• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of echo signal modulation characteristic parameters on aerial and space targets

    2023-11-11 04:07:24SiChenHiyngZhngChngmingZhoYuFnHongChenLinWng
    Defence Technology 2023年10期

    Si Chen , Hi-yng Zhng ,*, Chng-ming Zho , Yu Fn , Hong Chen , Lin Wng

    a School of Optics and Photonics, Beijing Institute of Technology, Beijing,100081, China

    b Key Laboratory of Electro-Optical Countermeasures Test&Evaluation Technology, Unit 63891 of the Chinese People's Liberation Army, Henan, 461002,China

    c Key Laboratory of Optical Radiation, Beijing Institute of Environmental Characteristics, Beijing,100854, China

    Keywords:Echo signal modulation characteristic parameters Simple targets The fixed-wing UVA Missiles Scattering characteristics

    ABSTRACT Based on the scattering characteristic, the comparison of RCS (radar cross-section) at different positions of a target in the same direction of incidence can be obtained first by extruding or deleting part of the entity.A simulation method of aerial&space targets echo characteristics (A&STEC) is proposed that is universal to aerial and space targets.We utilize a fixed-wing UAV(unmanned aerial vehicle) and typical missiles in simulation.The echo signal modulation characteristic parameters are calculated theoretically by the atmospheric attenuation model, the finite element method and a MUMPS solver.The verification simulations show that this method can analyze the influence of the target shape, incident direction,detection position and detection frequency on echo waveform, intensity and energy distribution.The results show that the profile of echo waveform can invert the general shape of the target.The relationship between time and intensity can determine whether the target is moving towards or away from the detector in addition.These conclusions can provide a reference for the ballistic missile target tracking and the defense against UVA intrusion in theory.

    1.Introduction

    The basis of full-waveform radar applications [1,2] are properties of targets and echo signal modulation characteristic parameters,which can be analyzed by targets scattering characteristics[3].The echo signal modulation characteristic parameters include echo waveform, intensity [4] and energy distribution.The extraction of these parameters is beneficial to acquire more target information.Demodulating the echo of a target and making an analysis of its intrinsic properties can effectively distinguish the surface topography features of a target,so as to improve the detection efficiency and identify camouflaged targets that cannot be detected by traditional methods [5].Therefore, it is significant to study echo characteristics of radar imaging and target recognition [6].

    In 2012,R Welle et al.assigned individual echoes with different echo curves to the global echo group on the foundation of their typical echo characteristics [7], which can confirm whether each curve of the echo is useful or not.Xu Xiaobin et al.derives the plane target impulse response and the pulsed laser echo equation in 2016.The ranging probability density on the plane target is deduced according to the echo equation and the constant threshold time discrimination method [8].The laser echo signal model is established by the emission, target scattering and geometric characteristics.The echo power equations of three typical targets (plane,cone and cylinder) are proved moreover [9].In summary, the analytical equation of a two-dimensional target echo can be constructed, but echo signal modulation characteristic parameters with a three-dimensional target [10] is beyond description by formula in theory.

    The echo signal modulation characteristic parameters of aerial and space targets directly interfere the target tracking and the recognition of radar.As a typical aerial target,the fixed-wing UAV is not easy to be found due to its small RCS, low altitude and slow speed.A novel approach combining an integral model and the method of moment simulates the temporal RCS of a rotor in a very high frequency band during 2019 [11].The development of space targets is extremely rapid.It's a nut in radar target recognition to distinguish between true and false warheads for missile targets threat groups to crack.The echo signals of the above-mentioned targets are difficult to be measured experimentally.Establishing an approximate theoretical echo model is of far-reaching significance.Unfortunately, the surface features of aerial and space targets are complex and required a high accuracy of surface subdivision.Therefore,traditional methods are hard to simulate the echo characteristics of these targets.A simulation method of aerial&space targets echo characteristics was pointed out to construct the echo signal modulation characteristic parameters for complex targets.

