• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Urine biomarkers discovery by metabolomics and machine learning for Parkinson’s disease diagnoses

    2023-11-18 09:50:50XioxioWngXinrnHoJiYnJiXuDnnHuFnfnJiTingZngFuyuWngBolunWngJihngFngJingJiHmiLunYnjunHongYnhoZhngJinyoChnMinLiZhuYngDououZhngWnlnLiuXioongCiZongwiCi
    Chinese Chemical Letters 2023年10期

    Xioxio Wng, Xinrn Ho, Ji Yn, Ji Xu, Dnn Hu, Fnfn Ji, Ting Zng,Fuyu Wng, Bolun Wng, Jihng Fng, Jing Ji, Hmi Lun, Ynjun Hong,Ynho Zhng, Jinyo Chn, Min Li, Zhu Yng, Douou Zhng,*, Wnln Liu,*,Xioong Ci,*, Zongwi Ci,*

    a State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China

    b Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China

    c The Central Laboratory, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518035, China

    d Department of Nutrition, Food Safety and Toxicology, West China School of Public Health, Sichuan University, Chengdu 610041, China

    e Mr. and Mrs. Ko Chi Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China

    Keywords:Parkinson’s disease High-resolution mass spectrometry Biomarker Metabolomic Machine learning

    ABSTRACT Parkinson’s disease (PD) is a complex neurological disorder that typically worsens with age.A wide range of pathologies makes PD a very heterogeneous condition, and there are currently no reliable diagnostic tests for this disease.The application of metabolomics to the study of PD has the potential to identify disease biomarkers through the systematic evaluation of metabolites.In this study, urine metabolic profiles of 215 urine samples from 104 PD patients and 111 healthy individuals were assessed based on liquid chromatography-mass spectrometry.The urine metabolic profile was first evaluated with partial leastsquares discriminant analysis, and then we integrated the metabolomic data with ensemble machine learning techniques using the voting strategy to achieve better predictive performance.A combination of 8-metabolite predictive panel performed well with an accuracy of over 90.7%.Compared to control subjects, PD patients had higher levels of 3-methoxytyramine, N-acetyl-L-tyrosine, orotic acid, uric acid,vanillic acid, and xanthine, and lower levels of 3,3-dimethylglutaric acid and imidazolelactic acid in their urine.The multi-metabolite prediction model developed in this study can serve as an initial point for future clinical studies.

    As a progressive brain disease related to aging, Parkinson’s disease (PD) is characterized by the neuronal death within the substantia nigra that results in a combination of movement disorder and non-motor symptoms [1,2].A global estimate shows that the prevalence of disability and death due to PD is rising faster worldwide than for any other neurological condition [3].PD is diagnosed clinically based on motor symptoms associated with loss of nigrostriatal dopaminergic neurons late in the disease process[4].It is urgent to find and validate biomarkers for PD to improve clinical assessment and management.Metabolomics has emerged in recent years as an effective and promising technique for identifying biomarkers or "metabolic fingerprints" associated with PD at different stages.Basically, this technique involves profiling the metabolites in various body fluids such as serum, plasma, cerebrospinal fluid or urine [5].Urine, as an ideal source of information for metabolic characterization of PD, can be utilized to quantify several hundreds of metabolites, including central metabolism,xenobiotics, microbiota metabolites, and nutrition derivatives[6–8].

    Metabolomics has increasingly been applied to clinical research over recent years, however, such high-dimensional data remains challengeable to conventional statistical methods especially when the number of profiled metabolites and clinical events are imbalanced seriously [9–12].Machine learning techniques have emerged as an effective tool to extract information from the vast pool of high-dimensional data, and thereby were employed to metabolomics data to develop clinical prediction models for biomarker discovery and validation [13,14].

    Herein, we performed integrative liquid chromatography-mass spectrometry (LC-MS) based analysis and machine learning techniques to investigate urinary metabolic characteristics and screen diagnostic biomarkers associated with PD with 215 urine samples.To achieve better predictive performance, we developed a set of prediction models that use a combination of ensemble-based methods.These methods include partial least-squares discriminant analysis (PLS-DA), random forest (RF), extreme gradient boosting(XGBoost), least absolute shrinkage and selection operator (LASSO),and Ridge regression.Voting strategy was then used to combine multiple models’ performance to determine the final metabolic prediction pattern for distinguishing PD patients from healthy individuals.Finally, based on accuracy and area under the curve(AUC), a prediction panel composed of eight metabolites was identified with high performance in discriminating patients with PD.By incorporating machine learning techniques into LC-MS-based urine analysis, it may be possible to improve the diagnosis of PD,which may facilitate further research into the disease in the near future.

