• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Active learning accelerated Monte-Carlo simulation based on the modified K-nearest neighbors algorithm and its application to reliability estimations

    2023-11-11 04:08:02ZhifengXuJiyinCoGngZhngXuyongChenYushunWu
    Defence Technology 2023年10期

    Zhifeng Xu , Jiyin Co , Gng Zhng ,c,*, Xuyong Chen , Yushun Wu

    a School of Civil Engineering and Architecture, Wuhan Institute of Technology, Wuhan, 430200, PR China

    b School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan, 430200, PR China

    c Failure Mechanics&Engineering Disaster Prevention and Mitigation,Key Laboratory of Sichuan Province,Sichuan University,Chengdu,610065,PR China

    Keywords:Active learning Monte-carlo simulation K-nearest neighbors Reliability estimation Classification

    ABSTRACT This paper proposes an active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm.The core idea of the proposed method is to judge whether or not the output of a random input point can be postulated through a classifier implemented through the modified K-nearest neighbors algorithm.Compared to other active learning methods resorting to experimental designs, the proposed method is characterized by employing Monte-Carlo simulation for sampling inputs and saving a large portion of the actual evaluations of outputs through an accurate classification, which is applicable for most structural reliability estimation problems.Moreover, the validity,efficiency,and accuracy of the proposed method are demonstrated numerically.In addition,the optimal value of K that maximizes the computational efficiency is studied.Finally,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random displacements, which further validates its practicability.

    1.Introduction

    New materials, such as alloys, ceramics, matrix composites,phase change materials, reactive materials, etc., have been widely used in aerospace and defense industries, whose varied applications cover infrastructure, aircraft wings and fuselages, armor,biomedical implants, microelectromechanical systems, etc.[1-4].In order to better guarantee military products’ quality as well as personnel’s life safety, reliability-based design has become the prevailing design method of various military equipment, which usually requires an extremely low failure risk, e.g., a failure probability on the order of 10-6[5-9].Evidently, direct experimental tests are banned for probing such a low failure risk because of the corresponding unaffordable cost.To handle such a problem, two general approaches are usually adopted:probabilistic methods and statistical methods [5,10].

    Probabilistic methods resort to mechanics-based analytical models to predict failure probability,whose advantage is the ability to produce an entire reliability distribution using a relatively small amount of data.On the other hand, probabilistic methods are limited to simple failure mechanisms and simple probabilistic models, e.g., the bundle model for ductile structures [11], the weakest-link models for brittle and quasi-brittle structures [12],the fishnet model for lamellar materials [13],etc.Recently,Xu and Le proposed the first passage model based on random fields[14,15],which is a continuous model intended for describing the failure statistics of complex structures.

    On the other hand,statistical methods are anchored by Monte-Carlo (MC) simulations, which are usually computationally more expensive than probabilistic methods.But the ability to deal with sophisticated structural configurations and diverse failure mechanisms makes statistical methods more beneficial for practical engineering problems than probabilistic methods [16].Since direct MC simulations are universal but cumbersome, numerous approaches aimed at improving the computational efficiency have been developed [5], such as importance samplings [17,18],directional samplings [19,20], subset simulations [21,22], Latin hyperrectangle samplings [23,24], response surface methods [25],directional division-based methods [26,27], etc.

    In recent years, machine learning-based statistical methods[28-32] have found their superiorities to classical statistical methods on structural reliability estimations for having better computational efficiency,in which the heuristic ones are gradientbased algorithms [33,34], swarm algorithm-based methods[35-37], genetic algorithms-based methods [38-40], active learning-based methods [32,41,42], deep learning-based methods[43], etc.In terms of machine learning, reliability estimation falls into the classification problems, aiming at providing accurate predictions on random input points’ being in the safe domain or not.However, misclassifications produced by the machine learning processes would deteriorate the accuracy of these methods,which would yield considerable errors for reliability estimations when the failure probability is sufficiently low.

    Aiming at decreasing misclassifications and therefore increasing the accuracy of reliability estimations,this paper proposes an active learning-based statistical method based on the modified K-nearest neighbors (KNN) algorithm, in which the convex hull of nearest neighbors is used for improving the accuracy of classifications.Rather than regulating the sampling points through experimental design as in other active learning methods, the proposed method uses MC simulations for sampling the input points.The core idea of the proposed method is to use the modified KNN algorithm to determine whether or not a random point can be postulated or needs to be actually sampled by MC simulations.Through such an implementation, a large number of evaluations of the corresponding outputs can be saved, resulting in a satisfactory acceleration.At this point, it is noted that, since the chance of its misclassifications is low, the proposed method can be applied to accelerate most MC simulations with sufficient accuracy, which is in a sense general for reliability-related problems.Evidently, the proposed method can be combined with any method that requires MC simulations, giving birth to new methods with better efficiencies.