    A three-dimensional model of the echo radiation intensity distribution is established for simple targets in Section 2.It makes a comparison among the RCS at different positions of a target in the same incident direction.Often,simple targets,such as the cylinder and the sphere are studied as ballistic missiles.Section 3 proposes a simulation method of A&STEC involving the discussion of emission characteristics, target shapes, and detection parameters.A fixedwing UAV and three types of missiles are included.Factors influencing echo signals returned from a target incorporate target shapes, incident directions, detection positions and detection frequency.The conclusion confirms that the target shape and detection position have a greater impact on echo waveform.The detection frequency has relatively little effect on the contour of echo waveform, but affects echo intensity.The general shape of detected targets can be roughly estimated from the profile of echo waveform.We exhibit the radiation energy distribution of a minuteman missile at different incident angles in the end of this section.Finally, the verification simulation explains that the relation with time and intensity is a way of judging the direction of target motion.In this way, the establishment of the echo coupling model with multiple characteristic parameters of a target can be brought out.It can promote the ability to identify targets,make the evaluation of their performance at perfect and lay the foundation for designing radars.

    2.The simulation for simple targets

    RCS is a physical quantity that measures echo intensity produced by a target under illumination.The RCS of a threedimensional scatterer is defined as Refs.[12,13].relative permeability, σ is the electric conductivity and εris the relative permittivity.We analyze the properties of twodimensional scatterers using the RCS per unit length

    The relationship between Eq.(1) and Eq.(5) is: σ3D=σ2D?(2l2/λ), where l is the length of a scatterer and λ is the wavelength.

    To facilitate the description and calculation of the target's echo signal modulation characteristic parameters, we describe the process as shown in the left of Fig.1.The innermost layer is the detected target,the outer layer is the free space region around the target and the outermost layer is the perfect match layer(PML) in the top right of Fig.1.PML,providing an approximate reflection-free boundary for the computational domain, is essentially a steady governing for the waveform.We set the thickness of PML as around one-tenth of the total modeling space.Azimuth and pitch angles can be acquired by setting the location of the illuminant and the camera [14].Simulation parameters are described in Table 1 in detail.

    A Cylinder can be considered as the result of stretching its bottom surface.If the incident light is shining on the side of a target vertically,the three-dimensional target would be reduced to a twodimensional model for fast solution.

    Treating the radar as far enough away from the target, we can regard the incident field as a plane wave.The target surroundings allows us to exclude the transmitter from the geometric modeling.The radiation energy distribution of a cylinder is shown in Fig.2.The direction of the arrow is equivalent to the incident.Echoes in the vicinity of the target are dominated by standing waves because of reflection.Due to the complex target shape,we not only have to consider whether each facet will or will not be irradiated but also must judge whether a small facet will be shaded by another facet[15].Parts of the target not illuminated by the source are shadowed obviously.

    If the target has a axisymmetric characteristic,taking a sphere as an example, a method involving the deletion of some entities can be used to reduce the number of face elements in calculation.The radiation energy distribution of a sphere target is shown in Fig.3(a).On account of atmospheric attenuation and other influencing factors, the farther the scattering distance is, the lower the echo intensity is.Fig.3(b)shows the relation among relative radii at point P, S, R and the normalized RCS.The function of normalized RCS exhibits a sine-like variation, but the peak of the normalized RCS decreases as the relative radius increases.The decay amplitude of the normalized RCS satisfies P>R>S in each period.

    3.The simulation method of A&STEC

    Taking into account the actual detection, the spherical wave background pressure field affected by the atmospheric attenuation model is suitable for this case as input.Consider the following equation

    where ω denotes the angular frequency, μrcharacterizes the

    Fig.1.The simulation processing of a simple target echo waveform characteristics.

    Table 1Simulation parameters about simple targets.

    Fig.3.The radiation energy distribution of a sphere target:(a)Total electric mode distribution;(b)The relationship between the normalized RCS and the relative radii(r/λ)at P,S,R.

    where psat=pA,ref×10G(T),G(T) = -6.8346(T01/T)1.261+4.6151,the reference temperature is content with Tref= 293.15 K, the reference pressure satisfies pA,ref= 1 atm, T01=273.16 K,T is the actual temperature and pAis the absolute pressure.The absorption coefficient in the impedance boundary condition is given by

    where i is the imaginary unit, Ziis the specific acoustic input impedance, R is the reflection coefficient, φ is the phase and αnis the normal incidence absorption coefficient.In this case, the impedance will be purely resistive as φ = 0.The target strength is computed by the following equation:

    where psis the scattered pressure, pinis the background pressure and r is the distance from the target to the scattering point.The coordinate of the detectors are D1=(-d cos ?,-1,-d sin ?) and D2=(-d cos ?,-d sin ?,-1) respectively, where ? is the received angle and d represents a distance we define.Scanning from 0°to 360°can simulate the fact that the radar rotates around a fixed point during detecting.Relevant physical quantities and assignments are detailed in Table 2.

