• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite elementmodeling of pavement responses based on stress-dependent properties of asphalt layer

    2015-07-25 06:04:50DongNiyaLiChangNiFujian
    關(guān)鍵詞:依賴性面層模量

    Dong NiyaLi ChangNi Fujian,2

    (1School of Transportation,Southeast University,Nanjing 210096,China)

    (2Road Maintenance Technology Engineering Center of Jiangsu Province,Southeast University,Nanjing 210096,China)

    Finite elementmodeling of pavement responses based on stress-dependent properties of asphalt layer

    Dong Niya1Li Chang1Ni Fujian1,2

    (1School of Transportation,Southeast University,Nanjing 210096,China)

    (2Road Maintenance Technology Engineering Center of Jiangsu Province,Southeast University,Nanjing 210096,China)

    In order to investigate the stress-dependent properties of hot-mix asphalt(HMA),a dynamicmodulus test was conducted on a group of AC-20 specimens at various stress states and loading frequencies,respectively.A userdefined material(UMAT)subroutine incorporating stressdependent constitutivemodelwas developed and finite element(FE)simulation was utilized to confirm the validity of the UMAT.A three-dimensional(3D)FE model for typical pavement structure was established,considering the HMA layer as a stress-dependentmaterial and other layers as linear elasticmaterials.Periodic load was applied to the pavement model and the pavement responses were calculated,including dynamicmodulus distributions,surface deflection,shear stress and tensile strain in the HMA layer,etc.Both test results and FE model predictions indicate that the dynamic modulus of asphalt concrete is sensitive to stress state and loading frequency.Using the nonlinear stress-dependentmodel results in greater predicted pavement responses compared with the linear elastic model.It is also found that the effects of stressdependency on pavement responsesbecomemore significantas loading frequency decreases.

    dynamicmodulus test;loading frequency;stressdependentmodel;user-defined material(UMAT)subroutine;pavement responses

    The property of stress-dependency is that the resilient modulus of a material can be affected by loading levels.For conventional design and mechanical analysis of the asphalt pavement structure,structural layers are usually simulated as linear elastic materials whose elastic moduli are constant at a certain temperature and remain unchangeable under different stress states.In fact,the pavement materials are not completely linear elastic.Nonlinear behaviors may appear as a result of complex traffic loading and environmental conditions.Asphalt layers are directly exposed to the environment and saddled w ith traffic loading,which results in complicated stress states,thus causing stress-dependent behavior.

    To characterize stress-dependent properties,many constitutive equations have been proposed recently,and some of them have been w idely used in analyzing the stress-dependent behavior of pavementmaterials.In recent studies,A l-Qadi et al.[1]found using the stress-dependent modulus for the unbound base layer results in great predictions of pavement responses and little estimated pavement life for rutting and fatigue cracking.By performing a dynam ic modulus test,researchers found that the dynam ic modulus of asphalt concrete is susceptible to confining stress and loading frequency[2].Collop et al.[3]found that the permanent vertical strains in the stress-dependent case are significantly greater than those in the non-stress-dependent case by using a stress-dependent constitutivemodel for asphalt.Antes et al.[4]used the results of the triaxial testing program to model the resilient modulus of asphaltm ixtures as a function of the applied stresses and found the effects of stress-dependency of asphaltm ixtures to be not negligible.Zhao et al.[5]developed a stress-dependentmodel for asphaltm ixtures based on the K-θmodel and investigated the influences of stress states on dynam ic modulus distribution w ithin the surface layer.Zeiada et al.[6]found that the confining pressure affects the dynamic modulus of asphalt concrete significantly,especially a_t low frequencies and high temperatures.Zhao et al.[79]further proposed amodelwhich employs the vertical shifting factor to characterize the pressure-dependent behavior of asphalt concrete,and the results show thatwhen the effect of confinement is considered,the dynamic modulus can be more than two times the uniaxial value at the same temperature and frequency.

    So far,the stress-dependent behavior of asphalt concrete has not received extensive research.The study presented in this paper clarifies the effect of stress-dependent asphalt concretemodulus on pavement responses.

    1 Dynam ic M odulus Test

    In this study,basalt aggregates,filler and general 70#bitumen are used to fabricate asphaltm ixture,the properties of which meet the requirements of guide of aggregate tests(JTGE20—2011).The gradation of AC-20 listed in Tab.1 is designed in compliancew ith the Superpave volu-metric m ixture design procedure[10].The volumetric design of the asphaltmixture results in a bitumen content of 4.4%by weight of the totalm ixture to meet a 4.0%target air void.

    Tab.1 Gradation of AC-20 asphalt________m_ixture

    First,asphaltm ixtures of 150 mm×170 mm(diameter ×height)were compacted using a Superpave gyratory compactor,and then each compacted sample was cored and sawn to produce cylindrical specimens w ith smooth and parallel ends and the prescribed dimension of 100 mm ×150 mm(diameter×height)for use in the dynam ic modulus test.The dynam ic modulus test was performed in a stress-controlled compressive mode by follow ing the general guidelines specified in Standard Method of Test for Determining Dynamic Modulus of Hot M ix Asphalt(AASHTO TP 62—2007).The axial loading levelswere adjusted for each test condition to lim it the strain levels w ithin the range of 50 to 80×10-6and the total accumulated strain w ithin 1 500×10-6.

