• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of deposition power on the optical and electrical performance of sputtered gallium-magnesium co-doped zinc oxide thin films

    2023-11-07 09:15:40ZHONGZhiyouWANXinGUJinghuaLONGHaoYANGChunyongCHENShoubu
    關(guān)鍵詞:時(shí)所光學(xué)薄膜

    ZHONG Zhiyou,WAN Xin,GU Jinghua,LONG Hao,YANG Chunyong,CHEN Shoubu

    (1 College of Electronic Information Engineering,South-Central Minzu University,Wuhan 430074,China;2 Hubei Key Laboratory of Intelligent Wireless Communications,South-Central Minzu University,Wuhan 430074,China;3 Experimental Teaching and Engineerring Training Center,South-CentralMinzu University,Wuhan 430074,China)

    Abstract The transparent conductor thin films of gallium-magnesium co-doped zinc oxide(ZnO:Ga-Mg)were deposited by magnetron-sputtering process.The deposition power dependence of structural,morphological,optical and electrical properties of the thin film was characterized by various techniques.The experimental results indicate that all the thin films have hexagonal wurtzite structure with highly c-axis preferred orientation along the(002)plane,and the deposition power strongly affects the properties of ZnO:Ga-Mg thin films.The thin film prepared at the deposition power of 150 W exhibits the best crystallinity quality and photoelectric properties,with the highest average visible transmittance of 92.2%,the lowest resistivity of 1.18×10-3 Ω·cm,the maximum figure of merit of 1.04×104 Ω-1·cm-1,and the minimum lattice strain of 1.95×10-3 and dislocation density of 1.17×1015 m-2.The optical constants of the thin films were obtained by the optical characterization methods.The optical dispersion behavior of the thin films was studied in terms of the single-oscillator Wemple-DiDomenico(WDD)model,and the oscillator parameters,non-linear optical constants and optical energy-gaps were achieved.The results demonstrate that the deposition power is one of the most important processing parameters to affect the structure,optical and electrical properties of ZnO:Ga-Mg thin films.

    Keywords ZnO;thin films;doping;photoelectric properties

    Gallium-doped zinc oxide(ZnO:Ga)is a promising transparent conductor material which has numerous applications in modern technologies such as organic light emitting diodes(OLEDs)[1-2],flat panel displays(FPDs)[3-4],thin film transistors(TFTs)[5-6],photovoltaic cells(PVCs)[7-8],gas sensitive devices[9-10]and ultraviolet(UV)photodetectors[11-13].Besides good electrical conductivity and high visible light transparency,the ZnO:Ga thin films have a variety of advantages,such as material abundance,non-toxicity,low manufacture cost,high exciton binding energy(about 60 meV at room temperature),broad direct energy-gap(about 3.3 eV at room temperature)and excellent chemical-stability under hydrogen plasma,as compared to the tin-doped indium oxide(In2O3:Sn)thin films[14-17].In order to further improve the optical and electrical properties of ZnO:Ga thin films,the codoping process with two elements have been used.Up to now,the titanium-gallium(Ti-Ga),aluminumgallium(Al-Ga),gallium-zirconium(Ga-Zr),galliumindium(Ga-In),boron-gallium(B-Ga),galliumfluorine(Ga-F),magnesium-gallium(Mg-Ga)and nickel-gallium(Ni-Ga)co-doping cases have been reported[18-27].However,few reports have been devoted to the non-linear optical properties and optical dispersion behavior of the co-doped ZnO thin films.

    In this work,the Ga-Mg co-doped ZnO(ZnO:Ga-Mg)thin films were prepared by radio-frequency(RF)magnetron-sputtering process under various deposition powers.The dependence of structure,morphology,photoelectric and non-linear optical properties of the thin films on power was investigated in detail.In addition,the optical constants of the thin films were obtained using the optical characterization methods,and the optical dispersion behavior was studied in terms of the single-oscillator Wemple-DiDomenico(WDD)model.

    1 Experimental

    A quartz glass was employed as the transparent substrate,and a ceramic target(ZnO:95 wt%,Ga2O3:3 wt%,MgO:2 wt%,4N in purity)was used as the sputtering source material.The ZnO:Ga-Mg samples were prepared on the quartz glass substrates by RF magnetron-sputtering system(13.56 MHz).The base pressure in deposition chamber was kept blow 2.25×10-4Pa and high purity argon gas(5N in purity)was used as the working gas.Prior to the ZnO:Ga-Mg samples deposition,the pre-sputtering for 20 min was conducted in order to clean contamination on the ceramic target surface.The ZnO:Ga-Mg samples were prepared under the following processing parameters:7.5 cm of target-substrate distance,300 ℃ of substrate temperature,3.5 Pa of gas pressure and 40 min of sputtering time.In order to investigate the effect of deposition power on the properties of ZnO:Ga-Mg thin films,the power was controlled from 110 to 170 W.

