• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Boron doped 1T phase MoS2 as a cocatalyst for promoting photocatalytic H2 evolution of g-C3N4 nanosheets

    2023-11-18 09:50:58PengyunQiuYnAnXinyuWngShnnAnXioliZhngJinTinWenZhu
    Chinese Chemical Letters 2023年10期

    Pengyun Qiu, Yn An, Xinyu Wng, Shnn An, Xioli Zhng, Jin Tin,*,Wen Zhu

    a School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China

    b State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

    c School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China

    Keywords:1T phase MoS2 g-C3N4 nanosheets Photocatalytic H2 evolution Active sites Boron doping

    ABSTRACT As one of the 2D transition metal sulfides, 1T phase MoS2 nanosheets (NSs) have been studied because of their distinguished conductivity and suitable electronic structure.Nevertheless, the active sites are limited to a small number of edge sites only, while the basal plane is catalytically inert.Herein, we report that boron (B) doped 1T phase MoS2 NSs can replace precious metals as a co-catalyst to assist in photocatalytic H2 production of 2D layered g-C3N4 nanosheets (g-C3N4 NSs).The H2 evolution rate of prepared B-MoS2@g-C3N4 composites with 15 wt% B-MoS2 (B-MoS2@g-C3N4–15, 1612.75 μmol h-1 g-1) is 52.33 times of pure g-C3N4 NSs (30.82 μmol h-1 g-1).Furthermore, the apparent quantum efficiency (AQE) of B-MoS2@g-C3N4–15 composites under the light at λ=370 nm is calculated and reaches 5.54%.The excellent photocatalytic performance of B-MoS2@g-C3N4–15 composites is attributed to the B ions doping inducing the distortion of 1T phase MoS2 crystal, which can activate more base planes to offer more active sites for H2 evolution reaction (HER).This work of B-MoS2@g-C3N4 composites offers experience in the progress of effective and low-price photocatalysts for HER.

    Recently, g-C3N4nanosheets (NSs) have attracted much attention to hydrogen production due to excellent chemical stability,suitable band structure, simple syntheses, low cost and special two-dimensional (2D) layered structure [1–3].Besides, the special nitrogen-rich polymeric structure of 2D layered g-C3N4NSs could provide numerous active sites for HER [4,5].Nevertheless, the photocatalytic hydrogen evolution performance of pure 2D layered g-C3N4NSs is unsatisfactory because of fast electron-holes pairs recombination and insufficient absorption of light [6–8].Hence, it is essential to exploit novel methods to enhance the H2generation performance of 2D layered g-C3N4NSs.The construction of an internal electric field (IEF) is an effective strategy to enhance photocatalytic hydrogen evolution performance because of its key role in photo-induced carrier separation [9–11].Precious metals act as cocatalysts is a common strategy to construct IEF [12,13].Yet, the widespread application of precious metals is limited by high cost[14].Hence, the development of an inexpensive and efficient cocatalyst is crucial for enhancing the photocatalytic activity of 2D layered g-C3N4NSs.

    Among various cocatalysts, transition-metal chalcogenides, such as MoS2, receive widespread attention ascribed to the superior 2D layered structure [15–19].MoS2has both semiconductor 2H phase and metallic 1T phase.Among them, metallic 1T phase MoS2NSs with octahedral coordination can improve the transfer and capture of photogenerated carriers to boost the photocatalytic H2evolution activity of 2D layered g-C3N4NSs, attributing to excellent conductivity [20–22].In addition, the Gibbs free energy of 1T phase MoS2NSs for H+absorption is near-zero, which is suitable for HER[6,23].However, the basal plane of MoS2NSs is inert, which limits the photocatalytic hydrogen evolution reaction [6].Recent researches show that MoS2′s basal plane can be activated through doping atoms to design the active sites of MoS2, attributed to the local electronic structure modulation [6,24–26].Thus, boron (B)ions are incorporated into the lattice of 1T phase MoS2could activate the basal plane, which can improve photocatalytic H2production performance.Hence, 2D-layered g-C3N4NSs modified by doping B into 1T phase MoS2NSs (B-MoS2NSs) could exhibit better photocatalytic performance.

    Fig.1.(a) X-ray diffraction patterns of pure g-C3N4 NSs and B-MoS2@g-C3N4 composites.(b) C 1s, (c) N 1s, (d) Mo 3d, (e) S 2p and (f) B 1s XPS spectra of B-MoS2@g-C3N4–15 composites.

    In this work, we propose B-MoS2@g-C3N4composites for photocatalytic H2evolution, in which triethanolamine acts as the sacrificial agent.The B into 1T phase MoS2NSs are powerfully connected with 2D layered g-C3N4NSs through an easy hydrothermal method.The synthesized B-MoS2@g-C3N4composites with 15 wt% B-MoS2(B-MoS2@g-C3N4–15) display an efficient rate of hydrogen evolution (1612.75 μmol h-1g-1), which is 52.33 times as much as pure g-C3N4NSs (30.82 μmol h-1g-1).In addition,the apparent quantum efficiency (AQE) of pure g-C3N4NSs and BMoS2@g-C3N4–15 composites are 0.41 and 5.54% under the light atλ=370 nm.The loading of B-MoS2NSs improves the light absorption of g-C3N4to stimulate more photogenerated carriers.In addition, the incorporation of B ions into the lattice of 1T phase MoS2NSs can provide more active sites and speed up the photocatalytic hydrogen evolution reaction.Thus, B-MoS2@g-C3N4composites display excellent photocatalytic H2production activity.

