are used to discuss the energies.The Mayer bond order [83,84], interaction region indicator (IRI)[85], Laplacian of the electron density [86–88], and localized orbital bonding analysis (LOBA) [89] were calculated at the B3LYPD3/def2-SVP level in 1,4-dioxane.The electrostatic potential was also computed using the highly effective algorithm of the Multiwfn program [90].

    Fig.1.Potential reaction pathways for Pd-catalyzed hydroalkylation of alkynes with hydrazones.

    Fig.2.Free energy profile and selected transition state (ts) and intermediate structures along Path A for Pd-catalyzed hydroalkylation of alkynes with hydrazones.Energies are reported in kcal/mol and represent the relative free energies calculated with the DFT/M06 method in 1,4-dioxane; bond distances are reported in angstroms.

    Hydrazones served as the hydroalkylation partners in the present work.Existing reports generally propose that the catalytic cycle begins with hydrazone activation by Pd(0).Therefore, there is a competition between acetylene activation and hydrazones activation in the catalytic cycle.As shown in Scheme 3, the oxidative addition of the hydrazone N–H moiety to the Pd(0) center could generate a Pd(II)-hydrazinide species, which facilitates subsequent denitrogenation and C–C bond formation.Alternatively, acetylene activation by Pd(0)viaoxidative cyclopalladation could generate a metallacyclopropene species, which could also convert to the desired product.Therefore, there is a competition between the hydrazone and acetylene activation pathways.Two catalytic cycles involving these proposes are illustrated in Fig.1.All pathways begin with the Pd(0) speciesI, and in the first step, the hydrazone coordinates to the Pd center to yield intermediateIII.In Path A (proposed by Liet al.), hydrazine N–H oxidative addition occurs to yield Pd(II)-hydrazinideV.Subsequent alkyne insertion affords the six-membered palladacycleVI, which can undergo baseassisted denitrogenation to form the four-membered palladacycle intermediateVII.Protonation ofVIIgenerates the alkenyl Pd(II) intermediateVIII.Finally, reductive elimination releases the desired Z-alkeneP, and ligand exchange with phosphine oxide regenerates the Pd(0) speciesI.In Path B, oxidative cyclometallation of alkyneIVwith the Pd center generates palladacyclopropene intermediateIX.Subsequent base-assisted isomerizationviaproton transfer forms hydrazone-coordinated Pd(II) intermediateX, which then undergoes denitrogenation to generate an alkyl-bonded Pd(II)speciesXI.Protonation ofXIopens the palladacyclopropene ring to afford the vinyl Pd(II) intermediateXII, and finally, reductive elimination releases the desired Z-alkene P and regenerates the Pd(0)catalyst.

    Fig.3.Free energy profile and selected transition state and intermediate structures along Path B for the Pd-catalyzed hydroalkylation of alkynes with hydrazones.The energies are reported in kcal/mol and represent the relative free energies calculated with the DFT/M06 method in 1,4-dioxane; The bond distances are reported in angstroms.

    We first considered Path A, which was proposed following the experimental studies.As shown in Fig.2, Pd(PCy3)(OPCy3)1was chosen as the relative zero point for the free energy profiles (further details in Supporting information).In Path A, the coordination of hydrazone2to the Pd(0) species generates intermediate3through an endergonic process (+6.7 kcal/mol).Oxidative addition of the N–H bond to the Pd center then generates Pd(II)-hydrazinide intermediate5viatransition statets-4, which endergonic by an additional 12.3 kcal/mol; the energy barrier for this step is 20.3 kcal/mol.Subsequent ligand exchange with 1,2-diphenylethyne6forms intermediate7and releases a phosphine oxide species in another endergonic process (+1.8 kcal/mol).Conjugative insertion of the alkyneviatransition statets-8has an energy barrier of 22.7 kcal/mol, and the generation of vinyl Pd intermediate9is endergonic by 1.3 kcal/mol.Geometric optimization of transition statets-8revealed Pd-C3 and C1-C2 bond lengths of 2.33 and 2.34 ?A, respectively.Deprotonation of intermediate9by the base (1,8-diazabicyclo[5.4.0]undec–7-ene; DBU)viatransition statets-10leads to synergistic denitrogenation.The calculated free energy barrier is 9.0 kcal/mol, and this step is associated with a free energy release of 33.6 kcal/mol.Ints-10, the Pd-N1,C1-N2, H-N1, and H-N3 bond distances are 2.06, 1.53, 1.50, and 1.14 ?A, respectively, which verifies the synergistic process.Subsequent protonation of11occursviatransition statets-12, overcoming an energy barrier of 20.7 kcal/mol to afford vinyl Pd-hydride intermediate13, which releases 15.0 kcal/mol of free energy.Rapid reductive elimination of13yields the final Z-alkene15viatransition statets-14, with concomitant regeneration of the active Pd(0)species1; this step is exergonic by 32.8 kcal/mol.The calculated overall activation free energy for Path A is as high as 43.5 kcal/mol,indicating that this reaction pathway is kinetically unfavorable.