    Dynamic moduliwere measured at the confining pressures of 35,138,and 207 kPa,the loading frequenciesof 0.1,0.5,1,5,10,and 25 Hz,and the temperature of 20℃.Three linear variable differential transformers(LVDT)weremounted onto the surface of the specimen.Three replicates were tested for each of the 18 combinations of confining pressure and loading frequency.Before the test,specimenswere conditioned at least2 h in an air bath in order to achieve the test temperature.Dynam ic modulusmeasurements are listed in Tab.2.Results show that dynam ic modulus increases as the loading frequency or confining stress increases,and the impact of loading frequency on dynam icmodulus is greater than that of confining stress.

    Tab.2 Results of dynam ic modulus E*at20℃___MPa

    2 M odeling of Stress-Dependent Behavior

    Themost commonly used stress-dependent constitutive model is the K-θmodel shown as

    where E*is the dynamic modulus;θis the bulk stress,which is defined as the sum ofmaximum principal stress,intermediate principal stress and m inimum principal stress;K1,K2are the coefficients.The bulk stress is equivalent to the total value of axial stress and double confining stress.The solved model coefficients are listed in Tab.3.

    In this UMAT subroutine,the stress-dependentmodulus was defined as Eq.(1).The flow process of the subroutine w ritten in Fortran language is described as follows:1)The initial stress state and incremental strain from themain routine is obtained;2)The overburden and horizontal stresses are calculated;3)The total principal stress and direction are calculated;4)The bulk stress and resilientmoduli are calculated;5)The incremental Jacobianmatrices are calculated;6)The stress tensor is updated and returned to themain routine.

    Since the stress-dependent modulus is varying,the nonlinear analysis is conducted by using an incremental loading and an iterative solution technique for each loading increment[1].An incremental Jacobian matrix(also known as incremental-stiffnessmatrix)in the subroutine is defined as the ratio of incremental stress to incremental strain.Using the incremental strain tensor provided by the main routine,the UMAT subroutine is required to calculate the Jacobian matrix,update the total stress tensor for the current load increment,and then transmit the updated total stress tensor to themain routine.The Jacobian matrix ofmaterial constitutivemodel isw ritten as

    whereμis the Poisson’s ratio.

    Tab.3 The values of K-θmodel coefficients for AC-20_

    3 Verification of the UMAT Subroutine

    As Fig.1 shows,a 3D FEmodel dimensionally sim ilar to the cylindrical specimen was developed by using ABAQUS Version 6.10 to confirm the validity of the UMAT subroutine.The periodic half-sine loads of different durations and amplitudeswere respectively applied on the top surface.The cylindricalmodel was partitioned into 5 488 20-node quadratic brick elements.

    Fig.1 FEmodel of specimen.(a)Load application;(b)Model meshing

    Tab.4 presents the absolute error and relative error between the test measured modulus and model predicted modulus at various loading frequencies.The maximum absolute error is 132 MPa,and the corresponding relative error,which is also themaximum,is less than 7%.Results show that good agreements are achieved between test measurements and model predictions,and the nonlinear approach taken in the UMAT subroutine is confirmed to be effective.

    Tab.4 Comparisons betweenmeasured and predicted moduli

    The structural type and mechanical properties of each layer are listed in Tab.5.The dimension of the pavement domain was3m×3 m×1.5m(length×w idth×depth).The symmetrical boundary condition was considered in this pavementmodel and double rectangular loading areas were symmetrically distributed beside the centerline of the surface,as shown in Fig.2(a).The traffic loading was modeled by a half-sine load of themaximum amplitude of 0.7 MPa applied on themodel surface.A 20-node quadratic brick elementwas used for the wholemodel,which was partitioned into 38 640 elements.Fine meshing was used around the loading areas,while relatively coarser meshing was used as the distance and depth to the load center increased,as shown in Fig.2(b).

    Tab.5 Structural type and mechanical properties of each layer

    Fig.2 Pavement FE model.(a)Load application;(b)Model meshing.

    4 Result and Analysis

    The horizontal distributions of dynamic modulus at various transverse sections of the HMA layer at a loading frequency of 10 Hz and the vertical distributions at various loading frequencies are plotted in Figs.3(a)and(b),respectively.The maximum predicted modulus is observed at the surface of the HMA layer under the center of each loading area.The predicted modulus varies both horizontally and vertically due to the fact that the stress state alters throughout the HMA layer.It is evident that the predicted modulus decreases sharply as the horizontal distance to the load center increases.In most cases,thepredicted modulus w ithin the loading area decreases as vertical depth increases,w ith the exception of the area around the wheel gap center.The trends of predicted modulus observed in Fig.3(b)are reasonable and in accordance w ith expectations.The predicted modulus under the load center decreases as the vertical depth increases.The reduction of the predicted modulus becomesmore significantwhen the pavement is loaded at a high frequency.