    The thickness of the ZnO:Ga-Mg thin films was measured by an Alpha-step 500 type surface profiler.The surface morphology of the thin films was observed by a JSM-6700F type scanning electron microscope(SEM).The electrical properties of the thin films were investigated at room temperature using a RH-2035 type four-point probe measurement system.The X-ray diffraction(XRD)patterns of the thin films were characterized with a D8-Advanced type diffractometer using standard Cu Kα source(wavelengthλ=0.15406 nm).The optical transmittance(T)of the thin films were measured at room temperature by using a TU-1901 type double beam UV-visible spectrophotometer.The optical constants of the ZnO:Ga-Mg thin films were obtained from the measured transmittance data using the method of optical spectrum fitting[28].All measurements were performed in ambient air.

    2 Results and discussion

    Figure 1 shows the XRD patterns of the standard ZnO powder(PDF 036-1451)and the ZnO:Ga-Mg samples prepared at various powers.From the figure,we note that these XRD peaks of the investigated samples can be assigned to ZnO according to PDF 036-1451 card.All the investigated samples exhibit a dominant(002)peak with slight(101)and(004)peaks,indicating that the ZnO:Ga-Mg thin films have hexagonal wurtzite structure of ZnO with preferredcaxis orientation along the(002)plane,regardless of power.Also,no diffraction peaks from other impurities can be detected from Figure 1,which indicates that all the ZnO:Ga-Mg thin films in this work do not have any phase segregation or secondary phase formation.Similar results have been reported by other researchers who investigated the structural properties of ZnObased thin films[18,21,29-30].

    圖1 PDF 036-1451和不同功率時(shí)所制備薄膜的XRD圖譜Fig.1 XRD patterns of PDF 036-1451 and the thin films prepared at various powers

    The intensity of(002)diffraction peak(I(002))for the ZnO:Ga-Mg samples as a function of power is shown in Figure 2a.As can be seen,the value ofI(002)rises first and thereafter drops with the increment of power.The ZnO:Ga-Mg thin film deposited at the power of 150 W presents the highest intensity of(002)diffraction peak.The degree of preferred(002)orientation of the ZnO:Ga-Mg thin films was quantified by means of the orientation factor(P(002))[31]:

    圖2 不同功率時(shí)所制備薄膜的I(002)和P(002)數(shù)值Fig.2 The values of I(002) and P(002) for the thin films prepared at various powers

    whereI(002)is the intensity of(002)diffraction peak,the subscripth,kandlare Miller indices,I(hkl)denotes the diffraction intensity of the(hkl)plane,andNis the number of the diffraction peaks.Figure 2b shows the variation ofP(002)with power for the ZnO:Ga-Mg thin films.It is found that with increasing power from 110 to 170 W,theP(002)value raises first and subsequently falls.When the power is 150 W,the maximumP(002)value can be obtained,indicating that the ZnO:Ga-Mg sample has the highestc-axis preferred orientation when the power is 150 W.

    The mean particle size(Dm)of the ZnO:Ga-Mg samples was evaluated using the Debye-Scherrer formula[31-32]:

    whereθis the Bragg’s diffraction angle,βis the fullwidth at half-maximum(FWHM,in radians)of(002)diffraction peak,andλdenotes the wavelength of XRD measurement used(λ=0.15406 nm).The lattice strain(ε0)and the dislocation density(δ0)can be obtained by means of the following relationships[33-34]:

    whereDmrepresents the mean particle size,βis the value of FWHM in radians,θdenotes the Bragg’s angle,andλis the wavelength of X-ray used.Figure 3 shows the variation in theβ,Dm,ε0andδ0values of the investigated thin films as a function of power.It can be noticed from Figure 3 that with rising power from 110 to 170 W,the values ofβ,ε0andδ0increase in advance and then fall,but theDmtakes on an opposite trend.When the power is 150 W,the ZnO:Ga-Mg thin film exhibits the optimum crystallinity quality and structural properties,with the narrowestβ(4.91×10-3rad),the largestDm(29.3 nm),the lowestε0(1.95×10-3)and the minimumδ0(1.17×1015m-2),respectively.This result demonstrates that the grain growth and structural properties of the ZnO:Ga-Mg thin films are subjected to the deposition power.

    圖3 不同功率時(shí)所制備薄膜的β,Dm,ε0和δ0數(shù)值Fig.3 The values of β,Dm,ε0 and δ0 for the thin films prepared at various powers

    Figure 4 presents the dependence of optical transmittanceTon wavelengthλfor the ZnO:Ga-Mg samples prepared at various powers.As can be seen,all theT-λcurves exhibit an interference pattern where the transmittance falls rapidly at the edge of the bands,which indicates excellent film crystallinity and low surface roughness.Also,the absorption edge is observed to blue shift firstly with the increasing power from 110 to 150 W and then red shift from 150 to 170 W,as shown in the inset of Figure 4.The power dependence of the mean transmittance(Tm)in the visible wavelength range for the ZnO:Ga-Mg samples is presented in Figure 5a.Note that theTmvalue exceeds 85.7% for the investigated samples regardless of power,which indicates that all the ZnO:Ga-Mg thin films possess high transparency in the visible light region.The highest value(92.2%)ofTmfor the ZnO:Ga-Mg sample can be achieved when the power is 150 W.The enhancement of optical transmittance may be caused by the improvement of crystallinity quality and structural properties of the ZnO:Ga-Mg thin film.