    Next, an alternative pathway was analyzed based on our proposal, where the Pd(II) species acts as a good Lewis acid during hydrazine activation.As shown in Fig.3 (Path B), hydrazone2coordinates with Pd to form intermediate3, and then, 1,2-diphenylethyne6performs ligand exchange with phosphine oxide in3to produce intermediate16.Oxidative cyclization of the alkyneπbond to the Pd center in intermediate16forms the three-membered pallada(II)cycle intermediate17.This step is associated with a free energy absorption of 1.3 kcal/mol, and the geometry of the Pd changes to square planar.Moreover, in intermediate16, the Pd-C1,Pd-C2, and C1-C2 bond lengths are 3.51, 3.42, and 1.22 ?A, respectively; however, those bond lengths in intermediate17are 2.07,2.06, and 1.29 ?A, respectively.Following base-assisted deprotonation and re-protonationviatransition statests-18andts-20, respectively, the proton on the hydrazonic N-atom could transfer to the benzylic C-atom of intermediate17; thereby achieving isomerization of the coordinated hydrazone to alkylenehydrazine in pallada(II)cycle21.The calculated energy barrier of proton transfer is 22.0 kcal/mol.Subsequent base-assisted denitrogenationviatransition statets-22generates benzylic pallada(II)cycle23with an energy barrier of 16.1 kcal/mol, and this step is exergonic by 24.4 kcal/mol.In intermediate23, the Pd(II) center has a lone pair of electrons in the axial direction [91,92].There should be a weak interaction between the B-H+and the Pd dz2lone pair.Protonation of the carbon atom on the three-membered pallada(II)cycle moietyviatransition statets-24generates vinyl Pd(II) intermediate25in an exergonic process (–25.9 kcal/mol).The calculated energy barrier for this step is 13.5 kcal/mol.Finally, reductive eliminationviatransition statets-26affords the Z-alkene product15(exergonic by 24.3 kcal/mol) and regenerates the active Pd(0) catalyst1.The calculated overall activation free energy of Path B is only 27.4 kcal/mol, which is 16.1 kcal/mol lower than that of Path A.These results confirm that our proposed mechanism is feasible.

    Fig.4.(a) Laplacian of electron density for intermediates 16 and 17 plotted on the C1-Pd-C2 plane; (b) Three-dimensional structures and plane structures for IRI analysis of intermediates 16 and 17 on the C1-Pd-C2 plane (blue=notable attraction; green=van der Waals interaction; red=notable repulsion); (c) Bond lengths (?A), Mayer bond orders, and LOBA for intermediates 16 and 17.