    There were a total of 215 participants involved in this study;104 were diagnosed with PD and 111 served as healthy controls.We included PD patients who met the clinical diagnostic criteria prescribed by United Kingdom Parkinson’s Disease Brain Bank(UKPDBB).All participants in this study gave written consent before participating in this study.Fig.1A shows the male and female proportion in PD and control groups.There were more male participants in the PD group than female participants, which is consistent with the prevalence rate of PD being 1.4–1.5 times higher in the male population than in the female population [15–17].Fig.1B shows similar age profiles between PD and healthy controls with average ages at 59.43±12.15 years and 57.26±9.15 years, respectively.The two-tailed Mann-WhitneyUtest demonstrated that the gender and age distribution of PD patients and control subjects was not significantly different withpvalue at 0.2107 and 0.2419,respectively.The average disease duration among the PD patients was 8.34±5.52 years, and the Hoehn-Yahr (H-Y) stages of the PD patients was an average of 2.73±0.73.

    The urine samples that were collected from 104 patients with PD and 111 healthy individuals were precipitated with 100 μL of methanol, and then centrifuged at a speed of 14,000gfor 10 min at a temperature of 4°C.An analysis of the supernatants was conducted for metabolite profiles on a Q-Exactive Orbitrap-focus LCMS/MS system (Thermo Scientific).Periodic quality control (QC)samples, PD patients, and healthy individuals’urine samples were conducted to ensure system stability and high-quality data.QC samples were generated by pooling equal amounts of PD patients and control urine sample.D3-creatinine and 4-Cl-phenylalanine were used as the internal standards.A high-resolution full scan mode was used in the mass spectrometer (35,000-mass resolution), followed by data-dependent acquisition (DDA)-based MS/MS scans of the top 5 abundant precursors.The Supporting Information provides details of the chromatographic and mass spectrometric conditions.The alignment of nontargeted metabolic profiles’peak acquisition and retention times was performed using Metabolite Identification and Dysregulated Network Analysis software (MetDNA, v 1.1.2) [18].Based on the MS data obtained, the metabolite was identified using the Compound Discoverer software (version 2.1, Thermo Scientific), which can automatically align peaks, extract MS, and generate consensus MS/MS spectra.The metabolite annotation was carried out using the public mass spectral database, mzCloud, in which the monoisotopic precursor masses of the metabolites were matched with their relative MS/MS spectra (mass tolerance<5 ppm).To correct the signal and integrate the metabolomic data, the Quality Control Robust Loess Signal Correction (QC-RLSC) algorithm and the ratio of D3-creatinine/creatinine were used.The relative standard deviation (RSD) values for QC samples were set at 30% to ensure the repeatability of metabolomics data.The filtered matrix was used to perform both univariate and multivariate analyses.A total of 6909 and 5633 metabolic characteristics were extracted from urine metabolic profiles in positive and negative ionization modes, respectively.A clear cluster differentiation was observed between PD patients’metabolic profiles and those of the control groups,as shown by the PLS-DA score plot shown in Fig.1C, indicating metabolic perturbation occurring within PD patients.The permutation test is shown in Fig.S1 (Supporting information).Twentyseven differentially expressed metabolites (16 increased and 11 decreased) were identified between the PD patients and the controls based on the criteria ofP <0.05 and fold change (FC)<0.8 or>1.2 (Fig.1D volcano plot) (Table S1 in Supporting information).