    The fabrication of B-MoS2@g-C3N4composites is displayed in Scheme S1 (Supporting information).Firstly, pure g-C3N4NSs are synthesizedviaa direct thermal polymerization way of urea.During heating, urea first reacts to form bulk g-C3N4when the muffle furnace temperature is kept at 550 °C, and then g-C3N4NSs with 2D layered structure are formed at the muffle furnace temperature of 500 °C.Afterward, g-C3N4NSs, ammonium tetrathiomolybdate and boric acid are added to the 70 mLN,N-dimethylformamide solution and evenly dispersed.Then, B-MoS2NSs are grown on the surface of g-C3N4NSs by hydrothermal method to obtain BMoS2@g-C3N4composites.

    Fig.2.SEM images of (a) pure g-C3N4 NSs and (b) B-MoS2 NSs.(c) TEM and (d)HR-TEM images of B-MoS2@g-C3N4–15 composites.

    For pure g-C3N4NSs and B-MoS2@g-C3N4composites, two characteristic peaks are located at 13.1° and 27.4° (green, pink,blue, yellow and purple curves in Fig.1a), attributing to (100) and(002) planes of g-C3N4(JCPDS No.87–1526) [27–29].Simultaneously, the peaks at 13.1° (100) and 27.4° (002) of g-C3N4in BMoS2@g-C3N4composites become weaker after B-MoS2NSs loading on g-C3N4NSs, attributing to the fact that the order degree of g-C3N4NSs is decreased by B-MoS2NSs incorporation [6].As shown in black curve in Fig.1a, there are two peaks at 10.2° and 32.5° indexed to (002) and (100) plane of MoS2.Compared with pure MoS2(black curve in Fig.1a), the peak at 10.2° of MoS2shifts to a lower degree of 8.8° in contrast to the 10.2° (002) peak of MoS2due to the B ions incorporating into the lattice of MoS2cause the distortion of MoS2crystal (red curve in Fig.1a) [6].In addition, the peak of B-MoS2@g-C3N4composites at 8.8° is similar to B-MoS2, indicating that B-MoS2and g-C3N4coexist.

    To further analyze the chemical bonding state, the XPS spectra of B-MoS2@g-C3N4composites are tested.As shown in Fig.S1(Supporting information), the survey XPS spectrum indicates that B-MoS2@g-C3N4composites consist of C, N, Mo, S and B.As shown in Fig.1b, the C 1s XPS spectrum is deconvolved into two peaks at 284.8 and 288.4 eV, corresponding to C=C and C-(N)3bonds, respectively [30,31].Fig.1c indicates that the N 1s spectrum is deconvolved into three peaks at 398.2, 399.1 and 400.6 eV, attributing to C=N–C, N-(C)3and C–NHx, respectively [32,33].As shown in Fig.1d, there are two green peaks at 227.8 and 230.9 eV, assigning to Mo 3d5/2and Mo 3d3/2of 1T phase [34].The two pink peaks at 228.7 and 232.2 eV are attributed to Mo 3d5/2and Mo 3d3/2of 2H phase [34].In addition, the peaks at 225.2 and 234.9 eV are assigned to S 2s and oxidation of Mo [6].As for the S 2p XPS spectrum (Fig.1e), two green peaks at 160.7 and 162.1 eV are attributed to S 2p3/2and S 2p1/2of 1T phase [35].Simultaneously, there are two pink peaks at 161.5 and 163.4 eV, assigning to S 2p3/2and S 2p1/2of 2H phase [35].Besides, according to Mo 3d and S 2p spectra, the proportion of 1T phase MoS2is about 71.2%, indicating that 1T phase MoS2in B-MoS2@g-C3N4composites is the main phase.Fig.1f exhibits a visible peak of B element at 184.6 eV, illustrating the successful doping of B ions in MoS2[6].Besides, the Raman spectrum of B-MoS2(Fig.S2 in Supporting information) is measured to determine the MoS2phase.There are three peaks at 147,237, and 335 cm-1, respectively, which correspond to the J1, J2, and J3modes of 1T phase MoS2[16].

    As shown in Fig.2a, g-C3N4NSs display a special 2D layered structure, and the lamellae of g-C3N4NSs present irregular wrinkled sheet morphologies.Pure B-MoS2displays flower-like assemblies composed of numerous small nanosheets (Fig.2b).In Fig.2c, B-MoS2@g-C3N4composites still keep typical 2D sheet-shaped morphology.As shown in Fig.2d, B-MoS2NSs are assembled on the g-C3N4NSs, and the lattice space distance (0.98 nm) is attributed to the (002) plane of MoS2[6].The close connection between g-C3N4NSs and B-MoS2NSs facilitates the fast transfer of photogenerated electrons from g-C3N4NSs to B-MoS2NSs, which can effectively inhibit electron-hole pairs recombination.Fig.S3(Supporting information) shows the EDX mapping images of BMoS2@g-C3N4–15 composites, which display even distribution of C,N, Mo, S and B, indicating the coexistence of g-C3N4and B-MoS2.