    圖4 不同功率時(shí)所制備薄膜的T-λ曲線Fig.4 The curves of T-λ for the thin films prepared at various powers

    圖5 不同功率時(shí)所制備薄膜的Tm,ρ和FM數(shù)值Fig.5 The values of Tm,ρ and FM for the thin films prepared at various powers

    In order to quantify the photoelectric properties of the ZnO:Ga-Mg transparent conductor oxide (TCO)thin films,the figure of merit(FM)was introduced.TheFMis defined by the following relation[35-36]:

    whereρdenotes the resistivity of the investigated sample,andTmis the average transmittance in the visible range.The power dependence ofρa(bǔ)ndFMfor the ZnO:Ga-Mg samples is shown in Figure 5.It is observed from Figure 5b that theρfalls firstly with the rising power from 110 to 150 W and then increases from 150 to 170 W.The minimumρ(1.18×10-3Ω·cm)of the ZnO:Ga-Mg sample can be obtained when the power is 150 W.The optimalρvalue in this work is comparable to the results of previous studies.For the ZnO-based thin films deposited by RF-sputtering technique,the lowestρvalues were reported to be ranging from 7.23×10-4to 1.52×10-3Ω·cm[19,37-38].Note also from Figure 5c that theFMvalues are found to be 1.26×103,2.49×103,1.04×104and 1.67×103Ω-1·cm-1for the ZnO:Ga-Mg samples fabricated at the power of 110,130,150 and 170 W,respectively.Clearly,theFMraises first and subsequently falls with the increment of power,the ZnO:Ga-Mg thin film deposited at the power of 150 W exhibits the maximumFMvalue,indicating that the optimum deposition power is 150 W for preparing ZnO:Ga-Mg thin film in the present work.

    The direct optical energy-gap()of the ZnO:Ga-Mg thin films was evaluated by using the Tauc’s relation in the region of high absorption[39-40]:

    圖6 不同功率時(shí)所制備薄膜的(αhν)2-hν曲線Fig.6 The curves of(αhν)2-hν for the thin films prepared at various powers

    wherehis Planck’s constant,νis the photon frequency,Bis an energy-independent constant,tfis the film thickness,andαis the absorption coefficient of the thin film[41-42].Figure 6 shows the (αhν)2vs.hνplots of the ZnO:Ga-Mg samples prepared at various powers.As can be seen,a good straight line can be obtained in the band edge region for all the investigated thin films.The straight-line portion of the curve gives the direct optical energy-gapwhen extrapolated to zero((αhν)2=0).The values ofare evaluated to be ranging from 3.41 to 3.49 eV for the ZnO:Ga-Mg samples prepared at various powers.Obviously,the obtainedvalues of all the ZnO:Ga-Mg thin films are larger than that of standard ZnO sample(3.30 eV)[18,43].The broadening inof the ZnO:Ga-Mg thin films mainly be attributed to the Burstein-Moss(B-M)effect[44-47].Similar results have been observed by many researchers who studied the optical properties of ZnObased thin films[47-50].

    Based on the measured transmittance,the optical constants including extinction coefficient(k)and refractive index(n)of the ZnO:Ga-Mg thin films were obtained by the method of optical spectrum fitting[28],and the dependence ofkandnonλfor all the samples is shown in Figure 7.It can be seen from Figure 7a that thekvalues of the investigated samples are very small at long wavelength region,which indicates that all the investigated thin films have high visible transparency.Similar to thek-λcurves,thengradually falls with raisingλfor all the ZnO:Ga-Mg samples.The result suggests that all the ZnO:Ga-Mg thin films exhibit the normal dispersion characteristics in the visible wavelength range[31].For the ZnO:Ga-Mg samples deposited at the power of 110,130,150 and 170 W,the values ofkandnare 1.16×10-2,1.87;8.93×10-3,1.96;3.54×10-3,1.91;and 8.45×10-3,1.94 atλ=450 nm,respectively.The result is in agreement with the previously reported works[51-53].

    圖7 不同功率時(shí)所制備薄膜的k-λ和n-λ曲線Fig.7 The curves of k-λ and n-λ for the thin films prepared atvarious powers

    The refractive index dispersion behavior of the ZnO:Ga-Mg samples was studied according to the single-oscillator WDD model as follows[54-55]:

    whereλis the wavelength of incident light,hdenotes Planck’s constant,cis the light speed,andE,EdandEoare the incident photon energy,the dispersion energy and the single-oscillator energy,respectively.The dependence of (n2-1)-1onE2for the ZnO:Ga-Mg samples prepared at various powers is shown in Figure 8.As can be seen,the data of all the investigated thin films can be fitted into straight lines,indicating that the single-oscillator WDD model is applicable to the ZnO:Ga-Mg samples in this work.TheEdandEoof all the ZnO:Ga-Mg thin films can be deduced from the slopeand intercept(Ed-1Eo)on the vertical axis.The lattice dielectric constant(εL),the static refractive index(n0),theM-1andM-3moments of the optical spectra were obtained using the following equations[56]:

    whereEois the single-oscillator energy,andEdis the dispersion energy.Table 1 lists the values ofEd,Eo,n0,εL,M-1andM-3for all the ZnO:Ga-Mg thin films.TheEovalues can be found to range from 6.07 to 6.80 eV,andEdfrom 11.79 to 14.43 eV for the ZnO:Ga-Mg samples deposited at various powers.In compared with theEd,theEochanges in a very narrow range.Also,it is observed from Table 1 that the deposition power significantly affects the optical parameters of the ZnO:Ga-Mg thin films.

