• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Action recognition using a hierarchy of feature groups

    2015-07-25 06:04:37
    關鍵詞:連貫識別率尺度

    (School of Information Science and Engineering,Southeast University,Nanjing 210096,China)

    Action recognition using a hierarchy of feature groups

    Zhou Tongchi Cheng Xu Li Nijun Xu Qinjun Zhou Lin Wu Zhenyang

    (School of Information Science and Engineering,Southeast University,Nanjing 210096,China)

    To improve the recognition performance of video human actions,an approach thatmodels the video actions in a hierarchical way is proposed.This hierarchical model summarizes the action contents w ith different spatio-temporal domains according to the properties of human body movement.First,the temporal gradient combined with the constraint of coherent motion pattern is utilized to extract stable and dense motion features that are viewed as point features,then the mean-shift clustering algorithm with the adaptive scale kernel is used to label these features.After pooling the featuresw ith the same label to generate part-based representation,the visual word responses within one large scale volume are collected as video object representation.On the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF(University of Central Florida)-sports action datasets,the experimental results show that the proposed method enhances the representative and discriminative power of action features,and improves recognition rates.Compared with other related literature,the proposed method obtains superior performance.

    action recognition;coherent motion pattern;feature groups;part-based representation

    H uman action recognition(HAR)is one of the hot topics in the fields of computer vision and pattern recognition due to its w idespread applications in video surveillance,human computer interaction and video retrieval.However,its research is influenced by significant cameramotion,background clutter,and changes in object appearance,scale,illum ination conditions and viewpoint.Overall,HAR has become a difficult but also an important task.

    Local features together w ith bag-of-visual words[13](BoVW)have gained good recognition performance.Kovashka et al.[1]employed the Euclidean metric to construct variable-sized configurations of local features and learned compound features,and each action video is modelled by the learned compound features in a hierarchical way.A lso,Yuan et al.[4]used the same metric to measure the distance between features,and counted the co-occurrence frequency of pair features w ithin some spatial-temporal extents.Considering the activity data containing information at various temporal resolutions,Song et al.[5]presented a hierarchical sequence summarization and learned multiple layers of discrim inative feature representations.In fact,the methods in Refs.[1,4]w ith the popular spatio-temporal interest points(STIPs),like cuboids,and 3D Harris etc.a(chǎn)re easily influenced by the camera m_otion and background clutter,so the learned context[15]lacks the representativeness.To extract stable features for action recognition,the motion compensation technique[6]is introduced to suppress the camera motion.Chakraborty et al.[7]selected STIPs by surrounding suppression combined with local and temporal constraints.Moreover,to reduce the quantization error and preserve the nonlinear manifold structure,Refs.[8- 9]adopted structured sparse coding to encode the local features for recognition tasks.

    Inspired by the ideals of Refs.[1,5- 8],we learn a spatial-temporal context w ith an ascending order of abstraction in a hierarchicalway.We first compensate cameramotion,and then utilize temporal gradients to extract stablemotion features.To learn local context and model body parts,we utilize the clustering algorithm instead of the ranked metric.A fter encoding the underlying features w ith locality-and group-sensitive sparse representation(LGSR)[9]and learning part-based representation,the large scale context for the constructed volumetric region is sequentially modelled.From experiments,our representation enhances the discrim inative power of action features and achieves excellent recognition performance on the benchmark KTH(Kungliga Tekniska H?gskolan)and UCF(University of Central Florida)-sports action datasets.

    1 Proposed M ethod

    The hierarchical feature representation model for action recognition proposed in this paper is semantic structures from motion including region,part and object,as shown in Fig.1(c).The initial layer is the low-level features extracted from salient3D motion regions.The second layer is a pool group features labelled by themean-shift clustering algorithm.The top layer is explored to construct body movement representations.Using ourmethod to represent the irregular 3D regions is more flexible than those w ith fixed grids[10]or nearest rank[1,4],as shown inFigs.1(a)and(b),respectively.

    Fig.1 The learned spatial-temporal relationships.(a)Multi-level fixed grids[10];(b)Nearest rank[1,4];(c)Ourmethod

    1.1 Extracting and encoding features

    Each video is first segmented to narrow clips.According to themotion compensation[6],the 2D polynom ial affinemotionmodels are considered for estimating the dominantmotion,and the adjacent frames from a narrow clip are aligned.Fig.2(a)shows an example w ith the high score matching corner points in the region of interest(ROI),where the corresponding dots are in the first and second columns,and the circles in the second and third columns.A fter the processes of motion compensation,temporal gradient and the adaptive threshold,the saliency map shown in Fig.2(b)is obtained by

    where Di(x,y)means the pixel value;I′i-1is the compensated ROI image corresponding to Ii-1;and v is the saliency maximum of the absolute difference image Di.