    The rest of the paper is organized as follows:Section 2 presents the necessary theoretical background of the proposed; Section 3 presents and validifies the proposed acceleration method for MC simulations; Section 4 studies the optimal value of K that maximizes the computational efficiency;Section 5 applies the proposed method to the reliability estimation of the carbon fiber reinforced silicon carbide composite specimens subjected to random tensile displacements, from which the practicability of the proposed method is further verified.

    2.Theoretical background

    This section presents the necessary theoretical background for this paper,in which Subsection 2.1 introduces the fundamentals of reliability analysis, and Subsection 2.2 demonstrates the KNN algorithm.

    2.1.Reliability analysis

    Given a structure subjected to n number of random variables denoted by the vector x = [x1, x2, …, xn]T, and a set of nominal responses {y1(x), y2(x), …, yj(x)}, where yi(x) < 0 represents a corresponding failure state and the superscript T is the transpose operator.The following performance function is defined as the measure of the structural state

    where y>0 or y<0 indicates the structure is in the safe or failure state, respectively.If the existence of any negative nominal response can trigger the structural failure, then y = min {y1(x),y2(x), …, yj(x)} becomes the performance function of the entire structure.

    Conventionally, x and y are usually referred to as the input and output, respectively.Besides, the input x is called positive or negative according to the sign of its output y, i.e., x is positive if y>0,x is negative if y<0.It is noted that x can be a combination of loads and resistances.The limit between the safe state and the failure state is represented by the following limit state function

    Evidently, the failure probability becomes

    where fx(x1,x2,…,xn)is the joint probability density function(PDF)of each xi, and Ωs= {x| y(x) > 0} is the safe domain, and R is the reliability.

    Through MC simulation, a input set X = {x1; x2; …; xN} can be generated,in which N is the sample size,and xi=[x1i,x2i,…,xni]Tis the ith sample input.The output set with respect to X is represented by the output set Y={y1;y2;…;yN},where yi=y(xi).According to the law of large numbers, the failure probability can be computed by

    where NSis the total number sample points in Ωs.

    2.2.The K-nearest neighbors algorithm

    As one of the most widely used classifiers in machine learning,the KNN algorithm can be applied to the classification of reliability problems,in which a sample point should be classified into the safe domain or the failure domain by judging its p-value,i.e.,if p>0.5,the point is classified into the safe domain;else,it is classified into the failure domain.And the p-value is computed by

    where K is the number of neighbors, and Ksis the number of neighbor sample points that belong to the safe domain.It is noted that K can be a prescribed constant or a random variable, e.g., the number of sample points whose distances to the point of interest is smaller than a critical distance,where the distance metrics used in KNN can be Euclidean distance, Minkowski distance, Manhattan distance, Chebychev distance, correlation, etc.

    3.Active learning accelerated Monte-Carlo simulation method based on the modified K-nearest neighbors algorithm

    This section presents the active learning accelerated Monte-Carlo simulation method, which employs the modified KNN algorithm as the classifier for determining whether the output of a random input point can be postulated or not,in which Subsection 3.1 presents the method, Subsection 3.2 numerically validates the method, and Subsection 3.3 studies the optimal value of K numerically.

    3.1.Method presentation

    The proposed acceleration method for Monte-Carlo simulations is anchored by postulating the sampling result through the modified KNN algorithm.To be more specific, for the i-th input xi, the modified KNN algorithm will work as a classifier that determines whether the output of xican be postulated.In this case, the corresponding output is estimated by yi= y*(xi), where y* is the estimator; otherwise, the output is obtained by evaluating the performance function in Eq.(1), i.e., yi= y (xi).In conventions of machine learning,the evaluation of yithrough y(xi)is referred to as the i-th experiment.At this point, the following convention is made: inputs whose outputs are postulated through the proposed method are referred to as postulates, and postulates whose sign is contradictory to the corresponding experiments are referred to as misclassifications.

    Fig.1 shows the flowchart of the proposed method, which can be concluded into the following steps:Step 1,determine the sample size N and the number of neighbors K;Step 2,sample K number of random inputs and evaluate their corresponding outputs; Step 3,perform Step 4 and Step 5 until the number of currently sampled inputs reaches N; Step 4, sample a random input and determine whether it can be postulated through the modified KNN algorithm;Step 5, if the input sampled in Step 4 can be postulated, then estimate the output through interpolation, else evaluate the performance function.