    It can solve finite element problems with a direct solver based on the LU decomposition.Direct solvers include the MUMPS solver,SPOOLES solver and PARDISO solver.The solving speed of a MUMPS solver is faster than that of a SPOOLES solver.A MUMPS solver also supports cluster computing compared to a PARDISO solver.It offersthe memory required for fine unit partition on complex targets.To sum up, we propose a simulation method of aerial&space targets echo characteristics (A&STEC) with a MUMPS solver to fulfil echo signal modulation characteristic parameters.Since the fixed-wing UAV and missiles are typical targets of the main force in future operations, the airborne attack system is of great significance in order to meet the needs of future operation.A fixed-wing UAV and different types of missiles are used to achieve the research on echo signal modulation characteristic parameters for aerial and space targets in simulation as follows.

    3.1.Aerial targets

    The grid is divided into different densities on the foundation of the fixed-wing UVA target's flight path and shape characteristics in order to be closer to the actual needs.The three-view drawings and the pressure distribution of the target are shown in the right side of Fig.4..

    To facilitate the description and calculation of the target's attitude, we establish the three-dimensional schematic diagram andcoordinate system of the target.It is not hard to realize that the areas under the most pressure are regions ①-③respectively while imagining a fixed-wing UVA is flying.The simulation parameters can be shown in Table 3.Fig.5 exhibits the radiation energy distribution of a fixed-wing UAV target at y=0 plane detected at D1.The received echo intensity depends to a large extent on the actual location of the measurement apparently.The echoes close to the target position are standing waves.With the increasing of the distance between the target and a detector, intensity decreases owing to atmospheric attenuation and other factors.

    Table 3The simulation parameters about a fixed-wing UAV target.

    Fig.4.The simulation processing of a fixed-wing UAV.

    Fig.5.The radiation energy distribution of a fixed-wing UAV target.

    Table 4The simulation parameters about space targets.

    The influence of different detection frequencies and detection positions on the echo is studied as follow.It can be concluded from Fig.6(a)and Fig.6(b)that although the distance from the target is the same, the echo waveform would change at different detection positions.It is not difficult to find the profile of wings and the fuselage through the approximate shape of echo waveform.The general shape of targets can be inverted through the profile of echo waveform as a rule.The detection frequency turns the profile of the echo waveform a little,but affects the highest and lowest intensity in Fig.6(b) and Fig.6(c).

    3.2.Space targets

    Three types of missiles can be utilized as space targets.The simulation parameters about these missiles can be revealed in Table 4.The radiation energy distribution of these three missiles detected at D1 can be seen in Fig.7.Fig.5 and Fig.7 clearly demonstrate that the geometry of the target interferes with the echo energy distribution.

    Fig.8 shows the target strength for various types of missiles at different detection positions and frequencies.The detection position is one of the factors affecting the general shape of the echo waveform apparently in any two diagrams at the first two rows for the same column.The target echo signals of three types of missiles in the location of D1at 1 GHz in Fig.8(g)-Fig.8(i)respectively.The frequency has a negligible effect on the profile of echo waveform but makes a great difference to target strength in Fig.8(e) and Fig.8(h).The above verification simulation indicates that the shape feature of targets,detection position and detection frequency are all influencing factors of the echo modulation characteristic parameters.

    The effect of the incident direction on the echo signal is described below.Fig.9 demonstrates the total electric field mode distribution of the Missile 2 at the x-y section in different incident directions.Fig.10(a) illustrates the magnitude of the relative electric field emitted by the target at an incidence angle of 90°.As shown in these near field plots, you can guess that a distant observer would see peaks in the relative field centered around 75 and 285°.

    4.Discussion on the direction of target motion

    Treat the target as a point while it is far enough away from the radar, Eq.(6) can be regarded as

    Fig.7.The radiation energy distribution of different missiles.

    Fig.8.The target strength for various types of missiles at different detection positions and frequencies.(Each row: same position and frequency but different missiles, Each line:different positions and frequencies but identical missiles, The red dotted line indicates the shape of the echo waveform).

    Fig.9.The electric field mode distribution of the Missile 2 at different incident angles.

    Fig.10.The radiation energy distribution of the Missile 2: (a)The magnitude of the relative electric field; (b)Far-field radiation plot for a 90° angle of incidence.

    Fig.11.The time-intensity curve of the probe signal.

    where Ψ =Ψ(r,z)e-imφ,Ψ(r,z) =π,m is the azimuth angle,ν is the speed and ν = 50 m/s.