    Fig.2 Processes of saliency motion extraction.(a)Matching points;(b)Difference images;(c)Saliency motion cumulative image

    Unfortunately,some noise still persists,and the processmentioned above may lead to leak detection.To handle these problems,the constraints of some context clues including coherentmotion patterns,changes of displacement and phase,color value invariance in short duration are adopted to select saliency motion sub-regions.According to the central coordinate set{r′1,r′2,…,r′n}obtained by 8-connected regions of the difference cumulative image,we sample sub-volume w ithin the difference volume constructed by difference images.For one subvolume,the spatial window for KTH and UCF-sports is empirically set to be 10×10 and 30×30,respectively,and temporal scale L is the number of difference images.The process to extractmotion features is followed by

    where Pi(x,y)is the pixel value at coordinate(x,y)of the i-th patch of a sub-volume;w and M are defined as the Boolean-valued function;w is used to distinguish whether themotion exists in some patch and M is used to distinguish whether the spatial-temporal feature is valid.After pruning,the new center coordinate set{r1,r2,…, rm}is viewed as STIPs,and the new difference cumulative image shown in Fig.2(c)is defined as

    where D′pmeans the difference image after pruning Dp.After describing volumes,we transform the HoG/HoF descriptors(HoG:4 bins;HoF:5 bins)into structured sparse representations by LGSR.This encoding method takes advantages from both group sparsity and data locality structure in determ ining the discrim inative representation for classification[9].Cgcan be solved by the following optim ization problem:

    where D=[D1,D2,…,Dn]∈RD×dis the codebook;λ1andλ2are the weights for the group sparsity and locality constrains,respectively;and the vector v∈Rd×1is the distancemeasurement between Hg,jand each visualword.

    1.2 Group feature generation by clustering

    In this section,we use the mean-shift clustering algorithm to construct group features,and then adopt amaxpooling operator to generate part-based representation.For themean-shift clustering,3D templatew ith the adaptive scale is used instead of the fixed bandw idth kernel that is unsuitable to model the irregular movement part.The temporal scale of 3D kernel is L frames.The 3D kernel’s spatial scale(rx,ry)controlling the ranges of motion sub-region centers is a parameterized function,which can adaptively change by zooming in or out of thebody scope(O-x,O-y)as follows by the given annotation.The scale(rx,ry)is defined as

    where R-xand R-yare set to be(80,50),and they are the reference sizes of body scope;rref-xand rref-y,the spatial sizes of template,are set to be(20,20)in our experiments.Moreover,if the features deviate from the clustering center,the extracted color information(gray image:illum ination)is used to re-label them.After the above two stages,some action features w ith the same label can give an enough coverage of the body part,as shown in Fig.3,where the defined ROIs are represented by large blue boxes.The body movement parts are described by small red boxes,and the centers of 8-connected motion regions are denoted by green points in red boxes.

    Fig.3 Clustering results ofmotion features for some action video frames.(a)Dive;(b)Kick;(c)Skate;(d)Swing 2;(e)Walk

    A fter clustering,the coefficient set Cg∈Rd×kcorresponding to the descriptor set Hgis represented as

    Themax-pooling[10]operator for Cgis defined by

    where S(i)represents the maximum absolute response of the i-th atom,and S is the descriptor for certain body part.

    1.3 Object-level context

    Due to the lim ited scale of body parts,it is not enough to capture large scale co-occurrence relationships.We use ROIs of narrow clips to construct volumes which can adaptively adjust the spatial scales follow ing the changing human body scope,and then accumulate each element of all part descriptors as volume descriptors.The produced vector is computed as

    where V(i)is the weight accumulation of the i-th atom response,and Sgdenotes the g-th body part descriptor.

    2 Action Representation and Recognition

    After describing feature groups and object context,each video is represented by the descriptors of linear quantization corresponding to different levels,and the lengths are all NatomsNbin,where Natomsdenotes the dictionary size,and Nbinrepresents the quantization bins.

    Recognition is performed by the nearest neighbour classifier(NNC)and support vector machine(SVM).The NNC is a simple and effective classifier and the absolute distance is used to measure the sim ilarity.For the SVM classifiers,we adoptχ2 kernel[11]which is an extension form ofχ2 distance[11]and the Gaussian radial basis function[12](G-RBF),respectively.The two kernels are commonly used for classification task.The Gaussian radial kernel andχ2 kernel are,respectively,defined by

    where Hiand Hjrepresent the histograms of video representations.In the cases of the G-RBF kernel,the r values are selected heuristically.

    3 Experimental Results

    3.1 Action dataset

    We adopt KTH[1,78]and UCF-sports[12,10,1214]action datasets to validate our proposedmethod.The KTH dataset contains 599 videos of 25 actors perform ing six types of human actions,box,clap,wave,jog,run,and walk.Each action is repeated in four different scenarios:outdoors,outdoorswith scale variation,outdoors with clothing variation and indoors.All sequences with low resolution are recorded.The UCF-sports dataset consists of 150 video clips acquired from sports broadcast networks.The videos have cameramotion and jitter,highly cluttered and dynam ic backgrounds,compression artifacts and variable illumination settings at variable spatial resolutions.Fig.4 shows the classof 10 action samples on the UCF-sports action dataset.