    The classifier implemented through the modified KNN algorithm contains the following four steps: Step 1, find the K nearest neighbors of the i-th input xi,which are denoted by xi1,…xiK;Step 2,if xi1, …xiKare uniformly positive or negative,then perform Step 3 and Step 4,else,conclude that x cannot be postulated;Step 3,hatch the convex hull of xi1, …xiK; Step 4, if xiis inside the convex hull,then estimate the output of xiby yi= y*(xi), if xiis outside the convex hull, then conclude that x cannot be postulated.Fig.2(a)presents the flowchart of the modified KNN algorithm, while Fig.2(b) demonstrates the corresponding classification details.Nevertheless, this classifier would still produce misclassifications for the following cases (as shown in Fig.2(c)): (1) the limit state surface has large curvatures; (2) the limit state surface contains multiple pores;and(3)the limit state surfaces are closely adjacent.Yet the above-listed cases for misclassifications are usually rarely encountered in structural reliability assessments.Hence, the proposed classifier is expected to yield accurate classification results and therefore can be safely applied to accelerate most Monte-Carlo simulations for structural reliability estimation.

    Fig.1.Flowchart of the the proposed method.

    In the proposed method, the estimator is chosen to be the following interpolation function

    3.2.Numerical validation

    First of all, since the proposed method is designed to be a universal acceleration method for most MC simulations for reliability estimations, this subsection only studies the acceleration effect of the proposed method, while the comparison with other reliability estimation methods is not necessary.Moreover, the proposed method is applicable to most reliability estimation methods that require MC simulations, further improving their efficiency.

    In order to validate its accuracy and efficiency, the proposed method is used to accelerate the reliability estimation of the following modified version of the series system reliability problem with high non-linearity [43].

    in which x1and x2obey standard Gaussian distribution.

    Fig.2.Illustration on the modified KNN algorithm: (a) The flowchart; (b) The demonstration of the classification; (c) The missclassification cases.

    Fig.3.The numerical validation result: (a) Experiments and postulates; (b) Postulates; (c) Experiments.

    Fig.3 shows the numerical simulation result using the proposed method, in which (a) shows the simulation result of both experiments and postulates,(b)shows the simulation result of postulates,and (c) shows the simulation result of experiments.In this numerical validation,the value of K is set to 50,and the interpolation method adopted is triangulation-based linear interpolation.A total of 105input points are sampled,232 of which are negative,and the corresponding estimated failure probability is 0.232%, while the exact value is 0.226%.Table 1 shows the statistics of the numerical simulation result using the proposed method, in which 99,212 out of the 105inputs are postulated using the proposed method.As a result, the proposed method can save 99.212% of the MC simulations, which accelerated the direct MC about 126 times.And the number of misclassifications is zero.The mean and standard deviation of the postulate errors are-0.0254 and 0.1389,respectively.Fig.4 shows the histogram of the postulate errors,which indicates the proposed method also has good accuracy for estimating the performance function.Since the correct classification between positive inputs and negative inputs is crucial for reliability computation while the postulate errors are relatively trivial, it is concluded that the proposed method is surprisingly accurate and suitable for reliability estimations.

    3.3.Study on the optimal value of K

    This section analyzes the optimal value of K, which maximizesthe computational efficiency by minimizing the number of experiments.It is noted that the optimal value of K is influenced by the dimension of inputs.In order to numerically investigate the optimal value of K, the following two cases are studied: Case 1 uses the modified version of the series system reliability problem with high non-linearity as the performance function(represented by Eq.(8)),where the exact failure probability Pf= 0.226%; Case 2 is the following high-dimensional problem [32].

    Table 1The statistics of the numerical simulation result using the proposed method.

    where x1to xnobey the identical lognormal distribution with a unit mean and a standard deviation σ=0.2,n=40,and the exact failure probability Pf= 0.196%.

    The simulation results for the number of experiments and misclassifications for the above cases are shown in Table 2, and Table 3, respectively, and from Table 3, it can be seen that the proposed algorithm is amazingly accurate by producing exactly zero misclassifications for all the tested cases.Fig.5 show the corresponding number of experiments as a function of K with respect to different sample sizes, in which the number of experiments is plotted in log form.Besides, the successful application of the proposed method to Case 2 demonstrates its applicability to highdimensional cases.Furthermore, it can be seen from Fig.5 that:1), for a given sample size, the number of experiments would first decrease as K increases and then increase as K increases,indicating there exists an optimal value of K that minimizes the number of experiments;2),the optimal value of K is influenced by the sample size and the dimensionality; and 3), after K passes the corresponding optimal value, the increasing rate of the total number of experiments becomes low, implying K can be moderately greater than the corresponding optimal value in practice.

    4.Application to the reliability estimation of carbon fiber reinforced silicon carbide composite specimens

    In this section,the proposed method is applied to the reliability estimation of the carbon fiber reinforced silicon carbide (C/SiC)composite specimens under random tensile displacements.The studied specimens are representative volume elements(RVEs)that consist of C/SiC T700-12 K unidirectional ceramic matrix composite fibers.As shown in Fig.6(a), each RVE contains 10 fibers with random tensile strengths, in which the fibers are modeled as 2-dimensional rectangular elements.One side of the sample is clamped while the other side is subjected to random tensile displacements denoted by u.The length, width, and thickness of a fiber are 1000 μm,10 μm, and 10 μm, respectively, and u obey the normal distribution, whose mean are standard deviation are 4 μm and 0.4 μm, respectively.The material constitutive model for the fibers is chosen as the isotropic damage model with linear softening (shown in Fig.6(b)) [44], whose material parameters are described by Table 4.OOFEM [45], which is an open-source finite element analysis program,is applied for performing the simulation.For any RVE, failure or safety is characterized by whether there exists a fiber whose damage parameter is greater than 0.5, and Fig.6(c) shows the damage pattern of one realization that failed during the finite element simulation.