    These theoretical calculations indicate that the oxidative cyclization step in Path B is the key process for alkyne activation, and an accompanying change in the oxidation state of the Pd center is proposed.To verify the oxidation state change during oxidative cyclization, the Laplacians of the electron density (Fig.4a), the IRI(Fig.4b), the Mayer bond order, and the localized orbital bonding(Fig.4c) of intermediates16and17were analyzed.The Laplacians of the electron density on the plane defined by C1, C2, and Pd in intermediates16and17were plotted using AIM theory.In16, the bond critical point (BCP) was identified between Pd and the C1≡C2 triple bond, whereas in17, two BCPs were detected (between Pd–C1 and Pd–C2); therefore, two new covalent bonds were formed in intermediate17(between Pd–C1 and Pd–C2).The IRI analysis similarly indicated that the Pd–C1 and Pd–C2 interactions in17were strongly attractive (dark blue area in Fig.4b), analogous to other covalent bonds.However, Pd–C1 and Pd–C2 were only weakly interacting (light green area in Fig.4b) in intermediate16, which indicated non-bonding interactions.These results support the coordination of the unsaturated C≡C bond to the Pd center in16and covalent bonding between Pd–C1 and Pd-C2 in17.The bonding between C1 and C2 was also considered.As shown in Fig.4c, the calculated Mayer bond orders of Pd–C1, Pd–C2, and C1–C2 in intermediate16were 0.02, 0.02 and 2.28, respectively; in contrast,those values in intermediate17were 0.64, 0.71, and 1.87, respectively.The results reveal that the C1–C2 bond in intermediate16is likely to be a triple bond, whereas the C1–C2 bond in intermediate17is more like a double bond.Moreover, localized orbital bonding analysis (LOBA) indicated that the oxidation states of Pd in intermediates16and17were 0 and +2, respectively.All of these analytical results strongly support the oxidative cyclization step, as well as the change in Pd oxidation state.The results revealed that the three-membered pallada(II)cycle species plays a role of Lewis acid to assist deprotonation and re-protonation (proton transfer)of hydrazones, which is an essential precondition for denitrogenation.By this way, the coordinated hydrazone can be transformed into alkylenehydrazine, which participates in the subsequent step.Therefore, generation of pallada(II)cycle is required at the beginning of the catalytic cycle.

    In the experimental study, a wide range of non-symmetrical alkynes was examined, and high regioselectivities were observed(generally greater than 95:5).Based on the calculated free energy profiles of the potential reaction pathways, we concluded that the regioselectivity is governed by the protonation step when a nonsymmetrical alkyne is employed as the substrate,i.e., protonation at C1 and C2 could afford the respective regioisomers.Our computational results (Fig 5a, further details in Supporting Information)indicate that the energy barrier of protonation at C2 of the benzylic pallada(II)cycle23′viatransition statets-24′ais 1.6 kcal/mol lower than that at C1viatransition statets-24′b, thus, the generation of alkene product15′ais more favorable.The calculated regioselectivity ratio (rr) is 90:10, which is consistent with the experimentally observed regioselectivity.To further investigate the origin of this regioselectivity, the electrostatic potential intermolecular penetration diagrams of the protonated transition statests-24′aandts-24′bwere analyzed (Fig.5b).In transition statets-24′a, C2 in the pallada(II)cycle moiety has a positive surface potential, while the DBUH+moiety has negative surface potentials, indicating that the protonation of C2 is preferential.In contrast, both the C1 and the DBUH+moieties in transition statets-24′bhave negative surface potentials, leading to electrostatic repulsion, which is unfavorable for C1 protonation.Therefore, electrostatic potential analysis suggested that the regioselectivity of the product is controlled by the charge distribution on the pallada(II)cycle, which governs the favorability of C2 protonation.This conclusion is consistent with the DFT computations, as well as the experimental results.

    Fig.5.(a) Theoretical regioselectivities for the Pd-catalyzed hydroalkylation of nonsymmetrical alkynes with hydrazones (bond distances reported in angstroms).(b)Electrostatic potential inter-molecular penetration diagrams of the protonated transition states, ts-24′a and ts-24′b.

    In this work, a C≡C bond’s oxidative cyclopalladation activation during the Pd-catalyzed hydroalkylation of alkynes was proposed and investigated by DFT calculations at the M06 level of theory.This novel pathway involves five main steps: (1) oxidative cyclopalladation with the alkyne and the Pd center to generate a palladacyclopropene; (2) base-assisted proton transfer to form alkylenehydrazine-coordinated Pd(II); (3) deprotonation-driven denitrogenation to form a benzylic Pd(II) species; (4) protonation-mediated ring-opening of the palladacyclopropene to generate a vinyl Pd(II)intermediate; and (5) reductive elimination to release the Z-alkene product.The internal alkyne plays the role of an atypical oxidant for Pd(0) oxidative cyclization.The previously proposed C≡C bond insertion for the alkyne transformation is kinetically unfavorable.The Laplacians of the electron density, IRI analysis, Mayer bond orders, and LOBA revealed the covalent bonding between the Pd(II) and the C-atoms in three-membered palladacycle intermediate species.Electrostatic potential analysis indicated that the regioselectivity of the reaction process is controlled by the charge distribution on the pallada(II)cycle during the protonation step.The results presented herein contribute to a better understanding of transition metal-catalyzed alkyne transformations and provide a practical theoretical guide for further experimental investigation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Nos.22003006, 21822303, 22103008, 22271034).Project supported by graduate research and innovation foundation of Chongqing, China (No.CYB20045).We are thankful for a project (No.2018CDXZ0002) supported by the Fundamental Research Funds for the Central Universities (Chongqing University).We acknowledge Beijing PARATERA Tech CO, for providing HPC resources that have contributed to the research results reported within this paper.URL:http://cloud.paratera.com.