    3.2 Experim ental settings

    Fig.4 Sample action frames from video sequences of the UCF-sports dataset.(a)Dive;(b)Golf;(c)Kick;(e)Lift;(f)Walk;(g)Run;(h)Ride;(i)Sw ing 1;(j)Skate;(k)Sw ing 2

    The narrow clip length is set to be 3.λ1andλ2are set to be 0.3 and 0.1,respectively.Video frames in the KTH dataset have a simple background and slight camera motion,so we do not need to align adjacent frames.The dictionary with 936 atoms is constructed by random ly selected 280 sets of group features.For the KTH dataset,we follow the leave-one-out cross-validation(LOOCV)evaluation scheme,and adopt themost simple NNC w ith k=3.For UCF-sports dataset,the defined ROIs’scale is zoomed in 20%under the original center-frame ROI.The dictionary w ith 839 atoms is built by a random ly selected 105 group of descriptors._Ourmethod is validated by the five-fold cross-validation[1314]and the split evaluation scheme[2].For the NNC,the neighbour parameter is set to be 5.W ith the SVM classifier,we adopt a oneagainst-rest training approach.For the G-RBF kernel,by cross-validation,the optimal values of two controlling parameters are set to be C=380 and r=0.2.For theχ2 kernel,the parameter C is set to be 380.The recognition accuracy is average result over 100 runs.

    3.3 Evaluation on KTH dataset

    Fig.5 shows the recognition accuracy for the KTH dataset in the form of confusion matrix.From Fig.5,the majority of the confusion between“jog”and“run”is expected due to sim ilar nature between their local features.Tab.1 shows performance comparison w ith other methods.Among theusing local features to model actions,ourmethod achieves 96.11%recognition accuracy.

    Fig.5 Confusionmatrix for KTH dataset

    Tab.1 Performance comparison w ith othermeth___ods

    3.4 Evaluation on UCF-sports dataset

    We first adopt the simple NNC to validate our proposed method.Under the five-fold cross-validation and split evaluation scheme,all class average recognition accuracies are shown in Figs.6(a)and(b),respectively.For the SVM classifier,under the split scheme,the recognition results for all action videos are shown in Figs.7(a)and(b)corresponding to theχ2 kernel and G-RBF kernel,respectively.From Figs.6 and 7,we can see that the majorities of recognition error are among“Golf”,“Skate”and“Run”.

    To evaluate performance at different levelsw ith respect to histogram bins,we use the simple NNC w ith five-fold cross-validationmanner.Fig.8 shows the recognition accuracy plot varying w ith the histogram bins,where each point on the curves corresponds to an average result.At some bins,recognition accuracies w ith object representation are lower than thatof the part representation,but recognition rates tend to be insensitive to the quantization bins.The recognition results w ith the part representation can reach 100%in some quantization bins.

    Fig.6 Confusion matrices w ith NNC for UCF-sports dataset.(a)Five-fold cross validation;(b)Splitting

    Fig.7 Confusion matrices w ith SVM for UCF-sports dataset.(a)χ2 kernel;(b)G-RBF kernel

    Fig.8 Recognition results at different levels

    Tab.2 lists performance comparison of our method w ith othermethods on the UCF-sports dataset.Compared w ith the literature using local features to model actions,the recognition rates of ourmethod using object representation are higher than those of other methods.The obtained better performance benefits from three aspects,having stable and densemotion features,a semantic context and robust LGSR-based sparse representation.In addition,the recognition performance with the SVM classifier is better than that based on the NNC.Note that Sanin et al.[15]designed dense spatio-temporal covariance descriptors and adopted the LogitBoost classifier to recognize actions.M ichalis et al.[14]utilized the dense trajectories to learn discrim inative action parts in terms of an MRF score.Lan etal.[2]employed a figure-centric visual word representation for joint action localization and recognition.

    Tab.2 Performance comparison w ith othermethods

    4 Conclusion

    In this paper,we propose an action hierarchicalmodel,which can capture the discrim inative statistics of co-occurring motion features at multiple levels.A fter extracting the stable and densemotion features by motion compensation techniques together w ith temporal gradient and coherentmotion pattern constraints,we use the structured sparse representations of HoG/HoF descriptors as underlying features.Then the orderly hierarchical spatial-temporal context for different scale volumes is represented by aggregating group features generated bymean-shift clustering,and accumulating each element of visual word responses,respectively.On the KTH and UCF-sports action datasets,the experimental results show that our method obtains good performance.

    [1]Kovashka A,Grauman K.Learning a hierarchy of discrim inative space-time neighborhood features for human action recognition[C]//Proc of the International Conference on Computer Vision and Pattern Recognition.San Francisco,CA,USA,2010:2046- 2053.

    [2]Lan T,Wang Y,Mori G.Discrim inative figure-centric models for joint action localization and recognition[C]//Proc of the International Conference on Computer Vision.Colorado,USA,2011:2003- 2010.

    [3]Hu Q,Qin L,Huang Q,et al.Action recognition using spatial-temporal context[C]//Proc of the 20th International Conference of Pattern Recognition.Istanbul,Turkey,2010:1521- 1524.

    [4]Yuan C,Hu W,Wang H,etal.Spatio-temporal proximity distribution kernels for action recognition[C]//Proc of the International Conference of Acoustics,Speech and Signal Processing.Dallas,TX,USA,2010:1126-1129.

    [5]Song Y,Morency L P,Davis R.Action recognition by hierarchical sequence summarization[C]//2013 IEEE Conference on Computer Vision and Pattern Recognition.Portland,OR,USA,2013:3562- 3569.