    When the target moves in opposite to the atmospheric flow,the wavelength of the sound descends.It means that the target is close to the camera with the growing of the detection frequency.A schematic of the time-intensity relation of the echo signal can be seen in Fig.11.The x-axis indicates the time of movement.The green line shows the target moving towards the detector and the blue one represents the opposite direction.We put forward an assumption that the time corresponding to the curve falling and then rising is one cycle of motion.If the target is close to the detector,the peak of intensity is higher in a cycle than while the target is far away.The cycle of motion is also shorter in this situation.Therefore,this curve can be used to determine whether the target is moving towards or away from the detector.

    5.Conclusions

    (1) This paper summarizes the echo multi-feature distribution models of different targets, including simple geometry targets,aerial and space targets.

    (2) A schematic diagram of radiation energy distribution is drawn for simple targets.The variation law of RCS at different surface elements of a target is obtained.

    (3) The simulation method of A&STEC focuses on the echo modulation characteristics of aerial and space targets,which provides theoretical support for the precision and accuracy of target recognition technology.The verification simulations interprets interactions between echo signal modulation characteristic parameters and their influencing factors by controlling variables.The conclusion is that the target contour can be roughly judged by the echo waveform and the direction of target motion can be determined by the timeintensity curve.

    Funding

    This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    老司机影院成人| 精品熟女少妇av免费看| 欧美日韩视频精品一区| 一本色道久久久久久精品综合| 嫩草影院精品99| 国产精品熟女久久久久浪| 国产欧美日韩一区二区三区在线 | 亚洲av成人精品一二三区| 青青草视频在线视频观看| 最近2019中文字幕mv第一页| 成人欧美大片| 国产乱人视频| av在线天堂中文字幕| 久久久久精品性色| 欧美变态另类bdsm刘玥| 免费观看av网站的网址| 午夜福利网站1000一区二区三区| 婷婷色av中文字幕| 亚洲精品第二区| 丝袜喷水一区| 观看免费一级毛片| 久久精品熟女亚洲av麻豆精品| 日韩视频在线欧美| 中文字幕久久专区| 高清视频免费观看一区二区| 国产黄片美女视频| 日韩欧美 国产精品| 黄片无遮挡物在线观看| 亚洲美女视频黄频| 夫妻午夜视频| 婷婷色综合www| 成年免费大片在线观看| 国产精品伦人一区二区| 人妻制服诱惑在线中文字幕| 精品国产乱码久久久久久小说| 一级毛片久久久久久久久女| 在线亚洲精品国产二区图片欧美 | 少妇高潮的动态图| 国产人妻一区二区三区在| 18禁在线无遮挡免费观看视频| 久久久午夜欧美精品| 纵有疾风起免费观看全集完整版| 色综合色国产| 夜夜看夜夜爽夜夜摸| 国内少妇人妻偷人精品xxx网站| 亚洲欧美日韩无卡精品| 日韩三级伦理在线观看| 舔av片在线| 能在线免费看毛片的网站| 毛片女人毛片| 久久精品久久久久久久性| 尤物成人国产欧美一区二区三区| 成年女人在线观看亚洲视频 | 国产精品人妻久久久影院| 校园人妻丝袜中文字幕| 国产在视频线精品| 亚洲图色成人| 亚洲国产高清在线一区二区三| 国产成人91sexporn| 欧美成人a在线观看| 99热这里只有精品一区| 肉色欧美久久久久久久蜜桃 | 80岁老熟妇乱子伦牲交| 深夜a级毛片| 美女xxoo啪啪120秒动态图| 免费在线观看成人毛片| 日韩,欧美,国产一区二区三区| 汤姆久久久久久久影院中文字幕| 久久久精品94久久精品| 又爽又黄无遮挡网站| 欧美+日韩+精品| 国产精品无大码| 日本爱情动作片www.在线观看| 婷婷色av中文字幕| 大陆偷拍与自拍| 国产成人免费观看mmmm| 国内精品宾馆在线| 亚洲精华国产精华液的使用体验| 少妇人妻一区二区三区视频| av卡一久久| 熟妇人妻不卡中文字幕| 亚洲欧美精品自产自拍| 成人国产av品久久久| 岛国毛片在线播放| 免费电影在线观看免费观看| 国产美女午夜福利| 国产一区二区三区综合在线观看 | 午夜福利视频精品| 国产色婷婷99| 亚洲av中文av极速乱| 搡老乐熟女国产| 建设人人有责人人尽责人人享有的 | 亚洲欧美中文字幕日韩二区| 99久久精品一区二区三区| 亚洲精品亚洲一区二区| 国产av国产精品国产| 欧美成人午夜免费资源| 成人亚洲欧美一区二区av| 一级毛片 在线播放| 国内精品宾馆在线| 国产精品不卡视频一区二区| 日韩中字成人| 色婷婷久久久亚洲欧美| 少妇的逼水好多| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产色婷婷电影| 国产精品一二三区在线看| 人人妻人人看人人澡| 亚洲精品,欧美精品| 黄色怎么调成土黄色| 亚洲久久久久久中文字幕| 在线a可以看的网站| 丰满人妻一区二区三区视频av| 热99国产精品久久久久久7| 成年女人在线观看亚洲视频 | av线在线观看网站| 国产女主播在线喷水免费视频网站| 一级a做视频免费观看| 少妇 在线观看| 亚洲性久久影院| 久久精品国产自在天天线| 嫩草影院入口| 国产欧美日韩精品一区二区| 日本午夜av视频| 一个人观看的视频www高清免费观看| 久久精品国产a三级三级三级| 高清午夜精品一区二区三区| 久久影院123| 韩国av在线不卡| 国产成人a区在线观看| 久久ye,这里只有精品| 色哟哟·www| 国产一级毛片在线| 天堂网av新在线| 免费av不卡在线播放| 黄色一级大片看看| 日日啪夜夜爽| 免费大片黄手机在线观看| 男人舔奶头视频| 九色成人免费人妻av| 欧美成人a在线观看| 欧美丝袜亚洲另类| 亚洲三级黄色毛片| 国产黄片美女视频| 欧美亚洲 丝袜 人妻 在线| 3wmmmm亚洲av在线观看| 91久久精品国产一区二区三区| 欧美成人a在线观看| 中文字幕免费在线视频6| 欧美日本视频| 国产永久视频网站| 精品久久久久久久久亚洲| 国产视频首页在线观看| 韩国av在线不卡| 久久久久久久亚洲中文字幕| 老司机影院毛片| 国产真实伦视频高清在线观看| 搡老乐熟女国产| 日本欧美国产在线视频| 别揉我奶头 嗯啊视频| 免费av观看视频| 两个人的视频大全免费| 少妇人妻一区二区三区视频| av一本久久久久| 