    The third-order non-linear optical susceptibility(χ(3)),the non-linear refractive index(n2)and the non-linear absorption coefficient(α2)of the ZnO:Ga-Mg thin films can be obtained using the following formulae[57-58]:

    表1 不同功率時(shí)所制備薄膜的光學(xué)參數(shù)Tab.1 The optical parameters of the thin films prepared at various powers

    圖8 不同功率時(shí)所制備薄膜的(n2-1)-1-E2曲線Fig.8 The curves of(n2-1)-1-E2 for the thin films prepared at various powers

    whereA=1.7×10-10esu is a constant,cis the speed of light,λis the wavelength of incident light,andnis the refractive index of the thin films.Figure 9 shows the variation in theχ(3),n2andα2values of the ZnO:Ga-Mg thin films as a function of power.Note from Figure 9a that theχ(3)raises rapidly withλdecrease until it reaches a maximum value,and it drops slowly withλincrease until it reaches a constant value for higher wavelengths.In addition,the deposition power has a great influence on theχ(3)in the ultraviolet region,and little influence on theχ(3)in the visible and near-infrared range of the investigated thin films.From Figure 9,we can observe that the variation ofn2andα2follow the similar trend asχ(3)for all the ZnO:Ga-Mg thin films,and the values ofn2andα2are also subjected to the deposition power.When wavelengthλ=450 nm,corresponding to the power of 110,130,150 and 170 W,the values ofχ(3),n2andα2are 2.71×10-13,5.45×10-12,8.49×10-13;4.38×10-13,8.45×10-12,1.26×10-12;3.19×10-13,6.31×10-12,9.73×10-13;4.01×10-13esu,7.78×10-12m2W-1,1.17×10-12mW-1,respectively.The result is in agreement with the data obtained by Aida et al.who studied the optical properties of the sputtered Sm-doped ZnO thin films[58].

    圖9 不同功率時(shí)所制備薄膜的χ(3)-λ,n2-λ和α2-λ曲線Fig.9 The curves of χ(3)-λ,n2-λ and α2-λ for the thin films prepared at various powers

    3 Conclusion

    The TCO thin films of ZnO:Ga-Mg were prepared by magnetron sputtering.The effects of sputtering power on the microstructural,electrical and optical characteristics of the deposited films were investigated.The XRD analysis results show that all the deposited films have hexagonal wurtzite structure with highlycaxis preferred orientation along the(002)plane regardless of the sputtering powers.When the sputtering power is 150 W,the ZnO:Ga-Mg thin film possesses the best crystal quality and photoelectric properties,with the minimum resistivity,dislocation density and lattice strain,and the maximum figure of merit,average visible transmittance and mean particle size.The optical constants of all the deposited films were determined by the method of optical spectrum fitting from the measured transmittance data.It is observed that the refractive index and extinction coefficient tend to reduce with the increment of wavelength.Meanwhile,the dispersion behavior of the refractive index was analyzed by means of the single-oscillator WDD model,and the optical parameters including direct energygap,single-oscillator energy,dispersion energy,the first order of moment,the third order of moment,static refractive index and lattice dielectric constant were achieved.In addition,the dependence of nonlinear optical properties of the deposited films on sputtering power were also investigated in detail.The results demonstrate that the sputtering power is one of the most important deposition parameters to affect the microstructure,optical and electrical properties of ZnO:Ga-Mg TCO thin films.