    青春草国产在线视频 | 精品久久国产蜜桃| 男人和女人高潮做爰伦理| 欧美高清性xxxxhd video| 色5月婷婷丁香| ponron亚洲| 我的女老师完整版在线观看| 春色校园在线视频观看| 蜜桃久久精品国产亚洲av| 亚洲在久久综合| ponron亚洲| 欧美精品国产亚洲| 午夜爱爱视频在线播放| 日韩一区二区视频免费看| 在线观看66精品国产| 欧美日韩精品成人综合77777| 久久综合国产亚洲精品| 久久草成人影院| 中文资源天堂在线| 欧美又色又爽又黄视频| 免费看美女性在线毛片视频| 国产v大片淫在线免费观看| 久久久欧美国产精品| 日本黄大片高清| 午夜a级毛片| 一级二级三级毛片免费看| 麻豆国产av国片精品| 国产色爽女视频免费观看| 熟女电影av网| 天堂√8在线中文| 国产亚洲av嫩草精品影院| 国产大屁股一区二区在线视频| 久久久久久久久久久免费av| 色吧在线观看| 久久久国产成人免费| 一级av片app| 亚洲精品乱码久久久v下载方式| 久久人妻av系列| 十八禁国产超污无遮挡网站| 久久久久久久亚洲中文字幕| 日韩一区二区视频免费看| 伊人久久精品亚洲午夜| 国产精品久久久久久久电影| 亚洲精品乱码久久久久久按摩| 只有这里有精品99| 三级国产精品欧美在线观看| 精品熟女少妇av免费看| 国产毛片a区久久久久| av福利片在线观看| 久久欧美精品欧美久久欧美| 久久久成人免费电影| or卡值多少钱| 啦啦啦啦在线视频资源| www.av在线官网国产| 日本色播在线视频| 好男人视频免费观看在线| 蜜桃久久精品国产亚洲av| 国产白丝娇喘喷水9色精品| 欧美bdsm另类| 色播亚洲综合网| 亚洲人成网站在线播| 国产精品.久久久| 欧美bdsm另类| 午夜福利在线观看吧| 亚洲不卡免费看| 婷婷精品国产亚洲av| 热99在线观看视频| 男插女下体视频免费在线播放| 亚洲天堂国产精品一区在线| av在线蜜桃| 亚洲熟妇中文字幕五十中出| 久久精品国产亚洲网站| 少妇熟女aⅴ在线视频| 精品久久久久久久久亚洲| 久久6这里有精品| 午夜精品国产一区二区电影 | 中文字幕熟女人妻在线| 晚上一个人看的免费电影| 天天一区二区日本电影三级| 91麻豆精品激情在线观看国产| 午夜福利在线观看吧| 中文在线观看免费www的网站| 女同久久另类99精品国产91| 成年女人永久免费观看视频| 国产麻豆成人av免费视频| 国产在线男女| 亚洲自拍偷在线| 少妇裸体淫交视频免费看高清| 国产单亲对白刺激| 国语自产精品视频在线第100页| 久久这里只有精品中国| 99久久精品国产国产毛片| 十八禁国产超污无遮挡网站| 男的添女的下面高潮视频| 日韩强制内射视频| 亚洲精品乱码久久久v下载方式| 色综合色国产| 亚洲欧美精品专区久久| 精品国产三级普通话版| 又粗又硬又长又爽又黄的视频 | 性色avwww在线观看| 51国产日韩欧美| 直男gayav资源| 18+在线观看网站| 特大巨黑吊av在线直播| 一本精品99久久精品77| 尾随美女入室| 日本黄色视频三级网站网址| 国产 一区精品| 国产成人福利小说| 午夜亚洲福利在线播放| 亚洲四区av| 中文在线观看免费www的网站| 亚洲中文字幕一区二区三区有码在线看| 天堂√8在线中文| 中文字幕精品亚洲无线码一区| 国产亚洲精品av在线| 久久国产乱子免费精品| 免费观看人在逋| 中文字幕精品亚洲无线码一区| 青春草视频在线免费观看| 国产黄片美女视频| av天堂在线播放| 高清日韩中文字幕在线| 黄色视频,在线免费观看| 给我免费播放毛片高清在线观看| 