    The application of machine learning in untargeted metabolomics is becoming increasingly prevalent due to its advantages in reducing the dimensions of metabolomic datasets[19].In addition, an ensemble-based approach for the discovery of biomarkers in metabolomics data analysis has the potential to exploit the advantages of individual techniques, defeat their limits,and improve reliability as well [14,20,21].The strategy applied in this study is a combination of multiple algorithms including PLS-DA, RF, XGBoost, LASSO, and Ridge regression for the selection and reduction of features.The voting strategy based on the score of importance derived from the combination of these different algorithms was then applied for the final prediction.The voting process relies on the performance of these five algorithms in combination, which could avoid large errors or misclassifications from one model that could lead to detrimental voting results.Besides,a model that performs poorly may be offset by other models with strong performance during the voting process.As illustrated in Fig.2A, a total of 96 features identified by the Compound Discoverer software were chosen as the datasets for the selection of potential biomarkers for PD.A randomization process was used to separate the dataset into the training sets and the test sets (7:3).The potential features were ranked by the feature importance scores, which were provided by these five machine learning methods (Figs.2B-F).Voting strategy was then used to choose the top 8 highest scorers as the final prediction.Fig.3A shows the relative intensities of the biomarker panel.PD and control groups show significant difference in the levels of these metabolites.Among them, urinary levels of 3,3-dimethylglutaric acid and imidazolelactic acid were lower in PD patients as compared to healthy controls.In contrast, a higher level of 3-methoxytyramine,N-acetyl-L-tyrosine, orotic acid, uric acid, vanillic acid, and xanthine was found in the urine of patients with PD.The discriminant performance for the biomarker panel built from the ensemble-based algorithm reached an area under the curve (AUC) of over 94.7% and an accuracy of over 90.7%with different machine learning models (including decision tree,RF, extremely random forest, support vector machine, k-nearest neighbor, XGBoost) (Fig.3B).

    Fig.2.The development of a multi-metabolite model using a combination of machine learning methods for PD diagnosis.(A) Statistical workflow for feature selection.The top 10 important metabolic predictors ranked by VIP scores (B), LASSO frequencies (C), MDI scores (D), F score (Ridge regression) (E), and F score (XGBoost) (F).

    Fig.3.(A) A relative quantitative analysis of eight metabolic predictors.Violin plots have a median value and a quartile value, each represented by three lines (75 percent,50 percent, 25 percent).(B) ROC curve analysis of 6 machine learning algorithms for prediction of PD patients with 8 key metabolites.SVM, support vector machine; KNN,k-nearest neighbor; ROC, receiver operating characteristic; AUC, area under the curve; ACC, accuracy.

    Fig.4.IPA of differential metabolites involved in signaling pathways and molecular networks implicated in PD.

    In this study, QIAGEN ingenuity pathway analysis (IPA) software was used to analyze the biomarkers that differ between PD patients and control subjects, which enabled a successful and intuitive analysis of correlations between PD and biomarkers.We can use IPA to improve our understanding of the characteristics of various molecules, including biomarkers that are involved in gene, protein, and chemical pathways, along with their interactions with each other.The obtained eight metabolites were imported into IPA for analysis of biological pathways.Based on the IPA analysis results (Fig.4), uric acid, xanthine, vanillic acid, and 3-methoxytyramine were linked to PD-related signaling pathways and molecular networks.Uric acid, the end product of purine metabolism in humans [22], is an important physiological antioxidant that may play a role in oxidative stress reduction [23,24].PD patients have lower level of uric acid in their serum, which has been reported in many clinical and epidemiological studies [25–27].Besides these clinical and epidemiological studies, uric acid levels in serum or plasma are shown to be inversely related to the development and progress of PD [28–33].3-methoxytyramine, the main extracellular metabolite of dopamine, appears to be useful for the evaluation of decreased dopamine release [34,35].Previously,vanillic acid was demonstrated to be an endogenous metabolite of noradrenaline and adrenaline [36].Vanillic acid has been shown to attenuate behavioral, histopathological and histochemical changes occurring within rotenone-induced PD model, these effects were shown to be related its antioxidant properties [37].In addition,neuroinflammation signaling pathways were affected, as determined by the canonical pathway established by IPA analysis.There is growing evidence that the pathogenesis of PD is strongly linked to chronic neuroinflammation and targeting inflammation may be an effective therapy for the disease in the future [38].Understanding the role neuroinflammation plays in PD will facilitate a deeper understanding of the pathogenic mechanism of the disease, as well as the development of effective treatment options in the future[39].

    In summary, a multi-metabolite predictive model based on ensemble machine learning methodologies using a voting stagey has been developed and has been found to be accurate to provide PD diagnostics with a rate of over 90.7% in 215 urine samples from PD and control subjects.The results of this study may be used as a reference for further clinical evaluation.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors would like to acknowledge the financial support from the Collaborative Research Fund (No.C2011–21GF) and from Guangdong Province Basic and Applied Basic Research Foundation(No.2021B1515120051).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108230.