    [6]Jain M,Jegou H,Bouthemy P.Better exploiting motion for better action recognition[C]//Proc of the International Conference of Computer Vision and Pattern Recognition.Portland,OR,USA,2013:2555- 2562.

    [7]Chakraborty B,Holte M B,Moeslund T B,et al.Selective spatio-temporal interest points[J].Computer Vision and Image Understanding,2012,116(3):396- 410.

    [8]Zhou T C,Chen X,Wu Z Y.Action recognition using hierarchically tree-structured dictionary encoding[J].Journal of Image and Graphics,2014,19(7):1054-1061.(in Chinese)

    [9]Chao Y W,Yeh Y R,Chen Y W,et al.Locality-constrained group sparse representation for robust face recognition[C]//Proc of the International Conference on Image Processing.Brussels,Belgium,2011:761- 764.

    [10]Xiao W H,Wang B,Liu Y,et al.Action recognition using feature position constrained linear coding[C]//Proc of the International Conference on Multimedia and Expo.San Jose,CA,USA,2013:1- 6.

    [11]Vedaldi,A,Zisserman A.Efficient additive kernels via explicit featuremaps[C]//Proc of the International Conference on Computer Vision and Pattern Recognition.San Francisco,CA,USA,2010:2046- 2053.

    [12]Chapelle O,Haffner P,Vapnik V N.Support vectormachines for histogram-based image classification[J].IEEE Transactions on Neural Networks,1999,10(5):1055-1064.

    [13]Castrodad A,Sapiro G.Sparse modeling of human actions from motion imagery[J].International Journal of Computer Vision,2012,100(1):1- 15.

    [14]M ichalis R,Iasonas K,Stefano S.Discovering discrim inative action parts from m id-level video representations[C]//Proc of the International Conference of Computer Vision and Pattern Recognition.Rhode Island,USA,2012:1242- 1249.

    [15]Sanin A,Sanderson C,Harandi M T,et al.Spatio-temporal covariance descriptors for action and gesture recognition[C]//Proc of International conference on Application of Computer Vision Workshop.Sydney,Australia,2013:103- 110.

    分層特征組的行為識別

    周同馳 程 旭 李擬珺 徐勤軍 周 琳 吳鎮(zhèn)揚

    (東南大學信息科學與工程學院,南京210096)

    為提高視頻人體行為識別的性能,提出了一種分層建模行為的方法.該分層模型根據(jù)人體運動的屬性概述不同時空域的行為內容.首先,利用時間梯度并結合連貫的運動模式約束提取穩(wěn)定、密集的運動特征作為點特征;然后,采用自適應尺度核的mean-shift聚類算法標定這些特征.具有同一標簽的特征組通過最大池運算產(chǎn)生身體部分表示后,累積大尺度的視頻體內視覺詞響應作為視頻對象的表示.在基準的KTH和UCF-sports行為數(shù)據(jù)庫上,實驗結果表明所提方法增強了行為特征的代表性和判別能力,同時提高了識別率.與其他相關文獻相比,所提方法獲得了優(yōu)越的識別性能.

    行為識別;連貫的運動模式;特征組;部位表示

    TP391.4

    10.3969/j.issn.1003-7985.2015.03.005

    2015-01-04.

    Biographies:Zhou Tongchi(1979—),male,graduate;Wu Zhenyang(corresponding author),male,doctor,professor,zhenyang@seu.edu.cn.

    The National Natural Science Foundation of China(No.60971098,61201345).

    :Zhou Tongchi,Cheng Xu,LiNijun,etal.Action recognition using a hierarchy of feature groups[J].Journal of Southeast University(English Edition),2015,31(3):327- 332.