欧美丝袜亚洲另类| 午夜久久久久精精品| 国产伦一二天堂av在线观看| 国产精品久久久久久久电影| 精品人妻视频免费看| 国产一区二区在线av高清观看| 亚洲五月天丁香| 一级av片app| 亚洲av二区三区四区| 美女黄网站色视频| 人妻少妇偷人精品九色| 国内精品一区二区在线观看| 美女黄网站色视频| 久久精品国产99精品国产亚洲性色| 亚洲经典国产精华液单| 日韩强制内射视频| 国产 一区 欧美 日韩| 国产精品综合久久久久久久免费| 丝袜美腿在线中文| 欧美潮喷喷水| 日韩精品有码人妻一区| 欧美色视频一区免费| 午夜免费男女啪啪视频观看| www.色视频.com| 99在线视频只有这里精品首页| 日韩在线高清观看一区二区三区| 久久久久久伊人网av| 能在线免费观看的黄片| 国产精品1区2区在线观看.| 国产一区亚洲一区在线观看| 免费看av在线观看网站| 熟女电影av网| 国产成人精品婷婷| 亚洲va在线va天堂va国产| 免费看日本二区| 成人一区二区视频在线观看| 成人永久免费在线观看视频| 亚洲成人av在线免费| 日韩欧美 国产精品| 91麻豆精品激情在线观看国产| 国产高清有码在线观看视频| 韩国av在线不卡| 欧美潮喷喷水| 免费观看在线日韩| 亚洲欧美成人综合另类久久久 | 日韩av在线大香蕉| 麻豆精品久久久久久蜜桃| 老女人水多毛片| 亚洲国产高清在线一区二区三| 国产精品国产三级国产av玫瑰| 少妇裸体淫交视频免费看高清| av女优亚洲男人天堂| 欧美激情国产日韩精品一区| 五月伊人婷婷丁香| videossex国产| 少妇的逼水好多| 26uuu在线亚洲综合色| 亚洲最大成人手机在线| 日韩,欧美,国产一区二区三区 | 一本一本综合久久| 大香蕉久久网| 九色成人免费人妻av| 男人狂女人下面高潮的视频| 我的老师免费观看完整版| 国产精品女同一区二区软件| 亚洲av成人精品一区久久| 国产亚洲5aaaaa淫片| 欧美成人一区二区免费高清观看| 欧美高清成人免费视频www| 最新中文字幕久久久久| 午夜激情福利司机影院| 亚洲经典国产精华液单| 免费大片18禁| 久久这里有精品视频免费| 18禁黄网站禁片免费观看直播| 久久九九热精品免费| 亚洲性久久影院| 丰满人妻一区二区三区视频av| 国产精品美女特级片免费视频播放器| 九九在线视频观看精品| 91在线精品国自产拍蜜月| 国内精品久久久久精免费| 少妇人妻一区二区三区视频| 亚洲成人久久爱视频| 伦理电影大哥的女人| 麻豆国产97在线/欧美| 成人亚洲精品av一区二区| 精品一区二区三区人妻视频| 一区二区三区免费毛片| 天天一区二区日本电影三级| a级毛片a级免费在线| 亚洲精品乱码久久久v下载方式| 大型黄色视频在线免费观看| 午夜免费激情av| 麻豆成人av视频| 国产精品人妻久久久影院| 成人二区视频| 男人舔奶头视频| videossex国产| 日韩成人伦理影院| 国产精品一区二区三区四区久久| 高清毛片免费看| 亚洲精品乱码久久久久久按摩| videossex国产| 国产在线精品亚洲第一网站| 人妻夜夜爽99麻豆av| 天堂√8在线中文| 精品欧美国产一区二区三| 午夜久久久久精精品| 三级男女做爰猛烈吃奶摸视频| 看非洲黑人一级黄片| 国产高清有码在线观看视频| 欧美成人精品欧美一级黄| 免费看光身美女| 亚洲成人中文字幕在线播放| 日韩成人av中文字幕在线观看| 成人二区视频| 亚洲欧美日韩东京热| 国产一区二区三区av在线 | 国产伦理片在线播放av一区 | 亚洲七黄色美女视频| 中文字幕制服av| 