    Altogether,105samples are tested, in which each run has 200 sub-steps.The number of failed RVEs is 26,which corresponds to a failure probability equals 0.026%.Among the 105outputs,only 2771 of them are obtained experimentally, while the rest 97,229 are postulated.Therefore,the proposed method saved 97.2%of the total MC simulations,accelerating the direct MC simulations by about 35 times.In order to further validate the misclassification error,1000 postulates are selected randomly, whose outputs are evaluated experimentally.It is found that the corresponding number of misclassifications is zero, demonstrating the good classification accuracy of the proposed method.

    Table 2The statistics of the total number of experiments using the proposed method.

    Table 3The statistics of the total number of misclassifications using the proposed method.

    Fig.5.Number of experiments VS the value of K: (a) Case 1; (b) Case 2.

    Fig.6.Demonstration of the finite element simulations: (a) Configurations and loadings; (b) Implemented stress-strain diagram; (c) Dammage parttern of a failed realization.

    Table 4Material parameters of the fibers.

    5.Conclusions

    This research proposes an active learning-based method for accelerating Monte-Carlo simulations in structural reliabilityrelated problems, whose chance of misclassification is proven to be extremely low.In addition, the optimal value of K that maximizes the computational efficiency is studied numerically.Finally,the application to the reliability estimation of the C/SiC composite specimens validates the practicality of the proposed method.Moreover, the following conclusions are drawn:

    (1) The modified KNN algorithm using nearest neighbors’convex hull can accurately classify a random input into the safe domain or the failure domain;

    (2) Using triangulation-based interpolations yields estimated outputs with reasonable errors;

    (3) There exists an optimal value of K for the proposed method that minimizes the number of experiments;

    (4) The proposed method is applicable to high-dimensional cases.

    Funding

    This work was supported by the National Natural Science Foundation of China (Grant No.12002246 and No.52178301),Knowledge Innovation Program of Wuhan (Grant No.2022010801020357), the Science Research Foundation of Wuhan Institute of Technology (Grant No.K2021030), 2020 annual Open Fund of Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province (Sichuan University)(Grant No.2020JDS0022),and Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety (Grant No.2019KA03).

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The authors wish to acknowledge the financial supports provided by the National Natural Science Foundation of China (Grant No.12002246 and No.52178301),the Science Research Foundation of Wuhan Institute of Technology (Grant No.K2021030), 2020 annual Open Fund of Failure Mechanics & Engineering Disaster Prevention and Mitigation, Key Laboratory of Sichuan Province(Sichuan University)(Grant No.2020JDS0022),and Open Research Fund Program of Hubei Provincial Key Laboratory of Chemical Equipment Intensification and Intrinsic Safety (Grant No.2019KA03).