    猜你喜歡
    時(shí)所光學(xué)薄膜
    復(fù)合土工薄膜在防滲中的應(yīng)用
    滑輪組的裝配
    Kappa運(yùn)動(dòng)搖搖杯
    中國品牌(2021年9期)2021-09-14 12:48:24
    光學(xué)常見考題逐個(gè)擊破
    β-Ga2O3薄膜的生長(zhǎng)與應(yīng)用
    光源與照明(2019年4期)2019-05-20 09:18:18
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    CIGS薄膜太陽電池柔性化
    光學(xué)遙感壓縮成像技術(shù)
    Endress+Hauser 光學(xué)分析儀WA系列
    舉手之勞做環(huán)保之時(shí)令果蔬篇
    涩涩av久久男人的天堂| 十分钟在线观看高清视频www | 中文乱码字字幕精品一区二区三区| 如何舔出高潮| 免费看光身美女| 91午夜精品亚洲一区二区三区| 最近最新中文字幕免费大全7| 精品人妻熟女毛片av久久网站| 熟女电影av网| 成人黄色视频免费在线看| 夫妻午夜视频| 精品人妻熟女av久视频| 免费少妇av软件| 汤姆久久久久久久影院中文字幕| 久久精品国产自在天天线| 91久久精品国产一区二区三区| 国产精品久久久久久av不卡| 极品教师在线视频| 精品少妇黑人巨大在线播放| 91aial.com中文字幕在线观看| 婷婷色综合大香蕉| 国产又色又爽无遮挡免| 51国产日韩欧美| 人妻人人澡人人爽人人| 国模一区二区三区四区视频| 嫩草影院入口| 国产黄片视频在线免费观看| 色哟哟·www| 99热网站在线观看| 国产成人免费观看mmmm| 日产精品乱码卡一卡2卡三| 男女啪啪激烈高潮av片| 日韩人妻高清精品专区| 亚洲精品亚洲一区二区| 国产精品一区二区性色av| 亚洲激情五月婷婷啪啪| 日本色播在线视频| 精品一区在线观看国产| 国产高清国产精品国产三级| 亚洲人成网站在线观看播放| 国产淫语在线视频| 十八禁网站网址无遮挡 | 亚洲综合色惰| 多毛熟女@视频| 亚洲情色 制服丝袜| 99久久综合免费| 曰老女人黄片| 国产精品蜜桃在线观看| av在线app专区| av专区在线播放| 国产精品一区二区三区四区免费观看| 伦理电影大哥的女人| 人妻制服诱惑在线中文字幕| 最新的欧美精品一区二区| 九色成人免费人妻av| 热99国产精品久久久久久7| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久免费av| 亚洲怡红院男人天堂| 18禁在线播放成人免费| 建设人人有责人人尽责人人享有的| 日韩电影二区| 日韩人妻高清精品专区| 一级毛片电影观看| 久久人人爽人人片av| 少妇被粗大的猛进出69影院 | 极品少妇高潮喷水抽搐| 夜夜看夜夜爽夜夜摸| 亚洲国产精品专区欧美| av不卡在线播放| 99热这里只有是精品50| 寂寞人妻少妇视频99o| 丰满人妻一区二区三区视频av| 能在线免费看毛片的网站| 99热这里只有精品一区| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 日韩亚洲欧美综合| 日韩电影二区| 天天躁夜夜躁狠狠久久av| 亚洲内射少妇av| 下体分泌物呈黄色| 尾随美女入室| 一区在线观看完整版| 免费大片18禁| 少妇人妻精品综合一区二区| 人妻人人澡人人爽人人| 一级黄片播放器| 国产在线男女| 欧美精品一区二区免费开放| 日日摸夜夜添夜夜爱| 丝袜在线中文字幕| 国产在线免费精品| 国产精品秋霞免费鲁丝片| 日日爽夜夜爽网站| 乱码一卡2卡4卡精品| 大陆偷拍与自拍| 国产成人91sexporn| 最后的刺客免费高清国语| 亚洲国产精品国产精品| 成年美女黄网站色视频大全免费 | 18禁在线无遮挡免费观看视频| 日日啪夜夜爽| 久久人妻熟女aⅴ| 丰满人妻一区二区三区视频av| 久久国内精品自在自线图片| 久热这里只有精品99| 久久久亚洲精品成人影院| 黑人猛操日本美女一级片| 狂野欧美激情性bbbbbb| 亚洲国产精品999| 日产精品乱码卡一卡2卡三| 欧美日韩视频高清一区二区三区二| 99热这里只有是精品在线观看| 午夜福利,免费看| 亚洲欧美精品专区久久| 亚洲高清免费不卡视频| 国产成人精品一,二区| 天堂中文最新版在线下载| 亚洲内射少妇av| 少妇人妻精品综合一区二区| 女人久久www免费人成看片| 亚洲av成人精品一二三区| 男女无遮挡免费网站观看| 欧美人与善性xxx| 久久99精品国语久久久| 少妇裸体淫交视频免费看高清| 在线观看www视频免费| 