    Fig.3 Distributions of the predicted modulus.(a)Horizontal distributions at various sections at 10 Hz;(b)Vertical distributions at different loading frequencies

    As shown in Fig.4,the maximum deflection is observed under the center of each loading area,and surface deflection increases as the loading frequency decreases.However,there are no obvious differences in the deflection basin curve w ithin a range of loading frequencies(1 to 10 Hz).In contrast,the augment of themaximum deflection is significantwhen the loading frequency varies from 25 to 10 Hz or 0.5 to 0.1 Hz.The results demonstrate that surface deflection is sensitive to the loading frequency,especially above 10 Hz or below 0.5 Hz.

    Fig.4 Surface deflection basins at different loading frequencies

    In this study,the shear stress specifically represents the maximum shear stress,which value is equivalent to the difference between the maximum principal stress and the m inimum principal stress.As shown in Fig.5(a),when the pavement is loaded at 25 Hz,the shear stress close to the surface is positive ow ing to the fact that the m inimum principal stress is greater than the maximum principal stress;as depth increases,the shear stress gradually turns to negative and shares a sim ilar development w ith other loading conditions.Apart from this exception,the shear stress increases in the upper portion of the surface layer,then decreases in the lower part.The shear stress increases as the loading frequency decreases.The maximum shear stresses at each loading frequency are all observed at7 cm depth of the HMA layer.W ith the loading frequency varying from 25 to 0.1 Hz,the maximum shear stress increases by 20%.

    Fig.5 Vertical distributions.(a)Shear stresses;(b)Tensile strains at various loading frequencies

    Fig.5(b)illustrates the vertical distributions of tensile strains w ithin the HMA layer at various loading frequencies.The change in tensile strain consists of three stages.At beginning,the tensile strain gradually increases from negative to zero.Then,it constantly increasesfrom zero to the maximum.Finally,it decreases as the vertical depth increases.However,the third stage at 25 Hz is inconspicuous,and it remains fundamentally unchanged.It is clear that the lower the loading frequency,the greater the tensile strain(absolute value).Themaximum tensile strain increases 8.3 timeswhen the loading frequency varies from 25 to 0.1 Hz,but the differences in the tensile strain are small at loading frequencies of 1 to 10 Hz.From the above,the impact of the loading frequency on tensile strain w ithin the HMA layer is remarkable,especially at low loading frequencies.

    Tab.6 summarizes the predicted pavement responses at selected positions based on the linear elastic and nonlinear stress-dependent models at various loading frequencies.It is apparent that all types of model predictions listed in the table become greater as the loading frequency decreases.The use of the nonlinear stress-dependentmodel for the HMA layer leads to greater predicted pavement responses in comparison w ith the linear elastic model.It is found that the maximum pavement responses are all achieved from the stress-dependent model at0.1 Hz,indicating that the effects of stress-dependency in asphalt concrete and frequency of traffic loading are significant for pavement responses.

    Tab.6 Comparisons of predicted pavement responses between linear and nonlinearmodels

    5 Conclusion

    Based on the predicted pavement responses obtained from different constitutive models,conclusions can be drawn as follows:

    1)Using the nonlinear stress-dependentmodel results in greater predicted pavement responses than using the linear elastic model,including surface deflection,shear stress and tensile strain in the HMA layer,tensile stresses at the bottom of the base and sub-base,and compressive strain at the top of the subgrade.

    2)Predicted pavement responses increase as the loading frequency decreases.However,it is found that sensitivity to loading frequencies of 1 to 10 Hz is less compared to other loading frequencies.

    3)The effects of stress-dependency on surface deflection and tensile strain in the HMA layer becomemore significant as the loading frequency decreases.

    [1]A l-Qadi I,Wang H,Tutum luer E.Dynam ic analysis of thin asphalt pavements by using cross-anisotropic stressdependent properties for granular layer[J].Transportation Research Record,2010,2154:156- 163.

    [2]Ma X,Ni F J,Chen R S.Dynam ic modulus test of asphaltm ixture and predictionmodel[J].China Journalof Highway and Transport,2008,21(3):35- 39.(in Chinese)

    [3]Collop A C,Scarpas A,Kasbergen C,et al.Development and finite element implementation of stress-dependent elastoviscoplastic constitutive model w ith damage for asphalt[J].Transportation Research Record,2003,1832:96- 104.

    [4]Antes PW,Van Dommelen A E,Houben JM,et al.Stress-dependentbehavior of asphaltm ixtures athigh temperatures[C]//Proceedings of the Technical Sessions.Lexington,USA:Association of Asphalt Paving Technologist,2003,72:173- 195.

    [5]Zhao Y Q,Tan Y Q,Yu X.Stress-dependentmechanical behavior of asphalt m ixtures[J].Journal of Huazhong University of Science and Technology:Natural Science Edition,2010,38(10):124- 127.(in Chinese)

    [6]Zeiada W,Kaloush K,Biligiri K,et al.Significance of confined dynamic modulus laboratory testing for asphalt concrete:conventional,gap-graded,and open-graded m ixtures[J].Transportation Research Record,2011,2210:9- 19.