    91久久精品国产一区二区成人| 1024手机看黄色片| 成年人黄色毛片网站| 欧美色欧美亚洲另类二区| 午夜久久久久精精品| 91在线观看av| 亚洲精品在线美女| 日本与韩国留学比较| 人人妻人人澡欧美一区二区| 亚洲av中文字字幕乱码综合| 小蜜桃在线观看免费完整版高清| 国产色婷婷99| 精品日产1卡2卡| 丰满人妻熟妇乱又伦精品不卡| 久久久久免费精品人妻一区二区| 自拍偷自拍亚洲精品老妇| 色哟哟·www| 欧美xxxx黑人xx丫x性爽| 午夜福利成人在线免费观看| 看十八女毛片水多多多| 欧美午夜高清在线| 男人的好看免费观看在线视频| 又爽又黄无遮挡网站| 婷婷丁香在线五月| 给我免费播放毛片高清在线观看| 69av精品久久久久久| 中国美女看黄片| 在现免费观看毛片| 国产单亲对白刺激| 国产欧美日韩一区二区精品| 亚洲av第一区精品v没综合| 成人午夜高清在线视频| 97热精品久久久久久| 国产成人av教育| 亚洲欧美精品综合久久99| 国产大屁股一区二区在线视频| 中文字幕高清在线视频| 757午夜福利合集在线观看| 亚洲电影在线观看av| 午夜福利高清视频| 亚洲国产精品999在线| 黄片小视频在线播放| 极品教师在线免费播放| 久久亚洲真实| x7x7x7水蜜桃| 亚洲欧美激情综合另类| 国产精品美女特级片免费视频播放器| 日韩av在线大香蕉| 日本精品一区二区三区蜜桃| 五月玫瑰六月丁香| 老司机午夜十八禁免费视频| 欧美黑人巨大hd| 在线免费观看不下载黄p国产 | 国产精品女同一区二区软件 | 男人的好看免费观看在线视频| 狂野欧美白嫩少妇大欣赏| 极品教师在线视频| 真实男女啪啪啪动态图| 欧美激情国产日韩精品一区| 全区人妻精品视频| 亚洲美女黄片视频| 黄片小视频在线播放| 少妇裸体淫交视频免费看高清| 久久天躁狠狠躁夜夜2o2o| 无人区码免费观看不卡| 国产成人啪精品午夜网站| 99久久99久久久精品蜜桃| 久久国产精品影院| 99国产极品粉嫩在线观看| 欧美午夜高清在线| 亚洲av一区综合| 成年人黄色毛片网站| 狂野欧美白嫩少妇大欣赏| 色av中文字幕| av在线老鸭窝| 久久精品国产亚洲av天美| 怎么达到女性高潮| 日韩欧美国产在线观看| 亚洲无线观看免费| 99久久久亚洲精品蜜臀av| 亚洲精品日韩av片在线观看| 麻豆国产97在线/欧美| 亚洲精华国产精华精| aaaaa片日本免费| 老女人水多毛片| 一本综合久久免费| 国内精品美女久久久久久| 97人妻精品一区二区三区麻豆| 天堂√8在线中文| 男女视频在线观看网站免费| 最新在线观看一区二区三区| 观看免费一级毛片| 天天一区二区日本电影三级| 日韩欧美 国产精品| 国产精品久久久久久精品电影| 国产精品精品国产色婷婷| 亚洲av免费高清在线观看| 国产久久久一区二区三区| 赤兔流量卡办理| 国产午夜福利久久久久久| 91av网一区二区| 精品久久久久久久久av| 欧美成人一区二区免费高清观看| 亚洲欧美激情综合另类| 99热精品在线国产| 又黄又爽又免费观看的视频| 久久久久久九九精品二区国产| 他把我摸到了高潮在线观看| 一级毛片久久久久久久久女| 1024手机看黄色片| 中文字幕人妻熟人妻熟丝袜美| 日本熟妇午夜| 久久欧美精品欧美久久欧美| 欧美黄色片欧美黄色片| 久久亚洲真实| 久久99热6这里只有精品| 啦啦啦观看免费观看视频高清| 国内精品一区二区在线观看| 亚洲精品在线观看二区| 九色成人免费人妻av| 精品免费久久久久久久清纯| x7x7x7水蜜桃| 成人一区二区视频在线观看| 亚洲专区国产一区二区| 久久精品久久久久久噜噜老黄 | 亚洲成人免费电影在线观看| 