    As shown in Fig.3a, an obvious absorption of g-C3N4NSs and B-MoS2@g-C3N4composites is observed, and the absorption edge isca.430 nm.The band gap energy (Eg) of pure g-C3N4NSs is obtained through the formula (αhν)1/2∝hν-Eg, and theEgof pure g-C3N4NSs is calculated and the value is 2.61 eV (Fig.S4 in Supporting information).Significantly, the optical absorption of B-MoS2@g-C3N4composites is stronger than that of pure g-C3N4NSs, which indicates that B-MoS2NSs loading onto g-C3N4NSs can effectively enhance the light absorption ability of the catalyst.Among these, the light absorption of B-MoS2@g-C3N4–15 composites is the strongest, which can boost the production of photogenerated carriers.To further research the role of B ions doping,the UV–vis DRS absorption spectra of MoS2@g-C3N4–15 and BMoS2@g-C3N4–15 composites are shown in Fig.3b.After B ions are doped in 1T-MoS2NSs, the light absorption of B-MoS2@g-C3N4–15 composites is improved (yellow curve in Fig.3b), indicating that doping B into MoS2can boost the utilization of light.

    To study the photogenerated charge separation and transfer properties of pure g-C3N4NSs, MoS2@g-C3N4–15 and B-MoS2@g-C3N4–15 composites, the photoelectrochemical (PEC) analysis is performed (Figs.3c and d).Fig.3c displays that pure g-C3N4NSs,MoS2@g-C3N4–15 and B-MoS2@g-C3N4–15 composites present the photocurrent responses on each illumination [6].In addition, the photocurrent values of MoS2@g-C3N4–15 and B-MoS2@g-C3N4–15 composites are higher than that of pure g-C3N4NSs, which indicates that 1T-MoS2assembled on the g-C3N4NSs can effectively improve the generation and separation of photogenerated carriers.Notably, the photocurrent value of B-MoS2@g-C3N4–15 composites is superior to MoS2@g-C3N4–15 composites, indicating that B ions doping could inhibit the recombination of electron-hole pairs.The charge transfer activity of pure g-C3N4NSs, MoS2@g-C3N4–15 and B-MoS2@g-C3N4–15 composites is further explored through EIS measurement (Fig.3d).MoS2@g-C3N4–15 and B-MoS2@g-C3N4–15 composites present a smaller arc radius than that of pure g-C3N4NSs, indicating 1T-MoS2can accelerate carrier separation (Fig.3d).Besides, B-MoS2@g-C3N4–15 composites display the smallest arc radius, indicating the separation of photoexcited carriers of B-MoS2@g-C3N4–15 composites is most effective.Hence, B ions doped into 1T-MoS2and MoS2NSs assembled on the g-C3N4NSs can synergistically promote photocatalytic activity.

    To explore the possibility of hydrogen production, Mott-Schottky plots are tested to estimate the conduction band (CB) potential of pure g-C3N4NSs.As shown in Fig.S5 (Supporting information), g-C3N4is identified as an n-type semiconductor because of the positive slope of the curves in the Mott-Schottky plots.Through extrapolation to the x-intercept in Mott-Schottky plots,the flat band potential (EFB) of g-C3N4is obtained (-0.42 eVvs.Ag/AgCl).The obtainedEFBis converted to a potentialvs.standard hydrogen electrode (NHE), and then the value is subtracted by 0.2 eV to obtain anECBvs.NHE of the sample.Therefore, theECBof g-C3N4is -0.4 eVvs.NHE.By the valence band potential(EVB)=Eg+ECBandEgresults (Fig.S4 in Supporting information),theEVBof g-C3N4is 2.21 eVvs.NHE (Fig.S6 in Supporting information).Based on the above research, theECBof as-prepared g-C3N4NSs is lower than 0 eV, which indicates that prepared g-C3N4NSs can conduct photocatalytic hydrogen production.