一级黄色大片毛片| 69av精品久久久久久| 少妇的逼水好多| 国产精品免费一区二区三区在线| 精品久久久久久成人av| 村上凉子中文字幕在线| 最近的中文字幕免费完整| 插逼视频在线观看| 欧美成人a在线观看| 亚洲成av人片在线播放无| 久久中文看片网| 又爽又黄无遮挡网站| 成年女人看的毛片在线观看| 最后的刺客免费高清国语| 免费看光身美女| 97在线视频观看| 国产 一区 欧美 日韩| 五月伊人婷婷丁香| 婷婷色av中文字幕| 欧美又色又爽又黄视频| 国产美女午夜福利| 99久久久亚洲精品蜜臀av| 99久久无色码亚洲精品果冻| 成人高潮视频无遮挡免费网站| 国产精品日韩av在线免费观看| 国产av一区在线观看免费| 国产真实伦视频高清在线观看| 人妻少妇偷人精品九色| av在线蜜桃| 精品久久久久久久末码| 看免费成人av毛片| 校园人妻丝袜中文字幕| 色5月婷婷丁香| 麻豆国产97在线/欧美| 国产综合懂色| 精品人妻视频免费看| 欧美xxxx性猛交bbbb| 亚洲中文字幕日韩| 99riav亚洲国产免费| 成人高潮视频无遮挡免费网站| 亚洲精品国产成人久久av| 亚洲在线观看片| 国产蜜桃级精品一区二区三区| 又爽又黄无遮挡网站| 欧美+亚洲+日韩+国产| 男人和女人高潮做爰伦理| 婷婷精品国产亚洲av| 校园人妻丝袜中文字幕| 久久久久久久久久成人| 激情 狠狠 欧美| 日韩视频在线欧美| 国产精品国产三级国产av玫瑰| 免费黄网站久久成人精品| 人人妻人人澡欧美一区二区| 国产日本99.免费观看| 12—13女人毛片做爰片一| 午夜免费激情av| 亚洲av二区三区四区| 精品免费久久久久久久清纯| 中文字幕av在线有码专区| eeuss影院久久| 欧美成人一区二区免费高清观看| 国产精品电影一区二区三区| 亚洲激情五月婷婷啪啪| 成年女人永久免费观看视频| 久久精品国产亚洲网站| 久久久久国产网址| 欧美bdsm另类| 国产亚洲精品久久久com| 亚洲人成网站在线观看播放| 亚洲精品日韩av片在线观看| 国产成人a∨麻豆精品| 日本一本二区三区精品| 中文字幕av成人在线电影| 最近中文字幕高清免费大全6| 久久精品国产鲁丝片午夜精品| 亚洲中文字幕一区二区三区有码在线看| 久久精品综合一区二区三区| 99久国产av精品| 亚洲中文字幕日韩| 国产精品女同一区二区软件| 国产久久久一区二区三区| 国产av在哪里看| 亚洲成人久久爱视频| 国产精品一区二区性色av| 美女cb高潮喷水在线观看| 小说图片视频综合网站| 一级毛片我不卡| .国产精品久久| 99久久无色码亚洲精品果冻| 人人妻人人澡人人爽人人夜夜 | 3wmmmm亚洲av在线观看| 晚上一个人看的免费电影| 91aial.com中文字幕在线观看| 少妇熟女欧美另类| 日本与韩国留学比较| 韩国av在线不卡| 亚洲精品自拍成人| 青春草国产在线视频 | 久久久久网色| 欧美一区二区精品小视频在线| 老司机影院成人| 亚洲国产高清在线一区二区三| 能在线免费看毛片的网站| 免费av不卡在线播放| 毛片一级片免费看久久久久| 国产老妇女一区| 午夜福利在线观看吧| 人人妻人人澡人人爽人人夜夜 | 91麻豆精品激情在线观看国产| 99久久人妻综合| 在线观看一区二区三区| 久久久久久久久久久丰满| 成人国产麻豆网| 成年av动漫网址| 最新中文字幕久久久久| 尤物成人国产欧美一区二区三区| 日日撸夜夜添| 黄色欧美视频在线观看| 麻豆国产97在线/欧美| 啦啦啦韩国在线观看视频| 天堂√8在线中文| 免费观看精品视频网站| 一级毛片电影观看 | 白带黄色成豆腐渣| 中国美女看黄片| 免费av不卡在线播放| 一区二区三区免费毛片| 成年女人看的毛片在线观看| 国产人妻一区二区三区在| 12—13女人毛片做爰片一| 午夜爱爱视频在线播放| 日本五十路高清| 国产视频内射| 五月伊人婷婷丁香| 日本在线视频免费播放| 久久久久久久久久黄片| 成人综合一区亚洲| 男女边吃奶边做爰视频| 欧美日本视频| а√天堂www在线а√下载| 久久鲁丝午夜福利片| 亚洲欧美日韩卡通动漫| 亚洲成人av在线免费| 天天躁日日操中文字幕| 国产伦一二天堂av在线观看| 亚洲国产欧美在线一区| 晚上一个人看的免费电影| 国产乱人视频| 两个人视频免费观看高清| 国产精品野战在线观看| 久久精品夜夜夜夜夜久久蜜豆| 能在线免费观看的黄片| 人人妻人人澡人人爽人人夜夜 | 国产成人a区在线观看| 成人三级黄色视频| 久久久国产成人免费| 老熟妇乱子伦视频在线观看| 久久久久久国产a免费观看| 人妻久久中文字幕网| 中文字幕av成人在线电影| 中国美女看黄片| 麻豆成人av视频| 亚洲四区av| 国产成人freesex在线| 变态另类丝袜制服| 欧美高清成人免费视频www| 国产精品女同一区二区软件| 免费无遮挡裸体视频| 欧美zozozo另类| 在线观看66精品国产| 99久久精品国产国产毛片| 悠悠久久av| 99热6这里只有精品| 亚洲自拍偷在线| 成人亚洲精品av一区二区| 菩萨蛮人人尽说江南好唐韦庄 | kizo精华| 嫩草影院新地址| 少妇高潮的动态图| 禁无遮挡网站| 亚洲精品日韩在线中文字幕 | 日日撸夜夜添| 国产欧美日韩精品一区二区| 我要搜黄色片| 夫妻性生交免费视频一级片| 国内精品宾馆在线| 99国产极品粉嫩在线观看| 啦啦啦啦在线视频资源| 婷婷六月久久综合丁香| 日韩视频在线欧美| 黄色视频,在线免费观看| 久久鲁丝午夜福利片| 欧美xxxx黑人xx丫x性爽| 亚洲欧美精品自产自拍| 久久久久性生活片| 国内揄拍国产精品人妻在线| 亚洲在线观看片| 成人特级av手机在线观看| 伦精品一区二区三区| 少妇猛男粗大的猛烈进出视频 | 欧美色欧美亚洲另类二区| 哪个播放器可以免费观看大片| 99热这里只有精品一区| 国产精品国产三级国产av玫瑰| av专区在线播放| 免费看美女性在线毛片视频| av天堂中文字幕网| 成人av在线播放网站| 日本与韩国留学比较| 免费黄网站久久成人精品| 亚州av有码| 中文字幕av在线有码专区| 日韩一区二区三区影片| 97人妻精品一区二区三区麻豆| 欧美高清性xxxxhd video| 亚洲精品色激情综合| 看黄色毛片网站| 嫩草影院新地址| 亚洲人成网站在线播放欧美日韩| 日韩 亚洲 欧美在线| 日本色播在线视频| 十八禁国产超污无遮挡网站| 嫩草影院精品99| 九草在线视频观看| 在现免费观看毛片| 亚洲欧美精品专区久久| 午夜久久久久精精品| 国产一区二区亚洲精品在线观看| 日韩一区二区视频免费看| 国产成人福利小说| 国内精品久久久久精免费| 色吧在线观看| 精品人妻一区二区三区麻豆| 国产 一区精品| 最近的中文字幕免费完整| 22中文网久久字幕| 精品欧美国产一区二区三| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久久久久久丰满| av免费观看日本| 桃色一区二区三区在线观看| 国产女主播在线喷水免费视频网站 | 亚洲欧美成人精品一区二区| 一个人观看的视频www高清免费观看| 免费观看在线日韩| 色视频www国产| 国产伦精品一区二区三区视频9| 