久久人人精品亚洲av| 久久人人爽人人爽人人片va | 日本一本二区三区精品| 国语自产精品视频在线第100页| 2021天堂中文幕一二区在线观| 久久人人爽人人爽人人片va | 中文在线观看免费www的网站| 欧美不卡视频在线免费观看| 精品人妻1区二区| 天堂动漫精品| 午夜福利在线观看吧| 国产亚洲欧美98| 免费观看精品视频网站| 中文亚洲av片在线观看爽| 一a级毛片在线观看| 一级毛片久久久久久久久女| 可以在线观看的亚洲视频| 精品一区二区三区av网在线观看| 国产精品一区二区三区四区免费观看 | 欧美日韩乱码在线| 国产美女午夜福利| 啦啦啦观看免费观看视频高清| 波野结衣二区三区在线| 亚洲成人免费电影在线观看| 亚洲 欧美 日韩 在线 免费| 婷婷六月久久综合丁香| 久久6这里有精品| 最新在线观看一区二区三区| 亚洲中文日韩欧美视频| 免费在线观看影片大全网站| 色吧在线观看| 一边摸一边抽搐一进一小说| 亚洲美女搞黄在线观看 | 国产综合懂色| 熟妇人妻久久中文字幕3abv| 国产av在哪里看| 麻豆国产97在线/欧美| 一本久久中文字幕| 亚洲精品乱码久久久v下载方式| 又黄又爽又免费观看的视频| 国产午夜精品久久久久久一区二区三区 | 性色av乱码一区二区三区2| 99热这里只有是精品在线观看 | 精品午夜福利在线看| 亚洲五月天丁香| 欧美极品一区二区三区四区| 特级一级黄色大片| 自拍偷自拍亚洲精品老妇| 欧美性猛交黑人性爽| 日韩有码中文字幕| 看免费av毛片| 国内精品美女久久久久久| 欧美黄色片欧美黄色片| 国模一区二区三区四区视频| 中出人妻视频一区二区| 国产精品亚洲美女久久久| 人人妻,人人澡人人爽秒播| 国产一区二区在线av高清观看| 国产亚洲精品久久久com| 最近最新中文字幕大全电影3| 99视频精品全部免费 在线| 婷婷六月久久综合丁香| 免费搜索国产男女视频| 免费看日本二区| 国产午夜精品论理片| 亚洲自拍偷在线| 国内毛片毛片毛片毛片毛片| 老司机午夜十八禁免费视频| 欧美日本视频| 此物有八面人人有两片| 亚洲av电影在线进入| 国产麻豆成人av免费视频| 成人一区二区视频在线观看| 国产精品综合久久久久久久免费| 天堂√8在线中文| 能在线免费观看的黄片| 99久久精品一区二区三区| 国产精品综合久久久久久久免费| 国产成人福利小说| 一本一本综合久久| 脱女人内裤的视频| 午夜福利在线观看免费完整高清在 | 一区二区三区高清视频在线| 久久精品影院6| 精品一区二区三区视频在线| 高潮久久久久久久久久久不卡| 午夜福利在线观看免费完整高清在 | www.色视频.com| 最后的刺客免费高清国语| 国产大屁股一区二区在线视频| 久久国产精品影院| 国产私拍福利视频在线观看| 一个人观看的视频www高清免费观看| 一进一出抽搐动态| 亚洲av电影不卡..在线观看| 特级一级黄色大片| 丁香欧美五月| 最近中文字幕高清免费大全6 | 好男人在线观看高清免费视频| 日韩大尺度精品在线看网址| 每晚都被弄得嗷嗷叫到高潮| 久久人人爽人人爽人人片va | 亚洲中文日韩欧美视频| 2021天堂中文幕一二区在线观| 国内毛片毛片毛片毛片毛片| 色综合欧美亚洲国产小说| 老熟妇乱子伦视频在线观看| 久久久久久久久大av| 国产亚洲精品久久久com| 精品国内亚洲2022精品成人| 91字幕亚洲| 亚洲狠狠婷婷综合久久图片| 欧美3d第一页| 欧美激情国产日韩精品一区| 欧美bdsm另类| 欧美xxxx黑人xx丫x性爽| 久久久久久久亚洲中文字幕 | 在线观看午夜福利视频| 尤物成人国产欧美一区二区三区| 国产精品亚洲一级av第二区| 在线免费观看的www视频| 欧美色视频一区免费| 在线国产一区二区在线| 国产真实伦视频高清在线观看 | 欧美成人一区二区免费高清观看| 精品久久久久久久久久免费视频| 我的老师免费观看完整版| 成年女人永久免费观看视频| 国产日本99.