    Fig.3e indicates that the photocatalytic hydrogen production of all photocatalysts is linear with time, indicating that the catalyst has stable photocatalytic H2evolution performance.As shown in Fig.3f, bare g-C3N4shows an unacceptable photocatalytic hydrogen evolution performance (30.82 μmol h-1g-1),which is attributed to the fast recombination of carriers and low light utilization.Yet, B-MoS2@g-C3N4–15 composites present excellent photocatalytic hydrogen production and H2evolution rate, indicating that adding B-MoS2NSs as cocatalysts can promote the photocatalytic activity of catalysts.The H2evolution rate of B-MoS2@g-C3N4–15 composites (1612.75 μmol h-1g-1) is 52.33, 1.3, 1.15 and 1.31 times of bare g-C3N4NSs (30.82 μmol h-1g-1), B-MoS2@g-C3N4–5 (1236.04 μmol h-1g-1), B-MoS2@g-C3N4–10 (1405.12 μmol h-1g-1), B-MoS2@g-C3N4–20 composites (1238.47 μmol h-1g-1), respectively.The improved photocatalytic HER performance of B-MoS2@g-C3N4composites indicates that B-MoS2cocatalyst loading onto g-C3N4improves the utilization of light to stimulate more photogenerated electrons, accelerates carrier separation, and inhibits electron-hole pairs recombination.However, increasing B-MoS2NSs content from 15% to 20%, a decrease in photocatalytic performance is detected, owing to the overmuch B-MoS2NSs loading on g-C3N4NSs impediment the photo-absorption of g-C3N4NSs.As shown in Fig.S7 (Supporting information), the photocurrent values of B-MoS2@g-C3N4–15 composites is higher than that of B-MoS2@g-C3N4–20 composites,which indicates that the overmuch B-MoS2NSs loading on g-C3N4NSs in B-MoS2@g-C3N4–20 is adverse for the photocatalytic performance of photocatalyst.To study the effect of B ions doping, we measure the hydrogen production of MoS2@g-C3N4–15 composites.As shown in Fig.S8 (Supporting information), the photocatalytic hydrogen production amount and rate of B-MoS2@g-C3N4–15 composites (1612.75 μmol h-1g-1) is higher than that of MoS2@g-C3N4–15 composites (1370.68 μmol h-1g-1), attributing that B ions doping into MoS2can activate the base planes of MoS2and offer more active sites.To further evaluate the H2production cycle property of B-MoS2@g-C3N4–15 composites, the photocatalytic H2evolution performance is tested for 15 h (Fig.S9 in Supporting information).Almost 92.4% of the incipient property is kept,and the micromorphology of B-MoS2@g-C3N4–15 composites after the cycle test (Fig.S10 in Supporting information) does not change significantly, indicating the good stability of B-MoS2@g-C3N4–15 composites.We further determine the apparent quantum efficiency(AQE) of pure g-C3N4NSs and B-MoS2@g-C3N4–15 composites under light atλ=370 nm irradiation.As shown in Fig.S11 (Supporting information), the AQE value of B-MoS2@g-C3N4–15 composites(5.54%) is higher than that of bare g-C3N4NSs (0.41%), which illustrates the optical utilization of B-MoS2@g-C3N4–15 composites is higher than that of pure g-C3N4NSs.

    Scheme 1.Schematic illustration of the photocatalytic H2 evolution mechanism of B-MoS2@g-C3N4 composites.

    According to the above studies, we propose a possible photocatalytic hydrogen evolution mechanism to explicate the reason for the improved photocatalytic hydrogen evolution performance of BMoS2@g-C3N4composites (Scheme 1).The loading of B-MoS2NSs improves the light absorption of g-C3N4to stimulate more photogenerated carriers and offer more active sites for HER.In addition,B-MoS2as a cocatalyst can capture photoinduced electrons, accelerate electron transfer and inhibit recombination of electron-hole pairs.B ions are doped into the lattice of 1T-MoS2, which can activate more base planes of 1T-MoS2and is suitable for the HER to activate H+.The photoexcited electrons produced under the sunlight through g-C3N4moved to B-MoS2, and then reduced water to hydrogen.Concurrently, TEOA as a sacrificial agent consumed the holes.Hence, the close combination of B-MoS2and g-C3N4boosts the photocatalytic hydrogen evolution activity of photocatalysts.

    In conclusion, we have successfully synthesized an efficient B-MoS2@g-C3N4composite for photocatalytic H2evolutionviacocatalyst and doping strategy.The as-prepared B-MoS2@g-C3N4composites with 15 wt% B-MoS2(B-MoS2@g-C3N4–15) present an extremely improved photocatalytic H2evolution rate of 1612.75 μmol h-1g-1, which is 52.33 times of bare g-C3N4NSs(30.82 μmol h-1g-1).The above experimental results confirm that the enhanced photocatalytic activity of B-MoS2@g-C3N4–15 composites may be assigned to the following factors: (1) As a cocatalyst, B doped 1T phase MoS2NSs greatly improves the light utilization of photocatalyst and stimulates more photogenerated carriers;(2) B-MoS2NSs with excellent conductivity are closely connected onto g-C3N4NSs, which can accelerate electron transfer and inhibit carrier recombination; (3) The base planes are activated through doping B ions into the lattice of MoS2, which can induce the distortion of MoS2crystal and provide more active sites for HER.This easy assembly strategy offers guidance for rationally constructed photocatalysts based on B-doped 1T phase MoS2as a cocatalyst for H2production.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors are thankful for fundings from the National Natural Science Foundation of China (No.51872173), Taishan Scholars Program of Shandong Province (No.tsqn201812068), Natural Science Foundation of Shandong Province (No.ZR2022JQ21), and Higher School Youth Innovation Team of Shandong Province (No.2019KJA013).The authors would like to thank Shiyanjia Lab (www.Shiyanjia.Com) for the XPS analysis.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108246.