高清欧美精品videossex| 亚洲精品乱码久久久v下载方式| 尾随美女入室| 亚洲av日韩在线播放| 日产精品乱码卡一卡2卡三| 777米奇影视久久| av国产精品久久久久影院| 水蜜桃什么品种好| 欧美97在线视频| 国产精品久久久久久久电影| 99热国产这里只有精品6| 久久综合国产亚洲精品| 欧美xxxx性猛交bbbb| 夜夜爽夜夜爽视频| 天堂中文最新版在线下载 | av免费在线看不卡| 欧美成人一区二区免费高清观看| 免费黄网站久久成人精品| 日韩国内少妇激情av| 亚洲精品视频女| 国产亚洲最大av| 亚洲成人一二三区av| 国产成人精品福利久久| 视频区图区小说| 亚洲aⅴ乱码一区二区在线播放| 日本三级黄在线观看| 免费看不卡的av| 国产免费视频播放在线视频| 嘟嘟电影网在线观看| 国产成人freesex在线| 欧美日韩在线观看h| 国产黄a三级三级三级人| 亚洲欧洲国产日韩| 国产亚洲最大av| 狂野欧美白嫩少妇大欣赏| 国产成人a区在线观看| 色综合色国产| 成年女人看的毛片在线观看| 免费电影在线观看免费观看| 亚洲va在线va天堂va国产| videos熟女内射| 久久久久久久久久久免费av| 搡女人真爽免费视频火全软件| 国产亚洲av嫩草精品影院| 特大巨黑吊av在线直播| 青春草视频在线免费观看| 国产有黄有色有爽视频| 美女主播在线视频| 国产一区亚洲一区在线观看| 国产免费一区二区三区四区乱码| 日韩一区二区三区影片| 免费人成在线观看视频色| 国内精品美女久久久久久| 亚洲综合色惰| 亚洲va在线va天堂va国产| 免费黄频网站在线观看国产| 久久女婷五月综合色啪小说 | 国产真实伦视频高清在线观看| 五月伊人婷婷丁香| 99热网站在线观看| 国产男女内射视频| 中国国产av一级| 一边亲一边摸免费视频| 91午夜精品亚洲一区二区三区| 一区二区三区精品91| 免费高清在线观看视频在线观看| 我的老师免费观看完整版| 国产av码专区亚洲av| 亚洲国产日韩一区二区| 精品酒店卫生间| 网址你懂的国产日韩在线| 免费av不卡在线播放| 亚洲精品aⅴ在线观看| 亚洲av中文av极速乱| eeuss影院久久| 久久久久久久久大av| 欧美精品国产亚洲| 嫩草影院精品99| 国产成人免费无遮挡视频| 亚洲va在线va天堂va国产| 少妇 在线观看| 欧美xxxx性猛交bbbb| 禁无遮挡网站| 国产色爽女视频免费观看| 欧美xxⅹ黑人| 丰满人妻一区二区三区视频av| 亚洲国产精品成人久久小说| 婷婷色综合www| 国产在线男女| av播播在线观看一区| 国国产精品蜜臀av免费| 综合色丁香网| 国产精品久久久久久精品电影小说 | 免费av观看视频| 成人亚洲精品一区在线观看 | 伊人久久国产一区二区| 97超碰精品成人国产| 99视频精品全部免费 在线| 亚洲av男天堂| 亚洲综合精品二区| 别揉我奶头 嗯啊视频| 久久久久国产网址| 欧美日韩精品成人综合77777| 免费电影在线观看免费观看| 日韩欧美精品免费久久| 精品一区二区三区视频在线| 国产成人a区在线观看| 看免费成人av毛片| 精品国产乱码久久久久久小说| 国产男人的电影天堂91| videossex国产| 尤物成人国产欧美一区二区三区| 国产熟女欧美一区二区| 丰满人妻一区二区三区视频av| 国产精品久久久久久精品电影小说 | 国产在线一区二区三区精| 欧美区成人在线视频| 欧美少妇被猛烈插入视频| 国产黄色视频一区二区在线观看| 人人妻人人爽人人添夜夜欢视频 | 亚洲精品一区蜜桃| 亚洲无线观看免费| 自拍偷自拍亚洲精品老妇| 一级二级三级毛片免费看| 一级av片app| 成年版毛片免费区| 亚洲综合色惰| 国产精品久久久久久精品电影小说 | 在线免费十八禁| 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| 六月丁香七月| 国产在线一区二区三区精| 麻豆久久精品国产亚洲av| 综合色av麻豆| 欧美成人精品欧美一级黄| 夫妻性生交免费视频一级片| xxx大片免费视频| av线在线观看网站| 精品国产三级普通话版| 亚洲av不卡在线观看| 午夜日本视频在线| 简卡轻食公司| 在线a可以看的网站| 成人特级av手机在线观看| 国产成人a区在线观看| 久久99热这里只有精品18| 热re99久久精品国产66热6| 中文天堂在线官网| 热99国产精品久久久久久7| 亚洲欧美成人精品一区二区| 