免费观看| 日日摸夜夜添夜夜添av毛片 | 搡女人真爽免费视频火全软件 | 亚洲va日本ⅴa欧美va伊人久久| 欧美bdsm另类| 亚洲欧美清纯卡通| 窝窝影院91人妻| 欧美日本亚洲视频在线播放| 精品免费久久久久久久清纯| 久久精品国产亚洲av天美| 亚洲成人免费电影在线观看| 欧美黑人欧美精品刺激| 男人和女人高潮做爰伦理| 精品久久久久久久人妻蜜臀av| 免费看a级黄色片| 一区二区三区四区激情视频 | 国产欧美日韩精品一区二区| 国产三级中文精品| 国产精品精品国产色婷婷| 国产在视频线在精品| 欧美日本视频| 精品久久久久久久久亚洲 | 成人无遮挡网站| 又黄又爽又刺激的免费视频.| 人妻夜夜爽99麻豆av| 久久久久久大精品| 老司机午夜福利在线观看视频| 亚洲专区国产一区二区| 精品午夜福利在线看| 在线看三级毛片| 欧美不卡视频在线免费观看| 日韩欧美一区二区三区在线观看| 毛片女人毛片| 赤兔流量卡办理| 欧美在线黄色| 久久性视频一级片| 真人做人爱边吃奶动态| 丁香欧美五月| 国模一区二区三区四区视频| 精品国内亚洲2022精品成人| 午夜免费成人在线视频| 亚洲av第一区精品v没综合| 性色avwww在线观看| 两人在一起打扑克的视频| 搞女人的毛片| 搡女人真爽免费视频火全软件 | 免费人成在线观看视频色| 日韩成人在线观看一区二区三区| 欧美xxxx黑人xx丫x性爽| 精品国内亚洲2022精品成人| 亚洲美女黄片视频| 国模一区二区三区四区视频| 国产精品电影一区二区三区| 婷婷色综合大香蕉| a在线观看视频网站| 国产精品野战在线观看| 一级a爱片免费观看的视频| 18禁裸乳无遮挡免费网站照片| 麻豆一二三区av精品| 精华霜和精华液先用哪个| 久久6这里有精品| 国产大屁股一区二区在线视频| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 久久久久久久亚洲中文字幕 | 狂野欧美白嫩少妇大欣赏| 欧美不卡视频在线免费观看| 久久人人爽人人爽人人片va | 黄色配什么色好看| 精品人妻熟女av久视频| 看片在线看免费视频| 亚洲中文字幕日韩| 国产黄色小视频在线观看| 啦啦啦韩国在线观看视频| 国产蜜桃级精品一区二区三区| 欧美中文日本在线观看视频| 国产野战对白在线观看| 久久99热6这里只有精品| 亚洲专区中文字幕在线| 99精品久久久久人妻精品| 亚洲人成网站在线播放欧美日韩| 嫩草影院入口| 国产白丝娇喘喷水9色精品| 少妇裸体淫交视频免费看高清| 国产综合懂色| 亚洲av美国av| 欧美一级a爱片免费观看看| 国产欧美日韩一区二区三| 欧美高清性xxxxhd video| 久久国产乱子伦精品免费另类| 老司机午夜十八禁免费视频| 亚洲真实伦在线观看| 成人性生交大片免费视频hd| 99久久久亚洲精品蜜臀av| 免费观看的影片在线观看| 波野结衣二区三区在线| 欧美成人a在线观看| 国产精品一区二区三区四区免费观看 | 丰满人妻熟妇乱又伦精品不卡| 国产一区二区在线观看日韩| 极品教师在线视频| 色噜噜av男人的天堂激情| 久久久国产成人精品二区| 人人妻,人人澡人人爽秒播| 亚洲人与动物交配视频| 免费在线观看影片大全网站| 亚洲最大成人手机在线| 精品一区二区三区人妻视频| 亚洲人成电影免费在线| 欧美乱色亚洲激情| 亚洲精品成人久久久久久| 