    此物有八面人人有两片| 激情在线观看视频在线高清| 中文字幕人成人乱码亚洲影| 淫秽高清视频在线观看| 毛片女人毛片| 亚洲天堂国产精品一区在线| 在线观看66精品国产| 一级a爱片免费观看的视频| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩卡通动漫| 特大巨黑吊av在线直播| 亚洲av五月六月丁香网| 色综合亚洲欧美另类图片| 91在线精品国自产拍蜜月 | 欧美黑人巨大hd| av片东京热男人的天堂| 天堂网av新在线| 一二三四在线观看免费中文在| 午夜福利在线在线| 99国产综合亚洲精品| 毛片女人毛片| 国产av麻豆久久久久久久| 成年女人看的毛片在线观看| 久久精品影院6| 禁无遮挡网站| 久久热在线av| 动漫黄色视频在线观看| 99在线人妻在线中文字幕| 日本一二三区视频观看| 精品国产乱子伦一区二区三区| 国产精品1区2区在线观看.| 一级a爱片免费观看的视频| 在线观看美女被高潮喷水网站 | 日韩 欧美 亚洲 中文字幕| 九九热线精品视视频播放| 午夜精品久久久久久毛片777| 亚洲第一电影网av| 亚洲 欧美 日韩 在线 免费| 美女免费视频网站| 丰满人妻一区二区三区视频av | 老司机福利观看| www.精华液| 一进一出抽搐动态| 国产成人aa在线观看| 99精品久久久久人妻精品| av女优亚洲男人天堂 | 曰老女人黄片| 午夜福利18| 男女床上黄色一级片免费看| 麻豆国产97在线/欧美| 观看美女的网站| 18禁裸乳无遮挡免费网站照片| 最近在线观看免费完整版| 国产亚洲欧美98| 久久伊人香网站| 亚洲av中文字字幕乱码综合| 精品福利观看| 亚洲国产高清在线一区二区三| 又粗又爽又猛毛片免费看| 国产成人福利小说| 桃色一区二区三区在线观看| 欧美精品啪啪一区二区三区| 免费av毛片视频| 国模一区二区三区四区视频 | 草草在线视频免费看| 噜噜噜噜噜久久久久久91| 国产麻豆成人av免费视频| 夜夜躁狠狠躁天天躁| 精品一区二区三区视频在线观看免费| 国产精品久久久人人做人人爽| av视频在线观看入口| 99久国产av精品| 亚洲va日本ⅴa欧美va伊人久久| 女人高潮潮喷娇喘18禁视频| 欧美日韩乱码在线| 欧美国产日韩亚洲一区| 色哟哟哟哟哟哟| 久久香蕉国产精品| 国产精品亚洲av一区麻豆| 国产成人精品久久二区二区免费| 午夜影院日韩av| 免费看美女性在线毛片视频| 又大又爽又粗| 亚洲精品乱码久久久v下载方式 | 久久婷婷人人爽人人干人人爱| 亚洲av熟女| 亚洲avbb在线观看| 成年女人看的毛片在线观看| 嫩草影院精品99| av片东京热男人的天堂| 在线观看舔阴道视频| 2021天堂中文幕一二区在线观| 久久久国产精品麻豆| 美女 人体艺术 gogo| netflix在线观看网站| 国产爱豆传媒在线观看| 天堂√8在线中文| 亚洲人成电影免费在线| 成人欧美大片| 亚洲精品在线观看二区| 欧美zozozo另类| 黄色丝袜av网址大全| 国产视频一区二区在线看| 99久久精品热视频| 精品熟女少妇八av免费久了| www.熟女人妻精品国产| 国产精品久久电影中文字幕| 99久久精品一区二区三区| 国内精品一区二区在线观看| 动漫黄色视频在线观看| 国产亚洲av高清不卡| 亚洲欧美精品综合一区二区三区| 国产精品久久久久久久电影 | 亚洲专区中文字幕在线| 日韩欧美精品v在线| www.999成人在线观看| 极品教师在线免费播放| 欧美成狂野欧美在线观看| 欧美丝袜亚洲另类 | 无限看片的www在线观看| 女人高潮潮喷娇喘18禁视频| 91在线精品国自产拍蜜月 | 亚洲av成人一区二区三| 在线观看一区二区三区| 1024手机看黄色片| 亚洲自偷自拍图片 自拍| 婷婷精品国产亚洲av在线| 免费看美女性在线毛片视频| 国产综合懂色| 午夜福利在线在线| 99国产精品一区二区蜜桃av| 伦理电影免费视频| 91字幕亚洲| 国产精品日韩av在线免费观看| 国产麻豆成人av免费视频| 99久久99久久久精品蜜桃| 不卡一级毛片| 亚洲av电影在线进入| 亚洲精品久久国产高清桃花| 国内精品久久久久精免费| 伊人久久大香线蕉亚洲五| 听说在线观看完整版免费高清| 色视频www国产| 国产毛片a区久久久久| 在线永久观看黄色视频| 久久这里只有精品19| 欧美乱码精品一区二区三区| 九九久久精品国产亚洲av麻豆 | 特级一级黄色大片| 久久久久久久久久黄片| 欧美丝袜亚洲另类 | 十八禁人妻一区二区| 国产aⅴ精品一区二区三区波| 亚洲国产高清在线一区二区三| 