    亚洲色图av天堂| 日韩大片免费观看网站| 免费观看a级毛片全部| 日本a在线网址| 免费人妻精品一区二区三区视频| 亚洲成国产人片在线观看| 黄色a级毛片大全视频| 美女国产高潮福利片在线看| 大型黄色视频在线免费观看| 老汉色av国产亚洲站长工具| 啪啪无遮挡十八禁网站| 自拍欧美九色日韩亚洲蝌蚪91| 少妇的丰满在线观看| 国产成人av激情在线播放| 老司机亚洲免费影院| 欧美成人午夜精品| h视频一区二区三区| 成在线人永久免费视频| 在线天堂中文资源库| 高清视频免费观看一区二区| 99在线人妻在线中文字幕 | 成人永久免费在线观看视频 | 久久久精品免费免费高清| 久久精品国产a三级三级三级| 色老头精品视频在线观看| 在线 av 中文字幕| 无限看片的www在线观看| 在线观看免费高清a一片| 淫妇啪啪啪对白视频| 国产精品 欧美亚洲| 亚洲精品久久成人aⅴ小说| 欧美成人午夜精品| 国产男靠女视频免费网站| 亚洲第一av免费看| 捣出白浆h1v1| 色94色欧美一区二区| 黄色视频,在线免费观看| 18禁美女被吸乳视频| cao死你这个sao货| 中文字幕人妻丝袜制服| 桃红色精品国产亚洲av| 最新美女视频免费是黄的| 免费日韩欧美在线观看| 精品亚洲乱码少妇综合久久| 女性生殖器流出的白浆| 无人区码免费观看不卡 | 天堂动漫精品| 一边摸一边抽搐一进一小说 | 成年人午夜在线观看视频| 日本五十路高清| 成年人免费黄色播放视频| 一边摸一边抽搐一进一小说 | 国产精品一区二区精品视频观看| 亚洲精品久久成人aⅴ小说| 精品免费久久久久久久清纯 | 一区二区三区国产精品乱码| 男人舔女人的私密视频| 91成年电影在线观看| 桃红色精品国产亚洲av| 淫妇啪啪啪对白视频| 黑人巨大精品欧美一区二区mp4| 国产又爽黄色视频| 日本a在线网址| 桃花免费在线播放| 欧美 亚洲 国产 日韩一| 五月开心婷婷网| 最近最新免费中文字幕在线| 国产高清国产精品国产三级| 国产亚洲一区二区精品| 一二三四社区在线视频社区8| 久久精品成人免费网站| 中文字幕最新亚洲高清| 国产精品亚洲一级av第二区| 欧美午夜高清在线| 免费人妻精品一区二区三区视频| 精品一区二区三区av网在线观看 | 日本a在线网址| 夜夜夜夜夜久久久久| 免费一级毛片在线播放高清视频 | 精品福利永久在线观看| 777米奇影视久久| 美国免费a级毛片| 老熟女久久久| 免费观看人在逋| 亚洲伊人久久精品综合| 王馨瑶露胸无遮挡在线观看| 久久久国产欧美日韩av| 久久精品国产亚洲av高清一级| 国产精品久久久久久人妻精品电影 | 精品一品国产午夜福利视频| 男女床上黄色一级片免费看| 亚洲精品粉嫩美女一区| 一二三四社区在线视频社区8| 天堂动漫精品| 久久精品人人爽人人爽视色| 免费高清在线观看日韩| 亚洲国产精品一区二区三区在线| 这个男人来自地球电影免费观看| 精品久久久久久电影网| 大片电影免费在线观看免费| 亚洲国产中文字幕在线视频| 一级片'在线观看视频| 亚洲情色 制服丝袜| 我的亚洲天堂| 精品卡一卡二卡四卡免费| 女性被躁到高潮视频| 精品福利观看| 成人av一区二区三区在线看| 亚洲精品在线观看二区| 国产精品香港三级国产av潘金莲| 国产精品二区激情视频| 免费女性裸体啪啪无遮挡网站| 超色免费av| 成人国语在线视频| www日本在线高清视频| 日韩成人在线观看一区二区三区| 69av精品久久久久久 | 亚洲成人国产一区在线观看| 制服诱惑二区| 丝袜美足系列| 国产精品麻豆人妻色哟哟久久| 亚洲九九香蕉| 成年女人毛片免费观看观看9 | 日韩一区二区三区影片| 中文字幕人妻丝袜一区二区| 国产熟女午夜一区二区三区| 亚洲中文日韩欧美视频| 精品亚洲成a人片在线观看| 成在线人永久免费视频| 欧美中文综合在线视频| 国产亚洲av高清不卡| 蜜桃在线观看..| 嫁个100分男人电影在线观看| 9色porny在线观看| 亚洲精品在线观看二区| 国产免费福利视频在线观看| 国产精品久久电影中文字幕 | 王馨瑶露胸无遮挡在线观看| 侵犯人妻中文字幕一二三四区| 亚洲全国av大片| 国产99久久九九免费精品| 午夜福利影视在线免费观看| 国产无遮挡羞羞视频在线观看| 人人妻人人爽人人添夜夜欢视频| 热99re8久久精品国产| 国产成人精品久久二区二区免费| videos熟女内射| 中文字幕人妻丝袜制服| www.