    10.3969/j.issn.1003-7985.2015.03.005

    猜你喜歡
    連貫識別率尺度
    語意巧連貫,舊“貌”換新“顏”——從“八省聯(lián)考”卷探析高考語意連貫題
    財產(chǎn)的五大尺度和五重應對
    基于類圖像處理與向量化的大數(shù)據(jù)腳本攻擊智能檢測
    計算機工程(2020年3期)2020-03-19 12:24:50
    基于真耳分析的助聽器配戴者言語可懂度指數(shù)與言語識別率的關系
    銜接連貫題的復習備考注意點
    提升高速公路MTC二次抓拍車牌識別率方案研究
    將句子寫連貫
    宇宙的尺度
    太空探索(2016年5期)2016-07-12 15:17:55
    高速公路機電日常維護中車牌識別率分析系統(tǒng)的應用
    9
    在线天堂中文资源库| 亚洲精品国产av成人精品| 日韩免费高清中文字幕av| 午夜两性在线视频| 国产精品麻豆人妻色哟哟久久| 亚洲成av片中文字幕在线观看| 黑丝袜美女国产一区| 麻豆av在线久日| 国产在线视频一区二区| 久久精品亚洲av国产电影网| 午夜成年电影在线免费观看| 免费在线观看视频国产中文字幕亚洲 | 少妇 在线观看| 99久久人妻综合| 999久久久国产精品视频| 在线观看一区二区三区激情| 性高湖久久久久久久久免费观看| 国产av又大| 美女扒开内裤让男人捅视频| 王馨瑶露胸无遮挡在线观看| 999精品在线视频| 亚洲国产毛片av蜜桃av| 国产av精品麻豆| 久久精品久久久久久噜噜老黄| 久久久久精品国产欧美久久久 | 欧美黑人精品巨大| 国产男女超爽视频在线观看| 久久精品久久久久久噜噜老黄| 欧美另类亚洲清纯唯美| 水蜜桃什么品种好| 搡老岳熟女国产| 国产精品.久久久| 69av精品久久久久久 | 亚洲成人手机| 建设人人有责人人尽责人人享有的| 搡老岳熟女国产| 久久精品人人爽人人爽视色| 亚洲天堂av无毛| 久久久久久久久免费视频了| 国产视频一区二区在线看| 波多野结衣av一区二区av| www.999成人在线观看| 欧美日韩成人在线一区二区| 久久久久精品国产欧美久久久 | 久久久久精品人妻al黑| 电影成人av| 国产97色在线日韩免费| 亚洲自偷自拍图片 自拍| 每晚都被弄得嗷嗷叫到高潮| 亚洲久久久国产精品| 精品福利永久在线观看| 国产精品亚洲av一区麻豆| 午夜日韩欧美国产| 99国产极品粉嫩在线观看| 国产精品九九99| 亚洲av国产av综合av卡| 久久久久国产一级毛片高清牌| 欧美日韩国产mv在线观看视频| 婷婷色av中文字幕| 深夜精品福利| 两性夫妻黄色片| 高清av免费在线| 在线 av 中文字幕| 国产淫语在线视频| 高清黄色对白视频在线免费看| 制服诱惑二区| 婷婷丁香在线五月| 国产成人精品久久二区二区免费| 国产成人欧美| 国产一区二区三区综合在线观看| 国产亚洲精品久久久久5区| 别揉我奶头~嗯~啊~动态视频 | 国产免费av片在线观看野外av| 国产一区二区三区在线臀色熟女 | 老司机午夜十八禁免费视频| 9191精品国产免费久久| 欧美日韩亚洲高清精品| 国产精品九九99| 国产一区二区三区av在线| 免费av中文字幕在线| 亚洲自偷自拍图片 自拍| 国产精品影院久久| 久久久欧美国产精品| 亚洲欧美精品自产自拍| 亚洲色图 男人天堂 中文字幕| 成人影院久久| 一边摸一边抽搐一进一出视频| 精品人妻1区二区| 久久久水蜜桃国产精品网| 在线观看免费日韩欧美大片| 日本av手机在线免费观看| 亚洲精品第二区| 久久狼人影院| 中亚洲国语对白在线视频| 2018国产大陆天天弄谢| 成年人午夜在线观看视频| tube8黄色片| 大陆偷拍与自拍| 国产极品粉嫩免费观看在线| 精品少妇内射三级| 午夜福利视频在线观看免费| 日韩视频一区二区在线观看| 国产一区二区在线观看av| 日日夜夜操网爽| 性色av一级| 18禁国产床啪视频网站| 69精品国产乱码久久久| 黄色毛片三级朝国网站| 成人av一区二区三区在线看 | 久久久久精品国产欧美久久久 | 91精品三级在线观看| 桃红色精品国产亚洲av| 精品国产乱子伦一区二区三区 | 亚洲黑人精品在线| 男女国产视频网站| 亚洲精品第二区| 日本五十路高清| 精品少妇黑人巨大在线播放| 丝袜美腿诱惑在线| 青春草视频在线免费观看| 精品久久久久久电影网| av片东京热男人的天堂| 成年女人毛片免费观看观看9 | 久久久国产精品麻豆| 这个男人来自地球电影免费观看| 亚洲精品国产一区二区精华液| 中文字幕精品免费在线观看视频| 亚洲精品国产av蜜桃| 精品少妇黑人巨大在线播放| 俄罗斯特黄特色一大片| 99热网站在线观看| 两个人看的免费小视频| 亚洲 国产 