亚洲av成人av| 国产69精品久久久久777片 | 日韩有码中文字幕| 欧美激情久久久久久爽电影| 床上黄色一级片| 97超级碰碰碰精品色视频在线观看| 久久精品亚洲精品国产色婷小说| 久久精品aⅴ一区二区三区四区| 性色avwww在线观看| 成人欧美大片| 五月伊人婷婷丁香| 最近在线观看免费完整版| 中文资源天堂在线| 国产成年人精品一区二区| 国产成人一区二区三区免费视频网站| 欧美乱色亚洲激情| 国产精品av视频在线免费观看| 午夜免费激情av| 天堂av国产一区二区熟女人妻| 久久久久亚洲av毛片大全| 欧美成人性av电影在线观看| 国产av麻豆久久久久久久| 一级a爱片免费观看的视频| 性色avwww在线观看| 一区二区三区国产精品乱码| 丰满的人妻完整版| 色视频www国产| 小说图片视频综合网站| 一个人免费在线观看电影 | 天堂动漫精品| 91麻豆av在线| 人妻夜夜爽99麻豆av| 国产精品av久久久久免费| 欧美极品一区二区三区四区| www.自偷自拍.com| 色精品久久人妻99蜜桃| 国产激情偷乱视频一区二区| 丰满的人妻完整版| 老司机午夜福利在线观看视频| 一二三四在线观看免费中文在| 一二三四社区在线视频社区8| 午夜激情福利司机影院| 动漫黄色视频在线观看| 色播亚洲综合网| 国产欧美日韩精品一区二区| 日韩 欧美 亚洲 中文字幕| 亚洲五月婷婷丁香| 亚洲一区二区三区不卡视频| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| 成年女人看的毛片在线观看| 母亲3免费完整高清在线观看| 亚洲av成人精品一区久久| 午夜影院日韩av| 免费观看的影片在线观看| 黑人操中国人逼视频| 丰满的人妻完整版| 老司机福利观看| 12—13女人毛片做爰片一| 亚洲欧美日韩卡通动漫| 久久久久免费精品人妻一区二区| 精品欧美国产一区二区三| 搡老熟女国产l中国老女人| 国产精品久久久人人做人人爽| 精品一区二区三区视频在线 | 神马国产精品三级电影在线观看| 欧美xxxx黑人xx丫x性爽| 国产成人av激情在线播放| 国产午夜福利久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 蜜桃久久精品国产亚洲av| 一本综合久久免费| 伊人久久大香线蕉亚洲五| 最近视频中文字幕2019在线8| av片东京热男人的天堂| 天堂av国产一区二区熟女人妻| 全区人妻精品视频| 日本 av在线| 亚洲黑人精品在线| 色视频www国产| 亚洲国产日韩欧美精品在线观看 | 国产黄片美女视频| 99re在线观看精品视频| 国内毛片毛片毛片毛片毛片| 女人被狂操c到高潮| 亚洲无线观看免费| 午夜影院日韩av| 18禁美女被吸乳视频| 最新在线观看一区二区三区| 中文资源天堂在线| 久久人人精品亚洲av| 欧美zozozo另类| 特大巨黑吊av在线直播| 久久国产精品影院| 男人舔女人下体高潮全视频| 亚洲欧美日韩卡通动漫| 日本黄色片子视频| 亚洲色图av天堂| 1024香蕉在线观看| 精品久久久久久久末码| 少妇的丰满在线观看| 国产精品野战在线观看| 久久久久久九九精品二区国产| 国产成年人精品一区二区| 在线观看日韩欧美| 看黄色毛片网站| 久久人人精品亚洲av| av视频在线观看入口| 国产精品永久免费网站| av天堂中文字幕网| 97超视频在线观看视频| 久久九九热精品免费| 国产在线精品亚洲第一网站| 麻豆久久精品国产亚洲av| 亚洲18禁久久av| 十八禁人妻一区二区| 国产又黄又爽又无遮挡在线| 999精品在线视频| 免费高清视频大片| 99久久国产精品久久久| 国产午夜精品论理片| 99国产极品粉嫩在线观看| 久久久久久久午夜电影| 欧美3d第一页| 婷婷亚洲欧美| 国产欧美日韩一区二区三| 久久久色成人| 丁香六月欧美| 欧美日韩黄片免| 日本精品一区二区三区蜜桃| 1024手机看黄色片| 搡老熟女国产l中国老女人| 男女午夜视频在线观看| 免费观看人在逋| 老司机福利观看| 动漫黄色视频在线观看| 成人特级av手机在线观看| 亚洲第一欧美日韩一区二区三区| 国产综合懂色| 国产高潮美女av| 黄色视频,在线免费观看| 中出人妻视频一区二区| 亚洲精品一卡2卡三卡4卡5卡| 美女午夜性视频免费| 啪啪无遮挡十八禁网站| 中文在线观看免费www的网站| 欧美三级亚洲精品| 视频区欧美日本亚洲| 国产日本99.