成人美女网站在线观看视频| 免费观看人在逋| 精品不卡国产一区二区三区| 热99re8久久精品国产| 色噜噜av男人的天堂激情| 99热这里只有是精品50| 最近视频中文字幕2019在线8| 日韩,欧美,国产一区二区三区 | 能在线免费观看的黄片| 黄片wwwwww| 欧洲精品卡2卡3卡4卡5卡区| 色综合亚洲欧美另类图片| 男女那种视频在线观看| 免费看美女性在线毛片视频| 成人特级黄色片久久久久久久| 美女 人体艺术 gogo| 精品国产三级普通话版| 亚洲av中文字字幕乱码综合| 毛片一级片免费看久久久久| 日韩av不卡免费在线播放| 99热这里只有精品一区| 色哟哟·www| 少妇高潮的动态图| 乱系列少妇在线播放| 黄片wwwwww| 欧美最黄视频在线播放免费| 日本爱情动作片www.在线观看| 亚洲中文字幕日韩| 欧美丝袜亚洲另类| av免费在线看不卡| 91狼人影院| 最后的刺客免费高清国语| 神马国产精品三级电影在线观看| 久久精品国产亚洲av天美| 国产一区二区亚洲精品在线观看| h日本视频在线播放| 熟女人妻精品中文字幕| 精品国产三级普通话版| 看黄色毛片网站| 国产精品久久视频播放| 国产极品天堂在线| 中文字幕人妻熟人妻熟丝袜美| a级毛片免费高清观看在线播放| 免费无遮挡裸体视频| 亚洲人与动物交配视频| 日韩欧美一区二区三区在线观看| 亚洲成av人片在线播放无| 国产成人影院久久av| 欧美日本亚洲视频在线播放| 老师上课跳d突然被开到最大视频| 亚洲无线在线观看| 女同久久另类99精品国产91| 国产亚洲欧美98| 亚洲av免费在线观看| 国产探花极品一区二区| 国产片特级美女逼逼视频| av免费观看日本| 亚洲丝袜综合中文字幕| 六月丁香七月| 免费看a级黄色片| 乱码一卡2卡4卡精品| 久久久久久久午夜电影| 女同久久另类99精品国产91| 欧美丝袜亚洲另类| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩东京热| 成人av在线播放网站| 搡女人真爽免费视频火全软件| 国产激情偷乱视频一区二区| 国模一区二区三区四区视频| 中文欧美无线码| 日韩大尺度精品在线看网址| 99久久无色码亚洲精品果冻| 亚洲精品日韩在线中文字幕 | 久久久久久大精品| 99视频精品全部免费 在线| 啦啦啦啦在线视频资源| 天堂√8在线中文| 一个人看的www免费观看视频| 久久久久性生活片| 国产一区亚洲一区在线观看| 大香蕉久久网| 99热全是精品| 久久久久久久久大av| 熟妇人妻久久中文字幕3abv| 国产人妻一区二区三区在| 国产蜜桃级精品一区二区三区| 久久久久免费精品人妻一区二区| 亚洲av免费高清在线观看| 少妇丰满av| 97超碰精品成人国产| 亚洲四区av| 日韩精品有码人妻一区| 久久亚洲国产成人精品v| 18禁在线无遮挡免费观看视频| 精品熟女少妇av免费看| 最近的中文字幕免费完整| 欧美日韩在线观看h| 国产久久久一区二区三区| 国产高清视频在线观看网站| 观看免费一级毛片| 亚洲av成人av| 国产精品人妻久久久久久| 69人妻影院| 亚洲经典国产精华液单| 一本一本综合久久| av天堂在线播放| 欧洲精品卡2卡3卡4卡5卡区| av又黄又爽大尺度在线免费看 | 99热这里只有精品一区| 国产成年人精品一区二区| 国产精品人妻久久久久久| 欧美在线一区亚洲| 国产熟女欧美一区二区| 日韩 亚洲 欧美在线| 欧美日韩精品成人综合77777| 久久人妻av系列| 最近视频中文字幕2019在线8| 久久久久久久久久久免费av|