在线| 亚洲精品粉嫩美女一区| 国产成人一区二区三区免费视频网站| 高清在线国产一区| 蜜桃国产av成人99| 19禁男女啪啪无遮挡网站| 中文欧美无线码| av天堂久久9| 黑人巨大精品欧美一区二区mp4| 久久精品aⅴ一区二区三区四区| 纵有疾风起免费观看全集完整版| 国产亚洲欧美精品永久| www日本在线高清视频| 国产精品久久久av美女十八| 亚洲国产精品一区二区三区在线| 伦理电影免费视频| 国产精品久久久久久精品古装| 精品人妻1区二区| 亚洲精品粉嫩美女一区| 精品久久蜜臀av无| 水蜜桃什么品种好| 捣出白浆h1v1| 日韩一卡2卡3卡4卡2021年| 在线观看舔阴道视频| 天天躁夜夜躁狠狠躁躁| 国产精品自产拍在线观看55亚洲 | 性高湖久久久久久久久免费观看| 国产成人免费观看mmmm| 日韩 亚洲 欧美在线| 国产精品久久久av美女十八| 欧美日韩中文字幕国产精品一区二区三区 | 91精品国产国语对白视频| 免费在线观看影片大全网站| 午夜福利免费观看在线| 色婷婷av一区二区三区视频| 亚洲va日本ⅴa欧美va伊人久久 | av福利片在线| 欧美日韩国产mv在线观看视频| 涩涩av久久男人的天堂| 纵有疾风起免费观看全集完整版| 国产片内射在线| 一区二区三区激情视频| 亚洲久久久国产精品| 精品福利永久在线观看| 黑人猛操日本美女一级片| 亚洲精品一卡2卡三卡4卡5卡 | 欧美精品人与动牲交sv欧美| 国产高清国产精品国产三级| 亚洲国产欧美日韩在线播放| 国产男女超爽视频在线观看| 美女扒开内裤让男人捅视频| 国产高清视频在线播放一区 | av不卡在线播放| 国产xxxxx性猛交| 亚洲av日韩在线播放| av网站在线播放免费| 美女国产高潮福利片在线看| 欧美黄色片欧美黄色片| 国产极品粉嫩免费观看在线| 欧美人与性动交α欧美软件| 亚洲视频免费观看视频| 久久精品久久久久久噜噜老黄| 亚洲av成人一区二区三| 男人添女人高潮全过程视频| 电影成人av| 久久影院123| 欧美日韩亚洲高清精品| 精品国产乱码久久久久久男人| 久久久久视频综合| 九色亚洲精品在线播放| 人妻一区二区av| 免费观看a级毛片全部| 日日摸夜夜添夜夜添小说| 欧美+亚洲+日韩+国产| 99国产综合亚洲精品| 夜夜夜夜夜久久久久| 亚洲av片天天在线观看| 精品一品国产午夜福利视频| 免费观看a级毛片全部| 王馨瑶露胸无遮挡在线观看| 国产淫语在线视频| av福利片在线| 曰老女人黄片| 国产av一区二区精品久久| 色精品久久人妻99蜜桃| 一区二区三区四区激情视频| 国产亚洲精品第一综合不卡| 青草久久国产| 99久久综合免费| 在线观看一区二区三区激情| 香蕉国产在线看| 国产成人a∨麻豆精品| 亚洲中文字幕日韩| 中文字幕人妻丝袜制服| 国产日韩一区二区三区精品不卡| 欧美 日韩 精品 国产| 国产av精品麻豆| 午夜成年电影在线免费观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲av欧美aⅴ国产| 人人妻人人添人人爽欧美一区卜| 国产成人系列免费观看| 国产黄频视频在线观看| 欧美人与性动交α欧美软件| 亚洲精品一二三| 一区在线观看完整版| 亚洲av成人一区二区三| 精品乱码久久久久久99久播| 两性夫妻黄色片| 一级毛片精品| 国产精品麻豆人妻色哟哟久久| 久久天躁狠狠躁夜夜2o2o| 亚洲精品av麻豆狂野| 国产精品影院久久| 国产福利在线免费观看视频| 国产高清国产精品国产三级| 老熟妇仑乱视频hdxx| 欧美激情高清一区二区三区| 久久热在线av| 黑人巨大精品欧美一区二区蜜桃| 精品福利永久在线观看| 黄色a级毛片大全视频| 亚洲精品中文字幕在线视频| 国产成人精品久久二区二区91| 亚洲精品国产色婷婷电影| 国产高清视频在线播放一区 | 丝袜美足系列| 91麻豆精品激情在线观看国产 | 国产精品亚洲av一区麻豆| 一边摸一边抽搐一进一出视频| 国产伦理片在线播放av一区| 免费观看a级毛片全部| 亚洲精品国产av成人精品| 在线永久观看黄色视频| 久久精品久久久久久噜噜老黄| 精品国产一区二区久久| 青青草视频在线视频观看| 国产又爽黄色视频| 欧美激情极品国产一区二区三区| 男女之事视频高清在线观看| 久久人妻福利社区极品人妻图片| 国产一区二区在线观看av| 天天躁日日躁夜夜躁夜夜| 老熟女久久久| 欧美黑人欧美精品刺激| 国产亚洲精品久久久久5区| 中文字幕另类日韩欧美亚洲嫩草| 视频在线观看一区二区三区| 国产一区二区三区av在线| 男女国产视频网站| 免费一级毛片在线播放高清视频 | 老汉色av国产亚洲站长工具| 黄片大片在线免费观看| 午夜成年电影在线免费观看| 亚洲国产精品成人久久小说| 巨乳人妻的诱惑在线观看| 狠狠婷婷综合久久久久久88av| 