欧美老熟妇乱子伦牲交| 亚洲熟女精品中文字幕| 在线观看免费高清a一片| 自线自在国产av| 久久久久久久久久人人人人人人| 久久人人爽人人爽人人片va| 久热久热在线精品观看| 一级毛片黄色毛片免费观看视频| 多毛熟女@视频| 欧美3d第一页| 欧美区成人在线视频| 在线观看三级黄色| 一级黄片播放器| 人妻一区二区av| 日韩中字成人| 99九九在线精品视频 | 亚洲国产欧美在线一区| 色视频www国产| 在线观看免费视频网站a站| 成人亚洲精品一区在线观看| 色5月婷婷丁香| 在线观看一区二区三区激情| av有码第一页| 欧美日韩精品成人综合77777| 国产亚洲欧美精品永久| 国精品久久久久久国模美| 人妻少妇偷人精品九色| 一级爰片在线观看| 国产精品一区二区在线观看99| 亚洲美女黄色视频免费看| 午夜久久久在线观看| 精品少妇内射三级| 亚洲av免费高清在线观看| 国产亚洲一区二区精品| 中文在线观看免费www的网站| 久久毛片免费看一区二区三区| 亚洲成人av在线免费| 黄片无遮挡物在线观看| 多毛熟女@视频| 久久97久久精品| 韩国av在线不卡| 99热这里只有是精品50| 秋霞伦理黄片| 亚洲,欧美,日韩| 国产免费福利视频在线观看| 午夜av观看不卡| 色婷婷av一区二区三区视频| 日韩三级伦理在线观看| 国产国拍精品亚洲av在线观看| 一级片'在线观看视频| 一二三四中文在线观看免费高清| 日韩亚洲欧美综合| 日本欧美视频一区| 色94色欧美一区二区| 免费观看a级毛片全部| 色视频在线一区二区三区| 97精品久久久久久久久久精品| 久久婷婷青草| 国产欧美亚洲国产| 亚洲av国产av综合av卡| 五月玫瑰六月丁香| 久久青草综合色| 欧美日韩国产mv在线观看视频| 成人二区视频| 国产精品人妻久久久久久| 精品熟女少妇av免费看| 少妇人妻一区二区三区视频| 美女国产视频在线观看| 一级片'在线观看视频| 男女国产视频网站| 多毛熟女@视频| 91在线精品国自产拍蜜月| 美女xxoo啪啪120秒动态图| 最近手机中文字幕大全| 最近最新中文字幕免费大全7| 一级二级三级毛片免费看| 一本大道久久a久久精品| 日韩一区二区三区影片| 精品亚洲成a人片在线观看| 97超碰精品成人国产| a级一级毛片免费在线观看| 精品酒店卫生间| 美女脱内裤让男人舔精品视频| 22中文网久久字幕| av福利片在线| av免费在线看不卡| 国产视频首页在线观看| 亚洲婷婷狠狠爱综合网| 男人爽女人下面视频在线观看| 免费看日本二区| 少妇精品久久久久久久| 国产欧美亚洲国产| 国产永久视频网站| 亚洲av成人精品一二三区| 久久ye,这里只有精品| 精品卡一卡二卡四卡免费| 在现免费观看毛片| 在线免费观看不下载黄p国产| 欧美 日韩 精品 国产| 久久久久久久大尺度免费视频| 狠狠精品人妻久久久久久综合| 亚洲美女搞黄在线观看| 国产伦精品一区二区三区四那| 天天操日日干夜夜撸| 久久久久视频综合| 国产av国产精品国产| 亚洲精品日本国产第一区| 国产深夜福利视频在线观看| 女人久久www免费人成看片| 交换朋友夫妻互换小说| 日韩精品有码人妻一区| 2018国产大陆天天弄谢| 成人无遮挡网站| 麻豆精品久久久久久蜜桃| 久久精品熟女亚洲av麻豆精品| 国产女主播在线喷水免费视频网站| 久久久久久伊人网av| 久久综合国产亚洲精品| 精品少妇内射三级| 亚洲av综合色区一区| 欧美精品高潮呻吟av久久| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 少妇猛男粗大的猛烈进出视频| 观看美女的网站| 亚洲婷婷狠狠爱综合网| 国产精品伦人一区二区| 女的被弄到高潮叫床怎么办| 欧美成人午夜免费资源| 新久久久久国产一级毛片| 一区二区三区免费毛片| 热99国产精品久久久久久7| 国产精品熟女久久久久浪| 毛片一级片免费看久久久久| 一本久久精品| 国产老妇伦熟女老妇高清| 色视频www国产| 男人狂女人下面高潮的视频| 丝瓜视频免费看黄片| 男人添女人高潮全过程视频| 亚洲国产精品999| 纵有疾风起免费观看全集完整版| av免费在线看不卡| 午夜久久久在线观看| 简卡轻食公司| av在线app专区| 男人添女人高潮全过程视频| 欧美成人午夜免费资源| 精品一品国产午夜福利视频| 久久精品国产亚洲av涩爱| 人人妻人人澡人人爽人人夜夜| 欧美区成人在线视频| 婷婷色麻豆天堂久久| 五月伊人婷婷丁香| 日本vs欧美在线观看视频 | 国产精品福利在线免费观看| 五月开心婷婷网| 久久av网站| 国产淫语在线视频| 两个人免费观看高清视频 | 亚洲婷婷狠狠爱综合网| 日韩中文字幕视频在线看片| 国产亚洲91精品色在线| 欧美日韩精品成人综合77777| 