免费观看| 成人国产综合亚洲| 岛国视频午夜一区免费看| 狂野欧美白嫩少妇大欣赏| 超碰成人久久| 五月伊人婷婷丁香| 嫁个100分男人电影在线观看| 亚洲av成人精品一区久久| 国产精品久久久久久亚洲av鲁大| av在线天堂中文字幕| 色综合欧美亚洲国产小说| 欧美乱码精品一区二区三区| 亚洲乱码一区二区免费版| 90打野战视频偷拍视频| 国产日本99.免费观看| 免费在线观看视频国产中文字幕亚洲| 国产三级在线视频| 啪啪无遮挡十八禁网站| 高潮久久久久久久久久久不卡| 色哟哟哟哟哟哟| 我要搜黄色片| 久久午夜综合久久蜜桃| 日韩人妻高清精品专区| 亚洲av第一区精品v没综合| 中出人妻视频一区二区| 99视频精品全部免费 在线 | 亚洲成av人片免费观看| 一区二区三区国产精品乱码| 亚洲国产精品sss在线观看| 老鸭窝网址在线观看| 亚洲欧美精品综合久久99| 99视频精品全部免费 在线 | 国产黄色小视频在线观看| 嫁个100分男人电影在线观看| 1024手机看黄色片| 欧美日韩国产亚洲二区| 国产主播在线观看一区二区| av女优亚洲男人天堂 | 草草在线视频免费看| 久9热在线精品视频| 亚洲国产欧美网| 亚洲成人精品中文字幕电影| 国产精品久久视频播放| 久久久久久久久中文| 97人妻精品一区二区三区麻豆| 久久中文字幕一级| 香蕉国产在线看| 国产1区2区3区精品| 亚洲熟女毛片儿| 国产精品久久久人人做人人爽| 午夜亚洲福利在线播放| 国产人伦9x9x在线观看| 国产三级中文精品| 18美女黄网站色大片免费观看| 欧美中文综合在线视频| 国产亚洲精品久久久久久毛片| 亚洲,欧美精品.| 中文字幕精品亚洲无线码一区| 日韩精品中文字幕看吧| 免费高清视频大片| 亚洲欧美精品综合久久99| 老汉色∧v一级毛片| 国产精品九九99| 精品久久蜜臀av无| 不卡一级毛片| 日本a在线网址| 久久伊人香网站| 欧美+亚洲+日韩+国产| 搡老妇女老女人老熟妇| 中文字幕久久专区| 18禁黄网站禁片免费观看直播| a级毛片在线看网站| 国产精品电影一区二区三区| 村上凉子中文字幕在线| 免费看十八禁软件| 免费一级毛片在线播放高清视频| 精品久久久久久,| 午夜福利视频1000在线观看| 好看av亚洲va欧美ⅴa在| 岛国视频午夜一区免费看| 欧美3d第一页| 国产99白浆流出| 成人午夜高清在线视频| av女优亚洲男人天堂 | 色综合欧美亚洲国产小说| 日本黄大片高清| 日本 欧美在线| 国产午夜精品论理片| 十八禁网站免费在线| 很黄的视频免费| 日韩中文字幕欧美一区二区| 欧美性猛交黑人性爽| 日本在线视频免费播放| 日韩欧美国产一区二区入口| 18禁裸乳无遮挡免费网站照片| 国产激情欧美一区二区| 巨乳人妻的诱惑在线观看| 在线观看日韩欧美| 精品不卡国产一区二区三区| 狠狠狠狠99中文字幕| 啦啦啦观看免费观看视频高清| 日本免费一区二区三区高清不卡| 叶爱在线成人免费视频播放| 国产成人欧美在线观看| 免费在线观看影片大全网站| 香蕉丝袜av| 校园春色视频在线观看| 国内少妇人妻偷人精品xxx网站 | 老鸭窝网址在线观看| 两个人看的免费小视频| 悠悠久久av| 51午夜福利影视在线观看| 日韩欧美在线二视频| 欧美+亚洲+日韩+国产| av在线天堂中文字幕| av片东京热男人的天堂| 婷婷精品国产亚洲av| 十八禁网站免费在线| 色av中文字幕| 亚洲成人久久性| 91在线精品国自产拍蜜月 | 人妻丰满熟妇av一区二区三区| 2021天堂中文幕一二区在线观| 午夜免费激情av| h日本视频在线播放| 亚洲av成人av| 国产综合懂色| 国产精品一及| 亚洲av电影不卡..在线观看| 婷婷精品国产亚洲av在线| 欧美xxxx黑人xx丫x性爽| 亚洲va日本ⅴa欧美va伊人久久| 久久精品国产亚洲av香蕉五月| 男插女下体视频免费在线播放| 波多野结衣巨乳人妻| 在线观看一区二区三区| 麻豆成人午夜福利视频| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲精品不卡| aaaaa片日本免费| 好男人电影高清在线观看| 夜夜爽天天搞| 又黄又粗又硬又大视频| 亚洲av免费在线观看| 夜夜躁狠狠躁天天躁| 一进一出好大好爽视频| 国产av一区在线观看免费| 国产一区二区在线观看日韩 | 岛国在线免费视频观看| 一级毛片高清免费大全| 亚洲熟妇中文字幕五十中出| 中文在线观看免费www的网站| 色在线成人网| 精品一区二区三区四区五区乱码| 国产成人欧美在线观看| 久久久久性生活片| 亚洲欧美日韩高清在线视频| 国产免费av片在线观看野外av| 叶爱在线成人免费视频播放| 男女那种视频在线观看| 在线视频色国产色| 