天堂动漫精品| 老鸭窝网址在线观看| 一进一出抽搐动态| 一级av片app| 亚洲欧美日韩东京热| 亚洲专区国产一区二区| 人人妻,人人澡人人爽秒播| 天堂√8在线中文| 国产成人av教育| 一个人看视频在线观看www免费| 在线观看一区二区三区| a在线观看视频网站| 国产探花在线观看一区二区| 亚洲成人精品中文字幕电影| 嫩草影院入口| 亚洲欧美日韩高清在线视频| 嫩草影视91久久| 亚洲av第一区精品v没综合| 天堂影院成人在线观看| 欧美一区二区精品小视频在线| 日韩欧美免费精品| 国产综合懂色| 亚洲乱码一区二区免费版| 国产高清有码在线观看视频| 757午夜福利合集在线观看| 国产黄色小视频在线观看| 久久精品国产亚洲av涩爱 | 国产白丝娇喘喷水9色精品| 男女视频在线观看网站免费| 欧美日韩瑟瑟在线播放| 亚洲av熟女| 国产伦一二天堂av在线观看| 日本a在线网址| 黄色一级大片看看| 色精品久久人妻99蜜桃| 久久香蕉精品热| 国模一区二区三区四区视频| 国产一区二区三区视频了| 麻豆成人午夜福利视频| 99国产极品粉嫩在线观看| 在线观看美女被高潮喷水网站 | 亚洲av美国av| 国产欧美日韩精品一区二区| 听说在线观看完整版免费高清| 99精品在免费线老司机午夜| 变态另类丝袜制服| 色综合婷婷激情| 一个人免费在线观看的高清视频| 色5月婷婷丁香| 最近中文字幕高清免费大全6 | 国内精品美女久久久久久| 久9热在线精品视频| 日韩人妻高清精品专区| av女优亚洲男人天堂| 91字幕亚洲| xxxwww97欧美| 欧美bdsm另类| 观看免费一级毛片| 成年女人永久免费观看视频| 国产伦一二天堂av在线观看| 啪啪无遮挡十八禁网站| 少妇熟女aⅴ在线视频| 一级毛片久久久久久久久女| 成年版毛片免费区| 亚洲五月婷婷丁香| 成人毛片a级毛片在线播放| 欧美xxxx性猛交bbbb| 2021天堂中文幕一二区在线观| 一级av片app| 精华霜和精华液先用哪个| 亚洲国产精品久久男人天堂| 国产高清视频在线观看网站| a级一级毛片免费在线观看| 国产精品精品国产色婷婷| 在线十欧美十亚洲十日本专区| 毛片一级片免费看久久久久 | 神马国产精品三级电影在线观看| 久久久国产成人精品二区| 在线观看一区二区三区| 国产在线精品亚洲第一网站| 国产一区二区激情短视频| 国产亚洲精品av在线| 欧美成人性av电影在线观看| 在线天堂最新版资源| 给我免费播放毛片高清在线观看| 国产精品1区2区在线观看.| 午夜亚洲福利在线播放| 久久久久久久精品吃奶| 免费黄网站久久成人精品 | 日韩 亚洲 欧美在线| 精品一区二区三区人妻视频| 午夜福利视频1000在线观看| 国产精品亚洲一级av第二区| 亚洲av第一区精品v没综合| 真人做人爱边吃奶动态| 黄色女人牲交| 亚洲精品456在线播放app | 国产av在哪里看| 精品人妻熟女av久视频| 亚洲 欧美 日韩 在线 免费| 男女视频在线观看网站免费| 久久精品国产亚洲av涩爱 | 99热6这里只有精品| 日韩欧美 国产精品| 大型黄色视频在线免费观看| 亚洲成av人片免费观看| 亚洲专区国产一区二区| 91在线精品国自产拍蜜月| 国产伦一二天堂av在线观看| 久久亚洲真实| 欧美一区二区精品小视频在线| 欧美黄色淫秽网站| 国产私拍福利视频在线观看| 午夜免费男女啪啪视频观看 | 嫩草影院精品99| 激情在线观看视频在线高清| 亚洲欧美日韩高清专用| 亚洲欧美日韩无卡精品| 最近最新中文字幕大全电影3| 国产亚洲欧美在线一区二区| 黄色配什么色好看| 1024手机看黄色片| 精品人妻视频免费看| 一本精品99久久精品77| 