久久99蜜桃精品久久| 午夜av观看不卡| 在线看a的网站| 国产女主播在线喷水免费视频网站| 2022亚洲国产成人精品| 日韩不卡一区二区三区视频在线| 又大又黄又爽视频免费| 午夜福利在线观看免费完整高清在| 国产成人freesex在线| 99re6热这里在线精品视频| 成年人免费黄色播放视频 | 人人妻人人爽人人添夜夜欢视频 | 一个人免费看片子| 亚洲欧美日韩东京热| 人人妻人人澡人人爽人人夜夜| 欧美xxⅹ黑人| av网站免费在线观看视频| 最新中文字幕久久久久| 国产成人91sexporn| 免费av中文字幕在线| 草草在线视频免费看| 99久久精品热视频| 天堂8中文在线网| 精品久久久精品久久久| 简卡轻食公司| 另类精品久久| 国产一级毛片在线| 91精品国产九色| 女的被弄到高潮叫床怎么办| 黄色欧美视频在线观看| 国产精品不卡视频一区二区| 亚洲中文av在线| 久久久久久久久久久免费av| 午夜视频国产福利| 成年人免费黄色播放视频 | 日韩精品免费视频一区二区三区 | 亚洲国产成人一精品久久久| av线在线观看网站| 亚洲第一av免费看| 日韩精品免费视频一区二区三区 | 热99国产精品久久久久久7| 欧美日韩av久久| 国产精品久久久久久久久免| 涩涩av久久男人的天堂| 亚洲精品一二三| 精品国产一区二区三区久久久樱花| 永久网站在线| 男人舔奶头视频| 男女边摸边吃奶| 男女免费视频国产| 亚洲精品久久久久久婷婷小说| 免费观看a级毛片全部| 国产一区二区在线观看av| 自拍欧美九色日韩亚洲蝌蚪91 | 老司机影院成人| 欧美日韩av久久| 色视频www国产| 97在线人人人人妻| 欧美+日韩+精品| 亚洲欧美精品专区久久| 成人国产麻豆网| 欧美国产精品一级二级三级 | 麻豆精品久久久久久蜜桃| 人妻系列 视频| 免费黄频网站在线观看国产| 亚洲精品一二三| 另类亚洲欧美激情| 在线精品无人区一区二区三| 欧美区成人在线视频| 亚洲精品久久久久久婷婷小说| 视频区图区小说| 欧美另类一区| 国语对白做爰xxxⅹ性视频网站| 国产精品熟女久久久久浪| 久久综合国产亚洲精品| 777米奇影视久久| 国产男人的电影天堂91| 一本—道久久a久久精品蜜桃钙片| 青春草亚洲视频在线观看| 久久影院123| 99久久精品国产国产毛片| 丰满饥渴人妻一区二区三| 日日啪夜夜爽| av视频免费观看在线观看| 精品人妻熟女毛片av久久网站| 国产精品成人在线| 汤姆久久久久久久影院中文字幕| 国产 一区精品| 午夜久久久在线观看| 午夜福利视频精品| 久久人人爽人人片av| videos熟女内射| 99热这里只有精品一区| 自线自在国产av| 免费人成在线观看视频色| 国产在线视频一区二区| 男女边摸边吃奶| 日韩中文字幕视频在线看片| 我要看日韩黄色一级片| 一本大道久久a久久精品| 一级av片app| 日韩电影二区| 黄色一级大片看看| 男女免费视频国产| 国产欧美日韩综合在线一区二区 | 女人久久www免费人成看片| 男女边摸边吃奶| 丰满人妻一区二区三区视频av| 国产精品女同一区二区软件| 91在线精品国自产拍蜜月| 下体分泌物呈黄色| 欧美成人午夜免费资源| 精品一区二区三卡| 亚洲经典国产精华液单| 只有这里有精品99| 色吧在线观看| 国产日韩一区二区三区精品不卡 | 日韩av免费高清视频| 国产av国产精品国产| 韩国高清视频一区二区三区| av线在线观看网站| 日日摸夜夜添夜夜添av毛片| 亚洲欧美一区二区三区黑人 | 美女内射精品一级片tv| 麻豆成人午夜福利视频| 欧美日韩av久久| 日韩 亚洲 欧美在线| 97在线人人人人妻| 丝袜喷水一区| 蜜桃在线观看..| 精品熟女少妇av免费看| 国产极品粉嫩免费观看在线 | 亚洲国产欧美在线一区| 国模一区二区三区四区视频| 秋霞在线观看毛片| 男女无遮挡免费网站观看| 成人免费观看视频高清| 如日韩欧美国产精品一区二区三区 | 久久99热6这里只有精品| 自线自在国产av| 欧美+日韩+精品| 亚洲欧美一区二区三区黑人 | 美女cb高潮喷水在线观看| 女的被弄到高潮叫床怎么办| 欧美变态另类bdsm刘玥| 国产在线视频一区二区| 午夜福利网站1000一区二区三区| 日韩制服骚丝袜av| 久久97久久精品| 丰满饥渴人妻一区二区三| 亚洲欧美成人精品一区二区| 肉色欧美久久久久久久蜜桃| 国产一区二区三区av在线| 久久ye,这里只有精品| 成年人午夜在线观看视频| videos熟女内射| 国产一区二区三区综合在线观看 | 国产精品99久久99久久久不卡 | 久久久精品94久久精品| 美女cb高潮喷水在线观看| 又黄又爽又刺激的免费视频.