中文字幕精品亚洲无线码一区| 一级黄色大片毛片| 琪琪午夜伦伦电影理论片6080| 高清在线国产一区| 日韩欧美精品v在线| 亚洲成人久久爱视频| 日本黄色视频三级网站网址| 天天躁日日操中文字幕| 在线国产一区二区在线| 国产精品免费一区二区三区在线| 国产成人一区二区三区免费视频网站| 小说图片视频综合网站| 日韩欧美免费精品| 看片在线看免费视频| 五月玫瑰六月丁香| 在线播放国产精品三级| 啦啦啦免费观看视频1| xxxwww97欧美| 悠悠久久av| 色精品久久人妻99蜜桃| 亚洲成av人片在线播放无| 九色成人免费人妻av| 国产在线精品亚洲第一网站| 热99在线观看视频| 老司机午夜福利在线观看视频| 午夜视频精品福利| 色播亚洲综合网| 熟妇人妻久久中文字幕3abv| 琪琪午夜伦伦电影理论片6080| 蜜桃久久精品国产亚洲av| 美女免费视频网站| e午夜精品久久久久久久| 1000部很黄的大片| 午夜福利视频1000在线观看| 一级黄色大片毛片| 亚洲av第一区精品v没综合| netflix在线观看网站| 国产欧美日韩精品亚洲av| 国内久久婷婷六月综合欲色啪| 色在线成人网| 国产亚洲欧美98| 此物有八面人人有两片| 亚洲欧美日韩高清专用| 亚洲国产高清在线一区二区三| 嫩草影院入口| 欧美激情久久久久久爽电影| 91在线精品国自产拍蜜月 | 久久伊人香网站| 国产一区二区在线观看日韩 | 哪里可以看免费的av片| 国产 一区 欧美 日韩| 黄色女人牲交| 成人18禁在线播放| 在线观看一区二区三区| 99久久综合精品五月天人人| 国产男靠女视频免费网站| 非洲黑人性xxxx精品又粗又长| 黑人巨大精品欧美一区二区mp4| 黄频高清免费视频| 久久久久久久久免费视频了| 日韩 欧美 亚洲 中文字幕| 一进一出抽搐动态| 国产爱豆传媒在线观看| 无人区码免费观看不卡| 国产精品影院久久| 桃色一区二区三区在线观看| 日本与韩国留学比较| 国产单亲对白刺激| 亚洲国产精品sss在线观看| 亚洲第一欧美日韩一区二区三区| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 欧美日韩黄片免| 欧美xxxx黑人xx丫x性爽| 国产精品98久久久久久宅男小说| 欧美成人性av电影在线观看| 激情在线观看视频在线高清| 两个人视频免费观看高清| 亚洲国产精品合色在线| 一个人观看的视频www高清免费观看 | 免费观看的影片在线观看| 日韩中文字幕欧美一区二区| 黄片大片在线免费观看| 国产精品亚洲一级av第二区| 99久久无色码亚洲精品果冻| 亚洲午夜精品一区,二区,三区| 香蕉丝袜av| 91九色精品人成在线观看| 综合色av麻豆| 91在线观看av| 91在线精品国自产拍蜜月 | 好看av亚洲va欧美ⅴa在| 日韩欧美免费精品| 亚洲欧美日韩东京热| 一夜夜www| 老熟妇乱子伦视频在线观看| 精品久久久久久久末码| 亚洲精品在线美女| 夜夜爽天天搞| 又紧又爽又黄一区二区| 久久精品91无色码中文字幕| 国产亚洲av高清不卡| 一本久久中文字幕| 一区二区三区激情视频| 中亚洲国语对白在线视频| 国产视频一区二区在线看| www.www免费av| 身体一侧抽搐| 精品熟女少妇八av免费久了| 成人av一区二区三区在线看| 精品熟女少妇八av免费久了| 悠悠久久av| 18禁黄网站禁片午夜丰满| 人妻夜夜爽99麻豆av| 国产麻豆成人av免费视频| 村上凉子中文字幕在线| 成人亚洲精品av一区二区| 国产免费av片在线观看野外av| 99热这里只有精品一区 | 精品久久久久久久毛片微露脸| 中文字幕高清在线视频| 成在线人永久免费视频| 欧美日韩国产亚洲二区| 一个人观看的视频www高清免费观看 | 美女被艹到高潮喷水动态| 九色成人免费人妻av| 香蕉久久夜色| 国产精品久久视频播放| 亚洲中文字幕一区二区三区有码在线看 | svipshipincom国产片| 久久久成人免费电影| 两个人看的免费小视频| 久久久水蜜桃国产精品网| 中文字幕av在线有码专区| 免费大片18禁| 国产精品99久久久久久久久| 欧美黑人巨大hd| 午夜两性在线视频| 男插女下体视频免费在线播放| 亚洲 欧美 日韩 在线 免费| 无人区码免费观看不卡| av国产免费在线观看| 久久午夜综合久久蜜桃| 国产成人福利小说| 久久久久免费精品人妻一区二区| 亚洲精品中文字幕一二三四区| 国产精品国产高清国产av| 亚洲五月天丁香| 国产高清视频在线播放一区| 色视频www国产| 婷婷六月久久综合丁香| 看免费av毛片|