熟女人妻精品国产| 黄色 视频免费看| 免费少妇av软件| 我的亚洲天堂| 国产黄频视频在线观看| 人人妻人人澡人人看| 久久99热这里只频精品6学生| 欧美日韩av久久| 侵犯人妻中文字幕一二三四区| 999精品在线视频| 飞空精品影院首页| 精品亚洲成a人片在线观看| 亚洲视频免费观看视频| 极品教师在线免费播放| 69av精品久久久久久 | 一本综合久久免费| 中文亚洲av片在线观看爽 | 精品亚洲成a人片在线观看| 蜜桃在线观看..| 精品国产乱码久久久久久男人| 欧美人与性动交α欧美精品济南到| 亚洲avbb在线观看| 国产av国产精品国产| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产精品一区二区三区在线| 欧美久久黑人一区二区| 涩涩av久久男人的天堂| 老鸭窝网址在线观看| 国产日韩一区二区三区精品不卡| 美女视频免费永久观看网站| 国产亚洲精品久久久久5区| 国产激情久久老熟女| 在线观看免费视频日本深夜| 国产一区二区三区综合在线观看| 18禁裸乳无遮挡动漫免费视频| 五月天丁香电影| 国产欧美日韩一区二区三| 欧美精品一区二区免费开放| 热re99久久国产66热| 国产亚洲精品第一综合不卡| 狠狠狠狠99中文字幕| 成人18禁在线播放| 少妇粗大呻吟视频| 欧美激情高清一区二区三区| 国产高清videossex| 精品国产超薄肉色丝袜足j| 国产在线视频一区二区| 午夜激情久久久久久久| 美女视频免费永久观看网站| 国产精品一区二区在线观看99| 狂野欧美激情性xxxx| 一二三四在线观看免费中文在| 男女床上黄色一级片免费看| 亚洲第一欧美日韩一区二区三区 | 久久精品熟女亚洲av麻豆精品| 黑人操中国人逼视频| 正在播放国产对白刺激| 黄色毛片三级朝国网站| a级毛片黄视频| 嫩草影视91久久| 欧美黑人欧美精品刺激| 天天操日日干夜夜撸| 99热网站在线观看| 窝窝影院91人妻| 在线观看免费视频日本深夜| 欧美在线黄色| 精品久久久久久久毛片微露脸| 99香蕉大伊视频| 久久影院123| 五月天丁香电影| 午夜福利视频在线观看免费| 欧美激情极品国产一区二区三区| 亚洲天堂av无毛| 两个人看的免费小视频| 一区二区三区激情视频| 久久久久精品人妻al黑| 午夜老司机福利片| 美国免费a级毛片| 女人高潮潮喷娇喘18禁视频| 成在线人永久免费视频| 最新美女视频免费是黄的| 又紧又爽又黄一区二区| 视频区欧美日本亚洲| 欧美一级毛片孕妇| 一级黄色大片毛片| 飞空精品影院首页| 精品人妻熟女毛片av久久网站| 亚洲色图 男人天堂 中文字幕| 成人精品一区二区免费| 国产又色又爽无遮挡免费看| 久久性视频一级片| 99久久99久久久精品蜜桃| 精品人妻在线不人妻| 最黄视频免费看| 国产精品熟女久久久久浪| 午夜福利,免费看| aaaaa片日本免费| 9热在线视频观看99| 日本黄色日本黄色录像| 亚洲国产中文字幕在线视频| 人人妻,人人澡人人爽秒播| 交换朋友夫妻互换小说| 久久国产亚洲av麻豆专区| 久久狼人影院| 18禁黄网站禁片午夜丰满| 岛国在线观看网站| 露出奶头的视频| 丰满人妻熟妇乱又伦精品不卡| 91字幕亚洲| 啪啪无遮挡十八禁网站| 欧美乱码精品一区二区三区| 国产精品二区激情视频| 国产亚洲午夜精品一区二区久久| 亚洲伊人色综图| 一级片免费观看大全| 国产高清国产精品国产三级| 亚洲欧美精品综合一区二区三区| 国产精品久久久人人做人人爽| 一本久久精品| 中文字幕人妻丝袜一区二区| 欧美中文综合在线视频| 91成人精品电影| 汤姆久久久久久久影院中文字幕| 黑人操中国人逼视频| 久久久欧美国产精品| 99热网站在线观看| 999久久久精品免费观看国产| 大陆偷拍与自拍| 中文字幕最新亚洲高清| 新久久久久国产一级毛片| 黄片大片在线免费观看| 国产精品国产高清国产av | 天天添夜夜摸| 一级毛片女人18水好多| 久久久欧美国产精品| 人人妻人人澡人人看| 黄色成人免费大全| 午夜福利在线免费观看网站| 一级毛片女人18水好多| 久久天堂一区二区三区四区| 老司机福利观看| 欧美 日韩 精品 国产| 欧美精品一区二区大全| 9191精品国产免费久久| 捣出白浆h1v1| 国产aⅴ精品一区二区三区波| 男女午夜视频在线观看| 美女主播在线视频| 黄网站色视频无遮挡免费观看| 中文字幕另类日韩欧美亚洲嫩草| 高潮久久久久久久久久久不卡| 国产成人系列免费观看| 亚洲国产av影院在线观看| 国产精品免费视频内射| 在线看a的网站| 日日摸夜夜添夜夜添小说| 久久精品国产亚洲av香蕉五月 | 又大又爽又粗| 午夜福利在线观看吧| 2018国产大陆天天弄谢| 精品国产亚洲在线| 