国产精品久久久久久精品电影| 国产精品熟女久久久久浪| 午夜视频国产福利| 26uuu在线亚洲综合色| 国模一区二区三区四区视频| 99久久精品一区二区三区| 深夜a级毛片| 欧美成人一区二区免费高清观看| kizo精华| 免费电影在线观看免费观看| 久久精品久久久久久久性| 看十八女毛片水多多多| 精品久久久久久久久av| 国产精品久久久久久精品古装| 久久女婷五月综合色啪小说 | 熟女人妻精品中文字幕| 岛国毛片在线播放| 亚洲精品久久午夜乱码| 看免费成人av毛片| 69av精品久久久久久| 精品少妇黑人巨大在线播放| 少妇裸体淫交视频免费看高清| 赤兔流量卡办理| 2018国产大陆天天弄谢| 成人欧美大片| 男女国产视频网站| 免费看不卡的av| 97在线视频观看| 欧美潮喷喷水| 一级毛片电影观看| 亚洲欧美成人精品一区二区| 偷拍熟女少妇极品色| 欧美老熟妇乱子伦牲交| 一级毛片久久久久久久久女| 国产探花极品一区二区| 日本爱情动作片www.在线观看| 人人妻人人爽人人添夜夜欢视频 | 美女内射精品一级片tv| 日本三级黄在线观看| 1000部很黄的大片| 欧美性感艳星| 赤兔流量卡办理| 精品久久久久久久久亚洲| 热99国产精品久久久久久7| 欧美人与善性xxx| 日韩大片免费观看网站| 欧美丝袜亚洲另类| 99视频精品全部免费 在线| 国产精品精品国产色婷婷| 新久久久久国产一级毛片| 日日啪夜夜撸| 日韩欧美精品免费久久| 亚洲,欧美,日韩| 亚州av有码| 成人鲁丝片一二三区免费| 亚洲第一区二区三区不卡| 日本爱情动作片www.在线观看| 特级一级黄色大片| 日日摸夜夜添夜夜爱| 国产欧美亚洲国产| 亚洲婷婷狠狠爱综合网| 你懂的网址亚洲精品在线观看| 国语对白做爰xxxⅹ性视频网站| 99精国产麻豆久久婷婷| 最近手机中文字幕大全| av在线蜜桃| 国产淫片久久久久久久久| 国内精品美女久久久久久| 色婷婷久久久亚洲欧美| 日韩一本色道免费dvd| 亚洲人与动物交配视频| 国产精品偷伦视频观看了| 色视频www国产| 久久99蜜桃精品久久| 婷婷色av中文字幕| 成人国产麻豆网| 国产久久久一区二区三区| 国产精品秋霞免费鲁丝片| 亚洲av在线观看美女高潮| 国内揄拍国产精品人妻在线| 老师上课跳d突然被开到最大视频| 免费电影在线观看免费观看| 男女无遮挡免费网站观看| 精品久久国产蜜桃| 亚洲国产精品999| 99九九线精品视频在线观看视频| 亚洲,欧美,日韩| 久久精品久久精品一区二区三区| 久久女婷五月综合色啪小说 | 国产成人freesex在线| 久久精品久久精品一区二区三区| 亚洲成色77777| 最后的刺客免费高清国语| 免费观看在线日韩| 国产 精品1| 日韩av不卡免费在线播放| 久久精品国产亚洲网站| 精品久久久久久久久亚洲| 欧美成人午夜免费资源| 各种免费的搞黄视频| 青春草视频在线免费观看| 国产精品三级大全| 国产毛片在线视频| 色播亚洲综合网| 久久女婷五月综合色啪小说 | 白带黄色成豆腐渣| 男插女下体视频免费在线播放| 在线看a的网站| 狂野欧美激情性bbbbbb| 街头女战士在线观看网站| 男人狂女人下面高潮的视频| 菩萨蛮人人尽说江南好唐韦庄| 真实男女啪啪啪动态图| 欧美国产精品一级二级三级 | 成年女人在线观看亚洲视频 | 白带黄色成豆腐渣| 99久久精品国产国产毛片| 日韩欧美 国产精品| 亚洲欧美日韩另类电影网站 | 菩萨蛮人人尽说江南好唐韦庄| 免费黄频网站在线观看国产| 国产精品三级大全| 在线精品无人区一区二区三 | 九九爱精品视频在线观看| 少妇人妻久久综合中文| 黄色欧美视频在线观看| 国产男女内射视频| 亚洲在线观看片| 最近最新中文字幕免费大全7| 久久精品久久久久久久性| 成人午夜精彩视频在线观看| 亚洲在久久综合| 亚洲成国产人片在线观看| 美女视频免费永久观看网站| 日韩av在线免费看完整版不卡| 91精品国产国语对白视频| 国产伦理片在线播放av一区| 日韩大片免费观看网站| 超碰97精品在线观看| 日韩人妻精品一区2区三区| 亚洲婷婷狠狠爱综合网| 男女床上黄色一级片免费看| 午夜久久久在线观看| 老熟女久久久| 这个男人来自地球电影免费观看 | 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡| 男女无遮挡免费网站观看| 