    [7]Zhao Y Q,Tang J,Liu L.Construction of triaxial dynam ic modulus master curve for asphalt mixtures[J].Construction and Building Materials,2012,37(12):21 -26.

    [8]Zhao Y Q,Liu H,Liu W.Characterization of linear viscoelastic properties of asphalt concrete subjected to confining pressure[J].Mechanics of Time-DependentMateri-als,2013,17(3):449- 463.

    [9]Zhao Y Q,Bai L,Liu H.Implementation of a triaxial dynam icmodulusmaster curve in finite-elementmodeling of asphalt pavements[J].Journal of Materials in Civil Engineering,2014,26(3):491- 498.

    [10]AASHTO R 35-04.Standard practice for Superpave volumetric design for hotm ix asphalt(HMA)[R].Washington DC:American Association of State Highway and Transportation Officials,2004.

    基于瀝青面層應(yīng)力依賴性的路面響應(yīng)有限元模擬

    董尼婭1李 昶1倪富健1,2

    (1東南大學(xué)交通學(xué)院,南京210096)
    (2東南大學(xué)江蘇省道路養(yǎng)護工程技術(shù)研究中心,南京210096)

    為了探究瀝青混合料的應(yīng)力依賴性質(zhì),分別在不同應(yīng)力狀態(tài)及荷載頻率下對一組AC-20試件進行了動態(tài)模量試驗.開發(fā)了一個包含應(yīng)力依賴本構(gòu)模型的用戶自定義材料子程序并利用有限元模擬證實了其有效性.建立了一個典型路面結(jié)構(gòu)的三維有限元模型,將瀝青面層視為應(yīng)力依賴性材料,而其他結(jié)構(gòu)層為線彈性材料.對路面模型施加周期性荷載,并計算得到路面響應(yīng),包括動態(tài)模量的分布、路表彎沉、瀝青面層的剪應(yīng)力及拉應(yīng)變等.試驗結(jié)果及有限元模型預(yù)測值均表明了瀝青混凝土的動態(tài)模量對應(yīng)力狀態(tài)及荷載頻率具有敏感性.與線彈性模型相比,使用非線性應(yīng)力依賴模型得到的預(yù)測路面響應(yīng)更大;應(yīng)力依賴性對路面響應(yīng)的影響隨著荷載頻率的減小變得更加顯著.

    動態(tài)模量試驗;荷載頻率;應(yīng)力依賴性模型;UMAT子程序;路面響應(yīng)

    U416.217

    10.3969/j.issn.1003-7985.2015.03.018

    2014-12-28.

    Biographies:Dong Niya(1987—),female,graduate;Ni Fujian(corresponding author),male,doctor,professor,nifujian@gmail.com.

    Jiangsu Provincial Transportation Science and Technology Project(No.2011Y02-1-G1).

    :Dong Niya,Li Chang,Ni Fujian.Finite elementmodeling of pavement responses based on stress-dependent properties of asphalt layer[J].Journal of Southeast University(English Edition),2015,31(3):401- 406.