国产成人精品久久二区二区91| av网站在线播放免费| 麻豆成人av在线观看| 欧美激情高清一区二区三区| 大片免费播放器 马上看| 成年动漫av网址| 最新的欧美精品一区二区| 久久青草综合色| 日韩 欧美 亚洲 中文字幕| bbb黄色大片| 国产精品亚洲一级av第二区| 久久亚洲真实| www日本在线高清视频| 成人亚洲精品一区在线观看| 国产99久久九九免费精品| 国产精品久久久人人做人人爽| 欧美人与性动交α欧美精品济南到| 国产免费视频播放在线视频| 少妇粗大呻吟视频| 日韩三级视频一区二区三区| 国产精品秋霞免费鲁丝片| 国产亚洲精品一区二区www | 在线观看一区二区三区激情| 亚洲人成电影免费在线| 亚洲欧美激情在线| 亚洲av欧美aⅴ国产| 天天躁日日躁夜夜躁夜夜| 男女床上黄色一级片免费看| 成人影院久久| 久久精品熟女亚洲av麻豆精品| 亚洲伊人久久精品综合| 91字幕亚洲| 中文欧美无线码| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 精品少妇内射三级| 国产在线视频一区二区| 精品一区二区三区av网在线观看 | 首页视频小说图片口味搜索| 午夜免费成人在线视频| 国产国语露脸激情在线看| 亚洲精品在线美女| 汤姆久久久久久久影院中文字幕| 一级a爱视频在线免费观看| 免费观看人在逋| 中文字幕高清在线视频| 国产精品.久久久| 久久久久久久久免费视频了| 亚洲第一青青草原| 黄色丝袜av网址大全| 国产真人三级小视频在线观看| 日本vs欧美在线观看视频| 国产高清视频在线播放一区| 中文欧美无线码| 在线观看66精品国产| 国产福利在线免费观看视频| 亚洲专区字幕在线| 日韩欧美免费精品| 国产亚洲精品一区二区www | 成人国语在线视频| videos熟女内射| 热99re8久久精品国产| 老司机靠b影院| 国产精品偷伦视频观看了| 黄色视频在线播放观看不卡| 最近最新中文字幕大全免费视频| 国产精品熟女久久久久浪| 极品教师在线免费播放| 咕卡用的链子| 叶爱在线成人免费视频播放| 丰满少妇做爰视频| 国产精品av久久久久免费| 精品高清国产在线一区| 视频区欧美日本亚洲| av国产精品久久久久影院| 亚洲第一青青草原| 丰满迷人的少妇在线观看| 国产高清激情床上av| 自拍欧美九色日韩亚洲蝌蚪91| 91成人精品电影| 菩萨蛮人人尽说江南好唐韦庄| 女人被躁到高潮嗷嗷叫费观| 免费观看a级毛片全部| 激情视频va一区二区三区| 久久久久久久久久久久大奶| 激情在线观看视频在线高清 | 精品久久蜜臀av无| 国产亚洲精品第一综合不卡| 欧美黄色淫秽网站| 午夜福利视频在线观看免费| 国产成人欧美在线观看 | 免费观看人在逋| 欧美日韩国产mv在线观看视频| 久久久国产精品麻豆| 国产99久久九九免费精品| 亚洲欧美日韩高清在线视频 | 精品卡一卡二卡四卡免费| 五月开心婷婷网| 亚洲精品av麻豆狂野| 精品人妻熟女毛片av久久网站| 亚洲情色 制服丝袜| 国产精品免费一区二区三区在线 | 国产免费视频播放在线视频| 视频区欧美日本亚洲| 久久 成人 亚洲| 国产欧美亚洲国产| 最近最新中文字幕大全电影3 | 国产精品一区二区精品视频观看| av超薄肉色丝袜交足视频| 9热在线视频观看99| 欧美在线一区亚洲| 九色亚洲精品在线播放| 久久免费观看电影| 亚洲欧美激情在线| 如日韩欧美国产精品一区二区三区| 午夜两性在线视频| 欧美乱妇无乱码| 建设人人有责人人尽责人人享有的| 最新的欧美精品一区二区| 最新美女视频免费是黄的| 久久久精品免费免费高清| 国产精品欧美亚洲77777| 国产精品香港三级国产av潘金莲| 色尼玛亚洲综合影院| 人妻 亚洲 视频| 欧美国产精品一级二级三级| 国产一卡二卡三卡精品| 亚洲情色 制服丝袜| 亚洲av美国av| 一级毛片女人18水好多| 国产亚洲欧美在线一区二区| 黑人操中国人逼视频| 俄罗斯特黄特色一大片| 亚洲va日本ⅴa欧美va伊人久久| 日本a在线网址| 久久久久网色| 亚洲精品自拍成人| 中文亚洲av片在线观看爽 | 国产在线精品亚洲第一网站| 99在线人妻在线中文字幕 | 自线自在国产av| 精品久久久久久电影网| 少妇精品久久久久久久| 国产精品久久电影中文字幕 | 成人免费观看视频高清| 搡老熟女国产l中国老女人| 亚洲中文av在线| 中文字幕高清在线视频| 免费观看人在逋| 在线十欧美十亚洲十日本专区| 国产成人精品久久二区二区91| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区欧美精品| 日韩中文字幕欧美一区二区| 国产熟女午夜一区二区三区| 老熟女久久久| 可以免费在线观看a视频的电影网站| 啦啦啦免费观看视频1| 国产精品久久电影中文字幕 | 国产精品.