| 大陆偷拍与自拍| 午夜日本视频在线| 国产精品欧美亚洲77777| 国产片特级美女逼逼视频| 99热这里只有是精品50| h日本视频在线播放| 婷婷色麻豆天堂久久| 一边亲一边摸免费视频| 国产精品久久久久成人av| 99热这里只有精品一区| 永久免费av网站大全| 一本色道久久久久久精品综合| 99热全是精品| 少妇被粗大的猛进出69影院 | 国产爽快片一区二区三区| 成人二区视频| 80岁老熟妇乱子伦牲交| 熟女电影av网| 日韩人妻高清精品专区| 国产精品三级大全| 简卡轻食公司| 欧美97在线视频| 在线看a的网站| 又粗又硬又长又爽又黄的视频| 美女cb高潮喷水在线观看| av在线app专区| 日韩精品免费视频一区二区三区 | av播播在线观看一区| 有码 亚洲区| 老司机亚洲免费影院| 51国产日韩欧美| 国产欧美日韩精品一区二区| 欧美日韩视频精品一区| 精品国产国语对白av| 久久毛片免费看一区二区三区| 国产精品成人在线| 成人18禁高潮啪啪吃奶动态图 | 激情五月婷婷亚洲| 美女内射精品一级片tv| 自线自在国产av| 麻豆成人午夜福利视频| 高清在线视频一区二区三区| 久久99一区二区三区| 国产精品国产三级国产av玫瑰| 91精品国产国语对白视频| 国产成人aa在线观看| 大又大粗又爽又黄少妇毛片口| 我的老师免费观看完整版| 久久久久久久久大av| 丰满少妇做爰视频| 熟妇人妻不卡中文字幕| 麻豆成人av视频| 日本色播在线视频| 亚洲成人手机| 十八禁高潮呻吟视频 | 国产精品二区激情视频| 日韩大码丰满熟妇| 欧美国产精品一级二级三级| 国产高清videossex| 手机成人av网站| 欧美+亚洲+日韩+国产| 大陆偷拍与自拍| av又黄又爽大尺度在线免费看| 国产精品1区2区在线观看. | 夫妻午夜视频| 黑人巨大精品欧美一区二区mp4| 国产av精品麻豆| 国产精品欧美亚洲77777| 黑人巨大精品欧美一区二区mp4| 人妻一区二区av| 国产精品秋霞免费鲁丝片| 妹子高潮喷水视频| 日韩视频一区二区在线观看| 欧美日韩亚洲国产一区二区在线观看 | 精品国产乱码久久久久久男人| 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| 精品人妻在线不人妻| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区mp4| 国产精品二区激情视频| 在线av久久热| 精品少妇一区二区三区视频日本电影| 深夜精品福利| 99香蕉大伊视频| 精品国产国语对白av| 美女午夜性视频免费| 最新的欧美精品一区二区| 一级毛片女人18水好多| 亚洲专区中文字幕在线| 国产伦人伦偷精品视频| 欧美另类亚洲清纯唯美| 国产成人欧美| 亚洲人成77777在线视频| 亚洲免费av在线视频| 中文字幕精品免费在线观看视频| av免费在线观看网站| 久久久欧美国产精品| 色94色欧美一区二区| 日韩中文字幕视频在线看片| 精品福利观看| 深夜精品福利| 夜夜夜夜夜久久久久| 欧美日韩精品网址| 国产伦理片在线播放av一区| 视频区图区小说| 蜜桃国产av成人99| 精品国产一区二区三区久久久樱花| 亚洲 欧美一区二区三区| 精品亚洲成国产av| 这个男人来自地球电影免费观看| 婷婷丁香在线五月| av在线app专区| 视频在线观看一区二区三区| 丝袜美足系列| 日韩 欧美 亚洲 中文字幕| 国产黄频视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 午夜免费鲁丝| 日韩制服丝袜自拍偷拍| 99香蕉大伊视频| 超碰成人久久| 久热这里只有精品99| 免费在线观看黄色视频的| 国产高清videossex| 9热在线视频观看99| 99国产精品免费福利视频| 午夜老司机福利片| 久久久久久久久免费视频了| 欧美成人午夜精品| 亚洲黑人精品在线| 青春草亚洲视频在线观看| av在线app专区| 欧美在线一区亚洲| 中文字幕高清在线视频| 精品人妻一区二区三区麻豆| 99久久国产精品久久久| 午夜福利影视在线免费观看| 国产免费av片在线观看野外av| 一区二区三区精品91| 少妇人妻久久综合中文| a级毛片黄视频| 国产欧美日韩精品亚洲av| 精品一区二区三区四区五区乱码| 精品久久久精品久久久| 日韩制服丝袜自拍偷拍| 中国美女看黄片| 老司机影院成人| 女人久久www免费人成看片| 中文精品一卡2卡3卡4更新| 久久久精品区二区三区| 俄罗斯特黄特色一大片| 欧美精品av麻豆av| av天堂在线播放| 一级,二级,三级黄色视频| 午夜日韩欧美国产| 国产免费av片在线观看野外av| 亚洲伊人久久精品综合| 久久久国产欧美日韩av| 中文欧美无线码| 久久久久久久国产电影| 一区二区三区精品91|