    10.3969/j.issn.1003-7985.2015.03.018

    猜你喜歡
    依賴性面層模量
    常用天然改性瀝青面層材料比選
    高勁度模量瀝青混合料在京臺高速車轍維修段的應(yīng)用
    室內(nèi)回彈模量和回彈再壓縮模量試驗參數(shù)探討
    山西建筑(2020年11期)2020-06-04 00:09:48
    公路工程施工中瀝青面層連續(xù)攤鋪技術(shù)的應(yīng)用
    非等熵 Chaplygin氣體極限黎曼解關(guān)于擾動的依賴性
    橋梁工程中混凝土面層施工技術(shù)初探
    江西建材(2018年1期)2018-04-04 05:26:16
    關(guān)于現(xiàn)行規(guī)范路基頂面回彈模量的理解和應(yīng)用
    上海公路(2018年4期)2018-03-21 05:57:24
    關(guān)于N—敏感依賴性的迭代特性
    商情(2017年38期)2017-11-28 14:08:59
    液化天然氣在別錫公路面層施工中的應(yīng)用
    中國公路(2017年10期)2017-07-21 14:02:37
    N-月桂酰基谷氨酸鹽性能的pH依賴性
    亚洲人成伊人成综合网2020| 老司机亚洲免费影院| 亚洲欧美激情综合另类| 丝袜美腿诱惑在线| 成年动漫av网址| 国产精品1区2区在线观看. | 国产成人免费无遮挡视频| 18禁黄网站禁片午夜丰满| av福利片在线| 母亲3免费完整高清在线观看| 热99久久久久精品小说推荐| 乱人伦中国视频| 亚洲熟女毛片儿| 两性午夜刺激爽爽歪歪视频在线观看 | 18禁裸乳无遮挡免费网站照片 | 国产精品99久久99久久久不卡| 国内久久婷婷六月综合欲色啪| 日本一区二区免费在线视频| 高清黄色对白视频在线免费看| 国产精品久久久人人做人人爽| 999精品在线视频| 精品国产国语对白av| 女人被狂操c到高潮| 天堂中文最新版在线下载| 日韩欧美一区视频在线观看| 国产精品一区二区精品视频观看| 两个人看的免费小视频| 亚洲免费av在线视频| 欧美在线一区亚洲| 亚洲成人国产一区在线观看| 久久久精品区二区三区| 亚洲色图综合在线观看| 久久久久视频综合| 国产色视频综合| 亚洲av电影在线进入| 久热这里只有精品99| 午夜福利视频在线观看免费| 成人特级黄色片久久久久久久| 久热爱精品视频在线9| 美女国产高潮福利片在线看| 高清欧美精品videossex| www.熟女人妻精品国产| 99香蕉大伊视频| 人成视频在线观看免费观看| 亚洲男人天堂网一区| 波多野结衣av一区二区av| 777久久人妻少妇嫩草av网站| 人妻丰满熟妇av一区二区三区 | 在线播放国产精品三级| 亚洲人成电影免费在线| 99国产精品一区二区蜜桃av | 女人精品久久久久毛片| 亚洲五月天丁香| 日韩三级视频一区二区三区| 黄色女人牲交| 国产精品98久久久久久宅男小说| 手机成人av网站| 中文字幕最新亚洲高清| 久99久视频精品免费| 久久精品成人免费网站| 久久中文字幕一级| 人妻一区二区av| av中文乱码字幕在线| 午夜视频精品福利| 精品国产亚洲在线| 亚洲欧美精品综合一区二区三区| 亚洲专区国产一区二区| 99精品在免费线老司机午夜| 十分钟在线观看高清视频www| 最近最新免费中文字幕在线| 国产精品自产拍在线观看55亚洲 | 久久久国产成人免费| 男女免费视频国产| 国产欧美亚洲国产| 国产av一区二区精品久久| 大型黄色视频在线免费观看| 777久久人妻少妇嫩草av网站| 9191精品国产免费久久| 精品卡一卡二卡四卡免费| 久久国产精品人妻蜜桃| 法律面前人人平等表现在哪些方面| 精品久久久久久电影网| 亚洲熟女精品中文字幕| 久久性视频一级片| av网站免费在线观看视频| 精品久久久久久久毛片微露脸| 在线免费观看的www视频| 巨乳人妻的诱惑在线观看| 91成人精品电影| 国产深夜福利视频在线观看| 国产高清视频在线播放一区| 亚洲欧美精品综合一区二区三区| 欧美日韩精品网址| 一二三四在线观看免费中文在| 亚洲色图av天堂| 国产精品98久久久久久宅男小说| 一级黄色大片毛片| 成人永久免费在线观看视频| 国产成人欧美在线观看 | 亚洲精品国产一区二区精华液| 精品一区二区三区四区五区乱码| 一进一出抽搐动态| 欧美人与性动交α欧美精品济南到| 69av精品久久久久久| 久久精品国产清高在天天线| 久久亚洲精品不卡| avwww免费| 欧美黑人精品巨大| 少妇被粗大的猛进出69影院| 天堂动漫精品| 日本欧美视频一区| 大型黄色视频在线免费观看| 亚洲专区中文字幕在线| 免费在线观看影片大全网站| 精品少妇一区二区三区视频日本电影| 不卡av一区二区三区| 一本大道久久a久久精品| 