尾随美女入室| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇人妻精品综合一区二区| 99re6热这里在线精品视频| 国产国语露脸激情在线看| 亚洲av综合色区一区| 大话2 男鬼变身卡| 午夜福利视频精品| 久热这里只有精品99| 国产福利在线免费观看视频| 精品一区二区三区av网在线观看 | 久久综合国产亚洲精品| 国产免费又黄又爽又色| 亚洲美女视频黄频| 国产乱来视频区| 午夜福利免费观看在线| av在线播放精品| 亚洲男人天堂网一区| 国产精品三级大全| 国产亚洲精品第一综合不卡| 极品人妻少妇av视频| 丰满饥渴人妻一区二区三| 免费高清在线观看视频在线观看| 九色亚洲精品在线播放| 色精品久久人妻99蜜桃| 国产爽快片一区二区三区| 中文字幕色久视频| 亚洲第一青青草原| 亚洲欧美一区二区三区久久| 日韩av在线免费看完整版不卡| 女的被弄到高潮叫床怎么办| 亚洲一级一片aⅴ在线观看| 秋霞伦理黄片| 日日爽夜夜爽网站| 高清黄色对白视频在线免费看| 久久久精品区二区三区| e午夜精品久久久久久久| 精品一品国产午夜福利视频| av国产精品久久久久影院| 中文字幕另类日韩欧美亚洲嫩草| 国产乱来视频区| 亚洲国产av影院在线观看| 男女无遮挡免费网站观看| 我的亚洲天堂| 天堂中文最新版在线下载| 国产精品一二三区在线看| 亚洲伊人久久精品综合| 午夜免费观看性视频| 两个人看的免费小视频| 蜜桃在线观看..| 各种免费的搞黄视频| 制服人妻中文乱码| 日本欧美视频一区| 国产97色在线日韩免费| 国产在线一区二区三区精| 人人妻人人澡人人看| 99九九在线精品视频| 久久久久久久久久久免费av| av卡一久久| 亚洲人成77777在线视频| 色播在线永久视频| 久久国产精品大桥未久av| 国产免费一区二区三区四区乱码| videosex国产| 亚洲欧美一区二区三区久久| 叶爱在线成人免费视频播放| 亚洲精品国产av成人精品| 国产成人精品久久久久久| 男人爽女人下面视频在线观看| 精品福利永久在线观看| 欧美精品亚洲一区二区| 伊人亚洲综合成人网| 九色亚洲精品在线播放| av在线观看视频网站免费| 免费看av在线观看网站| 99香蕉大伊视频| 久久人人97超碰香蕉20202| 亚洲天堂av无毛| 国产日韩欧美在线精品| 久久99热这里只频精品6学生| 免费观看av网站的网址| 999精品在线视频| 自拍欧美九色日韩亚洲蝌蚪91| 捣出白浆h1v1| 9热在线视频观看99| 成人国产麻豆网| 亚洲人成网站在线观看播放| av国产久精品久网站免费入址| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 免费人妻精品一区二区三区视频| 国产一区二区在线观看av| 欧美日韩亚洲高清精品| 日本一区二区免费在线视频| 人人妻,人人澡人人爽秒播 | 久久久久精品人妻al黑| 色视频在线一区二区三区| 亚洲精品美女久久久久99蜜臀 | 咕卡用的链子| 成年美女黄网站色视频大全免费| 成年人午夜在线观看视频| 日韩av在线免费看完整版不卡| 亚洲熟女毛片儿| 国产精品一国产av| 亚洲专区中文字幕在线 | 乱人伦中国视频| 色吧在线观看| 精品一品国产午夜福利视频| 免费av中文字幕在线| 亚洲男人天堂网一区| 久久 成人 亚洲| 国产av精品麻豆| 在现免费观看毛片| 亚洲精品视频女| 国产精品久久久久久久久免| 日韩不卡一区二区三区视频在线| av在线老鸭窝| 久久久精品94久久精品| 人人妻人人爽人人添夜夜欢视频| 看免费av毛片| 永久免费av网站大全| 丝瓜视频免费看黄片| 亚洲国产精品一区三区| 大话2 男鬼变身卡| 九九爱精品视频在线观看| 国产精品一区二区在线不卡| 亚洲第一区二区三区不卡| 中文字幕亚洲精品专区| 一级毛片电影观看| 香蕉丝袜av| 欧美日韩亚洲高清精品| 精品一区在线观看国产| 在线天堂最新版资源| 国产成人欧美| 一级毛片电影观看| 中文字幕人妻丝袜制服| 纯流量卡能插随身wifi吗| 激情五月婷婷亚洲| 最近中文字幕2019免费版| 亚洲av综合色区一区| 亚洲欧洲日产国产| 叶爱在线成人免费视频播放| 丝袜在线中文字幕| 丰满乱子伦码专区| 成年美女黄网站色视频大全免费| 午夜精品国产一区二区电影| 久久久久人妻精品一区果冻| 大话2 男鬼变身卡| 乱人伦中国视频| 日本av手机在线免费观看| 国产精品久久久久久人妻精品电影 | 欧美精品人与动牲交sv欧美|