久久久| 黑人操中国人逼视频| 中文字幕人妻丝袜制服| 黄色视频在线播放观看不卡| 在线观看免费日韩欧美大片| 在线亚洲精品国产二区图片欧美| 两人在一起打扑克的视频| 亚洲欧美色中文字幕在线| 亚洲精品国产一区二区精华液| 日韩欧美一区二区三区在线观看 | 黑人操中国人逼视频| 久久人妻福利社区极品人妻图片| 成年人午夜在线观看视频| 久久免费观看电影| 国产一区二区三区视频了| 欧美人与性动交α欧美精品济南到| 嫩草影视91久久| 十分钟在线观看高清视频www| 久久国产精品男人的天堂亚洲| 亚洲精品国产一区二区精华液| 欧美午夜高清在线| 久久99热这里只频精品6学生| 国产精品久久久人人做人人爽| 亚洲成国产人片在线观看| 在线亚洲精品国产二区图片欧美| 一边摸一边抽搐一进一小说 | 一本大道久久a久久精品| 日韩三级视频一区二区三区| 国产人伦9x9x在线观看| 日韩成人在线观看一区二区三区| 久9热在线精品视频| 亚洲专区国产一区二区| 亚洲性夜色夜夜综合| 50天的宝宝边吃奶边哭怎么回事| 精品国产一区二区三区四区第35| 99热国产这里只有精品6| 亚洲熟女毛片儿| 国产成人精品无人区| 窝窝影院91人妻| 国产91精品成人一区二区三区 | 在线观看人妻少妇| 在线观看免费午夜福利视频| 一边摸一边做爽爽视频免费| 狠狠狠狠99中文字幕| 中文字幕av电影在线播放| 国产91精品成人一区二区三区 | 国产又爽黄色视频| 亚洲综合色网址| 在线永久观看黄色视频| 亚洲欧美日韩高清在线视频 | 水蜜桃什么品种好| 亚洲色图 男人天堂 中文字幕| 国产精品影院久久| 精品欧美一区二区三区在线| 亚洲精品一二三| 国产99久久九九免费精品| 俄罗斯特黄特色一大片| 国产精品一区二区精品视频观看| 国产欧美日韩一区二区精品| 男女午夜视频在线观看| 多毛熟女@视频| 一二三四社区在线视频社区8| 黑人操中国人逼视频| 欧美在线一区亚洲| 国产一区二区三区视频了| 亚洲伊人久久精品综合| 亚洲精品久久成人aⅴ小说| 精品一区二区三区av网在线观看 | 一级毛片女人18水好多| 香蕉丝袜av| 一级黄色大片毛片| 国产欧美日韩综合在线一区二区| 国产一区有黄有色的免费视频| 国产高清videossex| 欧美激情极品国产一区二区三区| 我要看黄色一级片免费的| 免费看十八禁软件| 久久久久久人人人人人| 日韩中文字幕视频在线看片| 黄片小视频在线播放| 亚洲成人手机| 久久亚洲真实| 久久久久久久大尺度免费视频| 国产成人欧美在线观看 | 91国产中文字幕| 老熟女久久久| 免费av中文字幕在线| 久久久水蜜桃国产精品网| 香蕉久久夜色| 又大又爽又粗| 老熟女久久久| 欧美国产精品一级二级三级| 亚洲精品国产精品久久久不卡| 99国产精品一区二区三区| 国产黄频视频在线观看| 新久久久久国产一级毛片| 黄色丝袜av网址大全| 五月开心婷婷网| 国产精品国产高清国产av | 亚洲精品av麻豆狂野| 亚洲七黄色美女视频| 亚洲精品在线美女| 日韩大片免费观看网站| 国产91精品成人一区二区三区 | 电影成人av| 老熟妇仑乱视频hdxx| 亚洲综合色网址| 精品人妻熟女毛片av久久网站| 老司机深夜福利视频在线观看| 大香蕉久久成人网| 91成人精品电影| 最新美女视频免费是黄的| 天天添夜夜摸| 在线观看免费视频日本深夜| 极品人妻少妇av视频| 精品卡一卡二卡四卡免费| 电影成人av| 91字幕亚洲| 夫妻午夜视频| 欧美日韩中文字幕国产精品一区二区三区 | 91成人精品电影| 久久午夜综合久久蜜桃| 老司机影院毛片| 在线观看免费视频日本深夜| 亚洲伊人久久精品综合| 国产精品国产av在线观看| 色综合婷婷激情| 亚洲精品自拍成人| 人人妻,人人澡人人爽秒播| 欧美精品av麻豆av| 极品教师在线免费播放| 中文亚洲av片在线观看爽 | 欧美 亚洲 国产 日韩一| 久久九九热精品免费| 丁香欧美五月| 久久青草综合色| 天天操日日干夜夜撸| 999久久久国产精品视频| 欧美国产精品一级二级三级| 久久精品人人爽人人爽视色| 一二三四在线观看免费中文在| 亚洲国产av新网站| 久久天堂一区二区三区四区| 亚洲欧美一区二区三区久久| 免费人妻精品一区二区三区视频| 在线观看人妻少妇| 人人妻人人添人人爽欧美一区卜|