国产成+人综合+亚洲专区| 欧美人与性动交α欧美软件| 99国产精品一区二区三区| 亚洲国产精品合色在线| 中文亚洲av片在线观看爽 | 国产精品香港三级国产av潘金莲| 精品人妻1区二区| 纯流量卡能插随身wifi吗| 久久久精品区二区三区| 九色亚洲精品在线播放| 欧美乱色亚洲激情| 国产精品乱码一区二三区的特点 | 国产在线一区二区三区精| 亚洲精品中文字幕在线视频| 女同久久另类99精品国产91| 亚洲色图av天堂| 9热在线视频观看99| 两性午夜刺激爽爽歪歪视频在线观看 | 黄色怎么调成土黄色| av天堂久久9| 脱女人内裤的视频| 亚洲精品av麻豆狂野| 淫妇啪啪啪对白视频| 最近最新中文字幕大全电影3 | 欧美在线一区亚洲| 51午夜福利影视在线观看| 男女免费视频国产| 性色av乱码一区二区三区2| 免费观看人在逋| 男女免费视频国产| 大型av网站在线播放| 大型av网站在线播放| 人成视频在线观看免费观看| 国产精品 国内视频| 久久亚洲真实| 亚洲av日韩在线播放| 人成视频在线观看免费观看| 国产一区二区三区综合在线观看| 欧美黑人精品巨大| av欧美777| 欧美午夜高清在线| 亚洲,欧美精品.| 亚洲精品国产精品久久久不卡| 久久久久久久午夜电影 | 亚洲视频免费观看视频| 两个人免费观看高清视频| 他把我摸到了高潮在线观看| 1024香蕉在线观看| 热99久久久久精品小说推荐| 亚洲成人国产一区在线观看| 国产欧美日韩一区二区三| 亚洲成人国产一区在线观看| 99精品欧美一区二区三区四区| av在线播放免费不卡| 男女午夜视频在线观看| 欧美av亚洲av综合av国产av| 亚洲美女黄片视频| 一进一出好大好爽视频| 日韩欧美三级三区| 亚洲精品美女久久久久99蜜臀| 精品人妻熟女毛片av久久网站| a级片在线免费高清观看视频| 在线视频色国产色| 亚洲国产精品sss在线观看 | 国产免费男女视频| 少妇 在线观看| 亚洲成人免费电影在线观看| 三上悠亚av全集在线观看| 亚洲全国av大片| 丝瓜视频免费看黄片| 一进一出抽搐gif免费好疼 | 一边摸一边做爽爽视频免费| 动漫黄色视频在线观看| 亚洲精品国产区一区二| 老熟女久久久| 一区福利在线观看| 成人特级黄色片久久久久久久| 老司机亚洲免费影院| 在线观看www视频免费| 手机成人av网站| 美国免费a级毛片| 亚洲情色 制服丝袜| √禁漫天堂资源中文www| 最新美女视频免费是黄的| 亚洲av片天天在线观看| 又紧又爽又黄一区二区| 一进一出抽搐gif免费好疼 | 人人妻,人人澡人人爽秒播| 热99久久久久精品小说推荐| 99在线人妻在线中文字幕 | 熟女少妇亚洲综合色aaa.| 亚洲avbb在线观看| 大片电影免费在线观看免费| 免费久久久久久久精品成人欧美视频| 欧美另类亚洲清纯唯美| 久久午夜综合久久蜜桃| 久久 成人 亚洲| 91在线观看av| 欧美日韩av久久| 精品一区二区三区视频在线观看免费 | 久久久久国内视频| 国产精品久久电影中文字幕 | 天天躁日日躁夜夜躁夜夜| 在线十欧美十亚洲十日本专区| 精品福利观看| 国产成人欧美| 村上凉子中文字幕在线| av在线播放免费不卡| 免费在线观看完整版高清| 亚洲av日韩精品久久久久久密| 国产亚洲精品久久久久5区| a级毛片在线看网站| 欧美日韩视频精品一区| 女人精品久久久久毛片| 50天的宝宝边吃奶边哭怎么回事| 亚洲中文日韩欧美视频| av不卡在线播放| 欧美成人午夜精品| 午夜视频精品福利| 搡老岳熟女国产| 美女高潮喷水抽搐中文字幕| 精品国产一区二区三区久久久樱花| 精品免费久久久久久久清纯 | 啦啦啦视频在线资源免费观看| 又黄又粗又硬又大视频| 在线观看www视频免费| 免费黄频网站在线观看国产| 久久中文看片网| 亚洲中文av在线| 交换朋友夫妻互换小说| 如日韩欧美国产精品一区二区三区| 亚洲一区高清亚洲精品| 欧美成人免费av一区二区三区 | av国产精品久久久久影院| 亚洲在线自拍视频| 国产精品久久久久成人av| 亚洲精品国产区一区二| 在线观看免费视频网站a站| 成人亚洲精品一区在线观看| 18在线观看网站| 校园春色视频在线观看| 成人永久免费在线观看视频| 丝瓜视频免费看黄片| 十八禁网站免费在线| 免费女性裸体啪啪无遮挡网站| 日韩人妻精品一区2区三区| 国产精品美女特级片免费视频播放器 | 精品亚洲成国产av| 日韩精品免费视频一区二区三区| 亚洲av成人av| 一夜夜www| 久9热在线精品视频| 欧美成人免费av一区二区三区 | 好男人电影高清在线观看| avwww免费| 久久精品人人爽人人爽视色| 午夜精品在线福利| 多毛熟女@视频| 亚洲中文日韩欧美视频| 亚洲中文字幕日韩| 亚洲国产毛片av蜜桃av| 久久狼人影院| 岛国毛片在线播放| 十八禁人妻一区二区| 熟女少妇亚洲综合色aaa.