亚洲最大成人av| 白带黄色成豆腐渣| 亚洲国产色片| 91av网一区二区| 久久国产精品人妻蜜桃| av在线天堂中文字幕| 亚洲经典国产精华液单 | 久久人人精品亚洲av| 国产成人啪精品午夜网站| 国产欧美日韩精品亚洲av| 国产成+人综合+亚洲专区| www.www免费av| 男人舔奶头视频| 国产精品久久电影中文字幕| 亚洲精品粉嫩美女一区| 成人国产综合亚洲| 日韩亚洲欧美综合| 久久国产乱子免费精品| 久久久精品大字幕| 一个人免费在线观看电影| 日韩中文字幕欧美一区二区| 免费在线观看成人毛片| 精品国产三级普通话版| a级一级毛片免费在线观看| 久久6这里有精品| av在线蜜桃| 欧美丝袜亚洲另类 | 久久午夜福利片| 国产精品综合久久久久久久免费| 人妻久久中文字幕网| www.999成人在线观看| 国产精品亚洲美女久久久| 高清毛片免费观看视频网站| 欧美日本亚洲视频在线播放| 久久人妻av系列| 美女xxoo啪啪120秒动态图 | 两人在一起打扑克的视频| 国产欧美日韩一区二区三| 在线国产一区二区在线| 成人无遮挡网站| 此物有八面人人有两片| 又爽又黄a免费视频| 舔av片在线| 国产精品亚洲一级av第二区| 桃色一区二区三区在线观看| 亚洲av.av天堂| 午夜日韩欧美国产| 欧美成人一区二区免费高清观看| 亚洲精品在线观看二区| 国产综合懂色| 国产伦人伦偷精品视频| 麻豆久久精品国产亚洲av| 精品午夜福利视频在线观看一区| 亚洲熟妇熟女久久| 成人国产综合亚洲| bbb黄色大片| 国产免费av片在线观看野外av| 午夜日韩欧美国产| 国产成人影院久久av| 人人妻,人人澡人人爽秒播| 日韩欧美国产在线观看| 免费大片18禁| 国产精品一区二区性色av| 午夜福利成人在线免费观看| 国产精品三级大全| 亚洲专区国产一区二区| 国产视频内射| 亚洲18禁久久av| 久久久久国产精品人妻aⅴ院| 亚洲人成电影免费在线| 久久婷婷人人爽人人干人人爱| 免费av观看视频| 嫁个100分男人电影在线观看| 2021天堂中文幕一二区在线观| 十八禁国产超污无遮挡网站| 69人妻影院| 成人毛片a级毛片在线播放| 亚洲精品乱码久久久v下载方式| a级毛片a级免费在线| av天堂中文字幕网| 麻豆av噜噜一区二区三区| 亚洲国产欧洲综合997久久,| 少妇高潮的动态图| 在线免费观看不下载黄p国产 | 男人和女人高潮做爰伦理| 国产一区二区在线观看日韩| 亚洲av中文字字幕乱码综合| 国模一区二区三区四区视频| 久久国产乱子伦精品免费另类| 中文字幕久久专区| 欧美在线一区亚洲| 亚洲专区中文字幕在线| 日韩欧美国产在线观看| 嫩草影院新地址| 成人av一区二区三区在线看| 亚洲男人的天堂狠狠| 亚洲狠狠婷婷综合久久图片| 国产极品精品免费视频能看的| 亚洲第一欧美日韩一区二区三区| 久久久久久国产a免费观看| 女同久久另类99精品国产91| 国产精品伦人一区二区| 国产三级黄色录像| 国产老妇女一区| 蜜桃亚洲精品一区二区三区| 床上黄色一级片| 国产精品1区2区在线观看.| 最新在线观看一区二区三区| 变态另类丝袜制服| 小说图片视频综合网站| 亚洲第一欧美日韩一区二区三区| 欧美一区二区国产精品久久精品| 女同久久另类99精品国产91| 中出人妻视频一区二区| 欧美性猛交黑人性爽| 动漫黄色视频在线观看| 99热这里只有精品一区| 人妻丰满熟妇av一区二区三区| 69av精品久久久久久| 日本五十路高清| 中文字幕久久专区| 18美女黄网站色大片免费观看| 亚洲自拍偷在线| 免费一级毛片在线播放高清视频| 最后的刺客免费高清国语| 五月伊人婷婷丁香|