亚洲成国产人片在线观看| 搡老熟女国产l中国老女人| 久久久久久人人人人人| 国产精品久久久av美女十八| 国产黄色免费在线视频| 日日摸夜夜添夜夜添小说| 久久国产精品男人的天堂亚洲| 黄片大片在线免费观看| 精品国产国语对白av| 国产av一区二区精品久久| 在线观看免费午夜福利视频| 欧美精品亚洲一区二区| 国产精品一区二区在线观看99| 国产精品免费大片| 国产深夜福利视频在线观看| a在线观看视频网站| 天天躁日日躁夜夜躁夜夜| 亚洲视频免费观看视频| 久久久久久亚洲精品国产蜜桃av| 午夜两性在线视频| 美女脱内裤让男人舔精品视频| av天堂久久9| 日韩欧美国产一区二区入口| 嫁个100分男人电影在线观看| 丝袜美足系列| 亚洲av美国av| 久久久久国产一级毛片高清牌| 妹子高潮喷水视频| 国内毛片毛片毛片毛片毛片| 男女高潮啪啪啪动态图| 一个人免费看片子| 午夜精品久久久久久毛片777| 我要看黄色一级片免费的| 一本一本久久a久久精品综合妖精| 日韩一卡2卡3卡4卡2021年| 久久人人爽人人片av| 99精国产麻豆久久婷婷| 久久青草综合色| 成年动漫av网址| 在线观看免费午夜福利视频| 国产日韩欧美视频二区| 久久99一区二区三区| 久久久久久久精品精品| 精品一品国产午夜福利视频| 日韩一卡2卡3卡4卡2021年| 黄网站色视频无遮挡免费观看| 最近中文字幕2019免费版| 国产精品一区二区在线不卡| 无遮挡黄片免费观看| 欧美日韩视频精品一区| 国产精品99久久99久久久不卡| 国产成人精品在线电影| 亚洲综合色网址| 丰满饥渴人妻一区二区三| 国产成人精品无人区| 一区二区三区四区激情视频| a级片在线免费高清观看视频| 亚洲免费av在线视频| 久久久精品区二区三区| 纵有疾风起免费观看全集完整版| 丁香六月欧美| 国产一卡二卡三卡精品| 色综合欧美亚洲国产小说| 999久久久国产精品视频| 麻豆av在线久日| 日韩免费高清中文字幕av| 高清视频免费观看一区二区| 欧美少妇被猛烈插入视频| 亚洲精品国产av蜜桃| 亚洲av国产av综合av卡| 777久久人妻少妇嫩草av网站| 亚洲性夜色夜夜综合| 国产精品亚洲av一区麻豆| 国产成人欧美| 久久天躁狠狠躁夜夜2o2o| 搡老乐熟女国产| 少妇精品久久久久久久| 黄色片一级片一级黄色片| 久久人人爽人人片av| 亚洲欧美精品自产自拍| 热re99久久国产66热| 亚洲精品一二三| 婷婷丁香在线五月| 少妇精品久久久久久久| 国产区一区二久久| 成年av动漫网址| 制服诱惑二区| 亚洲成人免费电影在线观看| 黄频高清免费视频| 国产成人a∨麻豆精品| 欧美黄色片欧美黄色片| av一本久久久久| 一个人免费看片子| 国产麻豆69| 啦啦啦啦在线视频资源| 亚洲一码二码三码区别大吗| 欧美日韩国产mv在线观看视频| 国产欧美亚洲国产| 亚洲情色 制服丝袜| 精品一品国产午夜福利视频| 少妇人妻久久综合中文| 中文字幕制服av| 青草久久国产| 国产亚洲av高清不卡| 精品少妇黑人巨大在线播放| 国产一区二区 视频在线| 人妻 亚洲 视频| 一本—道久久a久久精品蜜桃钙片| 老司机靠b影院| 久久免费观看电影| 夜夜骑夜夜射夜夜干| 亚洲国产日韩一区二区| 婷婷丁香在线五月| 国产真人三级小视频在线观看| 亚洲免费av在线视频| 国产无遮挡羞羞视频在线观看| 男女之事视频高清在线观看| 老司机深夜福利视频在线观看 | 久久午夜综合久久蜜桃| 午夜免费观看性视频| 桃花免费在线播放| 男人添女人高潮全过程视频| 搡老乐熟女国产| 日本精品一区二区三区蜜桃| 午夜福利视频精品| 亚洲九九香蕉| 曰老女人黄片| 久久性视频一级片| 欧美+亚洲+日韩+国产| e午夜精品久久久久久久| 国产在线观看jvid| av一本久久久久| 欧美黑人欧美精品刺激| 亚洲成人手机| 久久99一区二区三区| 国产精品免费视频内射| 成年人黄色毛片网站| 天天躁夜夜躁狠狠躁躁| 久久久久视频综合| 久久狼人影院| 久久久久国产一级毛片高清牌| 欧美亚洲日本最大视频资源| 后天国语完整版免费观看| 在线 av 中文字幕| 国产成人精品久久二区二区91| 亚洲欧美清纯卡通| 99精国产麻豆久久婷婷| 午夜福利影视在线免费观看| 国产亚洲精品久久久久5区| 国产成人精品久久二区二区免费| 亚洲欧美精品自产自拍| 9热在线视频观看99| cao死你这个sao货| 老司机在亚洲福利影院| 伊人亚洲综合成人网| 色老头精品视频在线观看| 成年美女黄网站色视频大全免费| 精品少妇久久久久久888优播| 深夜精品福利| 我的亚洲天堂| 19禁男女啪啪无遮挡网站| 天堂8中文在线网| 男女床上黄色一级片免费看| 人人妻人人添人人爽欧美一区卜| 精品人妻熟女毛片av久久网站| 欧美日韩亚洲国产一区二区在线观看 | 又黄又粗又硬又大视频| 俄罗斯特黄特色一大片| 午夜福利影视在线免费观看| 中文字幕另类日韩欧美亚洲嫩草| 又黄又粗又硬又大视频| 男女之事视频高清在线观看| 欧美激情久久久久久爽电影 | 欧美午夜高清在线| 欧美大码av| 国产一卡二卡三卡精品| 久久影院123| 久久中文看片网| 中国国产av一级| 亚洲精品一二三| av天堂久久9| 国产一卡二卡三卡精品| 色视频在线一区二区三区| 亚洲国产精品999| 亚洲av电影在线观看一区二区三区| 亚洲国产精品999| 丰满迷人的少妇在线观看| 久久中文看片网| 国产日韩一区二区三区精品不卡| 另类亚洲欧美激情| 亚洲欧洲精品一区二区精品久久久| 久久精品国产亚洲av香蕉五月 | 成人亚洲精品一区在线观看| 国产成人免费无遮挡视频| 女性生殖器流出的白浆| 国产免费一区二区三区四区乱码| 大陆偷拍与自拍| xxxhd国产人妻xxx| 男女无遮挡免费网站观看| 国产精品欧美亚洲77777| 两个人免费观看高清视频| 午夜久久久在线观看| 国产免费av片在线观看野外av| 男女高潮啪啪啪动态图| 国产又色又爽无遮挡免| 91大片在线观看| 在线精品无人区一区二区三| 精品国内亚洲2022精品成人 | 69精品国产乱码久久久| 欧美 日韩 精品 国产| 在线观看免费午夜福利视频| 日韩欧美国产一区二区入口| 制服诱惑二区| 99久久人妻综合| 桃花免费在线播放| 欧美97在线视频| 午夜成年电影在线免费观看| 另类亚洲欧美激情| 久久久久久久久免费视频了| 女性生殖器流出的白浆| 精品久久久精品久久久| 岛国毛片在线播放| 黑人操中国人逼视频| 天天添夜夜摸| 久久精品亚洲熟妇少妇任你| 久久免费观看电影| 不卡一级毛片| 三级毛片av免费| 久久久国产欧美日韩av| 亚洲综合色网址| 亚洲精品久久成人aⅴ小说| 日本猛色少妇xxxxx猛交久久| av视频免费观看在线观看| 国产精品一区二区免费欧美 | 国产成人av激情在线播放| 亚洲成av片中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 国产男女超爽视频在线观看| 岛国在线观看网站| 1024视频免费在线观看| 在线观看www视频免费| 一区在线观看完整版| 亚洲 国产 在线| 两人在一起打扑克的视频| 纯流量卡能插随身wifi吗| 最新在线观看一区二区三区| 国产精品香港三级国产av潘金莲| √禁漫天堂资源中文www| 亚洲第一青青草原| 亚洲精品av麻豆狂野| 91成年电影在线观看| 亚洲欧美清纯卡通| 一级片免费观看大全| 日韩中文字幕欧美一区二区| 中国美女看黄片| 亚洲精品在线美女| 久久久精品国产亚洲av高清涩受| 久久久国产欧美日韩av| 久久久精品94久久精品| 中文字幕人妻丝袜一区二区| 美女福利国产在线| 亚洲精品中文字幕一二三四区 | 午夜视频精品福利| 国产区一区二久久| 女人高潮潮喷娇喘18禁视频| 一级片'在线观看视频| 国产欧美日韩一区二区三 | 欧美久久黑人一区二区| 十八禁网站免费在线| 丝袜美足系列| 亚洲av日韩在线播放| 日韩中文字幕欧美一区二区| 久久精品久久久久久噜噜老黄| 国产一区有黄有色的免费视频| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看性视频| 亚洲综合色网址| 18禁国产床啪视频网站| 中文字幕高清在线视频| 亚洲国产精品一区二区三区在线| 丰满饥渴人妻一区二区三| 美女主播在线视频| 国产亚洲av片在线观看秒播厂| 男女高潮啪啪啪动态图| 国产在线视频一区二区| 国产成+人综合+亚洲专区| 一级片免费观看大全| 纯流量卡能插随身wifi吗| 在线av久久热| 狠狠狠狠99中文字幕| 又黄又粗又硬又大视频| 亚洲美女黄色视频免费看| 午夜影院在线不卡| 亚洲色图综合在线观看| 满18在线观看网站| 亚洲专区中文字幕在线| 成人影院久久| 51午夜福利影视在线观看| 悠悠久久av| 久久久精品94久久精品| 黑丝袜美女国产一区| 国产无遮挡羞羞视频在线观看| 久久久国产一区二区| 女人久久www免费人成看片| 一边摸一边做爽爽视频免费| 成人国语在线视频| 亚洲精品美女久久久久99蜜臀| a 毛片基地| 日韩制服骚丝袜av| 99精品欧美一区二区三区四区| 亚洲国产精品成人久久小说| 菩萨蛮人人尽说江南好唐韦庄| 99精品欧美一区二区三区四区| 热99国产精品久久久久久7| 别揉我奶头~嗯~啊~动态视频 | 精品第一国产精品| 高清黄色对白视频在线免费看| 国产深夜福利视频在线观看| 国产精品一区二区免费欧美 | 飞空精品影院首页| 亚洲欧洲日产国产| 亚洲人成77777在线视频| 99热全是精品| 成人三级做爰电影| 黑丝袜美女国产一区| 老司机靠b影院|