| 精品国产国语对白av| 精品国产超薄肉色丝袜足j| 丁香欧美五月| 欧美日本中文国产一区发布| 18在线观看网站| 国产精品欧美亚洲77777| 亚洲欧美一区二区三区久久| 成人av一区二区三区在线看| 丰满的人妻完整版| 亚洲黑人精品在线| 亚洲一区高清亚洲精品| 免费在线观看日本一区| 一边摸一边抽搐一进一出视频| 亚洲专区中文字幕在线| 丰满的人妻完整版| 性色av乱码一区二区三区2| 一区在线观看完整版| 黄片播放在线免费| 侵犯人妻中文字幕一二三四区| 人人妻,人人澡人人爽秒播| 视频区欧美日本亚洲| 国产精华一区二区三区| 制服人妻中文乱码| 美女国产高潮福利片在线看| 精品久久久久久,| 视频区欧美日本亚洲| 精品熟女少妇八av免费久了| 亚洲精品国产色婷婷电影| 曰老女人黄片| 国产在线观看jvid| 天天添夜夜摸| 黄色片一级片一级黄色片| 黄色a级毛片大全视频| 欧美亚洲日本最大视频资源| 两个人免费观看高清视频| 黄频高清免费视频| bbb黄色大片| 伦理电影免费视频| 在线十欧美十亚洲十日本专区| 12—13女人毛片做爰片一| 少妇被粗大的猛进出69影院| 狠狠狠狠99中文字幕| 亚洲精品乱久久久久久| 麻豆成人av在线观看| 国产一区二区三区综合在线观看| 99热网站在线观看| 亚洲国产欧美网| 纯流量卡能插随身wifi吗| 男女床上黄色一级片免费看| 十八禁人妻一区二区| 欧美中文综合在线视频| 超碰成人久久| 男女午夜视频在线观看| 女性生殖器流出的白浆| 如日韩欧美国产精品一区二区三区| 国产精品 欧美亚洲| 欧美人与性动交α欧美软件| 伊人久久大香线蕉亚洲五| 精品人妻熟女毛片av久久网站| 在线观看午夜福利视频| 久久久国产一区二区| 高清欧美精品videossex| 国产在线一区二区三区精| 在线天堂中文资源库| 黄片大片在线免费观看| 欧美日韩亚洲国产一区二区在线观看 | 可以免费在线观看a视频的电影网站| 国产成人精品久久二区二区免费| 亚洲 国产 在线| 99国产精品免费福利视频| 久久人妻熟女aⅴ| 久久草成人影院| av不卡在线播放| 精品视频人人做人人爽| 亚洲av欧美aⅴ国产| 亚洲免费av在线视频| 热99国产精品久久久久久7| 极品少妇高潮喷水抽搐| av有码第一页| 中文字幕人妻熟女乱码| 亚洲精品av麻豆狂野| 亚洲专区中文字幕在线| 男女床上黄色一级片免费看| 午夜亚洲福利在线播放| 巨乳人妻的诱惑在线观看| 一个人免费在线观看的高清视频| 久久久久久亚洲精品国产蜜桃av| 一本综合久久免费| 欧美精品高潮呻吟av久久| 精品国产一区二区三区久久久樱花| 性少妇av在线| 亚洲自偷自拍图片 自拍| 日韩欧美三级三区| 成人国语在线视频| 午夜激情av网站| 精品一区二区三卡| 啪啪无遮挡十八禁网站| 高潮久久久久久久久久久不卡| 99久久人妻综合| 男女下面插进去视频免费观看| bbb黄色大片| 9191精品国产免费久久| 国产野战对白在线观看| 在线看a的网站| 国产高清videossex| 12—13女人毛片做爰片一| 女人久久www免费人成看片| 99久久精品国产亚洲精品| 免费在线观看视频国产中文字幕亚洲| 欧美av亚洲av综合av国产av| 满18在线观看网站| 高清在线国产一区| 国产无遮挡羞羞视频在线观看| 极品教师在线免费播放| 欧美中文综合在线视频| 久久香蕉精品热| 午夜福利,免费看| 亚洲熟女精品中文字幕| 啦啦啦视频在线资源免费观看| 伊人久久大香线蕉亚洲五| 在线看a的网站| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品中文字幕在线视频| 大香蕉久久网| 精品久久久久久电影网| 又黄又粗又硬又大视频| 亚洲精品久久成人aⅴ小说| a在线观看视频网站| av一本久久久久| 国产一区二区三区视频了| 国产精品.久久久| 免费不卡黄色视频| 欧美日韩瑟瑟在线播放| 99国产精品免费福利视频| 18禁裸乳无遮挡动漫免费视频| 亚洲午夜精品一区,二区,三区| 亚洲国产精品sss在线观看 | 久久精品国产综合久久久| 久久国产乱子伦精品免费另类| 国产av精品麻豆| 黄色女人牲交| 亚洲精品一二三| 99热网站在线观看| 精品福利观看| 亚洲第一av免费看| 欧美精品一区二区免费开放| 看黄色毛片网站| 丝瓜视频免费看黄片| 交换朋友夫妻互换小说| 91在线观看av| 亚洲第一青青草原| 视频区图区小说| 建设人人有责人人尽责人人享有的| 狠狠婷婷综合久久久久久88av| 男女高潮啪啪啪动态图| 好男人电影高清在线观看| 精品国产一区二区三区久久久樱花| 在线av久久热| 老司机在亚洲福利影院| 午夜福利,免费看| 黄色片一级片一级黄色片| 91精品国产国语对白视频| 涩涩av久久男人的天堂| 久久久国产成人免费| 国产精品99久久99久久久不卡| 国产精品av久久久久免费| xxx96com| 亚洲美女黄片视频| 交换朋友夫妻互换小说| 伦理电影免费视频| 天天躁夜夜躁狠狠躁躁| 午夜精品在线福利| 又黄又粗又硬又大视频| 一本一本久久a久久精品综合妖精| 免费在线观看黄色视频的| 亚洲五月色婷婷综合| 欧美日韩乱码在线| 99精品在免费线老司机午夜| 国产91精品成人一区二区三区| 精品久久久久久电影网| 午夜激情av网站| 国产欧美亚洲国产| 精品久久蜜臀av无| 建设人人有责人人尽责人人享有的| 国产有黄有色有爽视频| 国产精品一区二区免费欧美| 日本欧美视频一区| 欧美人与性动交α欧美精品济南到| 欧美日韩精品网址| 99国产综合亚洲精品| www.熟女人妻精品国产| 亚洲成人免费av在线播放| 桃红色精品国产亚洲av| 搡老熟女国产l中国老女人| 18禁国产床啪视频网站| 老司机午夜十八禁免费视频| 变态另类成人亚洲欧美熟女 | 亚洲欧美激情综合另类| 一级a爱视频在线免费观看| 大香蕉久久网| 国产精品免费大片| 国产欧美日韩一区二区三区在线| 亚洲精品中文字幕一二三四区| 精品久久久久久久久久免费视频 | 精品国产乱子伦一区二区三区| tube8黄色片| 成年人黄色毛片网站| 免费在线观看视频国产中文字幕亚洲| 人妻一区二区av| 可以免费在线观看a视频的电影网站| av视频免费观看在线观看| 99精品久久久久人妻精品| 女性被躁到高潮视频| 欧美日本中文国产一区发布| 国产精品免费大片| 999久久久国产精品视频| 天天操日日干夜夜撸| 黄色毛片三级朝国网站| 一区二区日韩欧美中文字幕| 亚洲人成电影免费在线| 国产精品一区二区精品视频观看| 亚洲av日韩精品久久久久久密| www.熟女人妻精品国产| av线在线观看网站| 超色免费av| 亚洲自偷自拍图片 自拍| 亚洲久久久国产精品| 欧美成人免费av一区二区三区 | 久久狼人影院| 热99re8久久精品国产| 精品少妇一区二区三区视频日本电影| 大陆偷拍与自拍| 人人妻人人添人人爽欧美一区卜| 在线观看一区二区三区激情| 69精品国产乱码久久久| 9热在线视频观看99| 老司机影院毛片| 亚洲欧美日韩高清在线视频| 国产精品香港三级国产av潘金莲| 久久这里只有精品19| 精品国产超薄肉色丝袜足j| 满18在线观看网站| 亚洲av成人一区二区三| 亚洲男人天堂网一区| √禁漫天堂资源中文www| 国产男靠女视频免费网站| 欧美乱妇无乱码| 亚洲色图av天堂| 香蕉丝袜av| 亚洲精品av麻豆狂野| av视频免费观看在线观看| 久久久久久亚洲精品国产蜜桃av| 国产成人欧美| 亚洲五月天丁香| 又黄又粗又硬又大视频| 1024香蕉在线观看| 成人国语在线视频| 12—13女人毛片做爰片一| 亚洲人成电影观看| 成年版毛片免费区| 女性生殖器流出的白浆| 中文字幕最新亚洲高清| 日韩 欧美 亚洲 中文字幕| 如日韩欧美国产精品一区二区三区| 欧美激情久久久久久爽电影 | 黄色丝袜av网址大全| 亚洲欧美色中文字幕在线| 午夜老司机福利片| 老汉色∧v一级毛片| 99riav亚洲国产免费| 国产乱人伦免费视频| 欧美日韩乱码在线| 精品卡一卡二卡四卡免费| 十八禁网站免费在线| 搡老乐熟女国产| 两个人免费观看高清视频| 777米奇影视久久| 国产亚洲精品第一综合不卡| 日韩有码中文字幕| 少妇粗大呻吟视频| 两性夫妻黄色片| 国产亚洲精品久久久久久毛片 | 王馨瑶露胸无遮挡在线观看| 捣出白浆h1v1| 黄片播放在线免费| 欧美午夜高清在线| 日韩欧美在线二视频 | 操美女的视频在线观看| 91字幕亚洲| 在线观看免费午夜福利视频| 国产99白浆流出| 在线观看免费日韩欧美大片| 亚洲专区国产一区二区| a级毛片在线看网站| 又黄又爽又免费观看的视频| 一夜夜www| 中文字幕精品免费在线观看视频| 国产男女超爽视频在线观看| 美女福利国产在线| 亚洲av日韩精品久久久久久密| 中文字幕av电影在线播放| 精品人妻熟女毛片av久久网站| 91老司机精品| 99国产精品免费福利视频| xxx96com| 精品乱码久久久久久99久播| 国产高清国产精品国产三级| 黄色女人牲交| 高清在线国产一区| 宅男免费午夜| 精品国产乱子伦一区二区三区| 中文字幕人妻丝袜一区二区| 精品第一国产精品| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级| 久久精品国产清高在天天线| 国产高清国产精品国产三级| 亚洲精品一二三| 我的亚洲天堂| 一二三四社区在线视频社区8| 免费在线观看日本一区| 天堂√8在线中文| 中文字幕av电影在线播放| 大香蕉久久网| 午夜福利影视在线免费观看| 久久亚洲真实| 日韩中文字幕欧美一区二区| 十八禁人妻一区二区| 亚洲欧美激情在线| 91国产中文字幕| 亚洲精品国产区一区二| 国产熟女午夜一区二区三区| 三上悠亚av全集在线观看|