• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of deposition power on the optical and electrical performance of sputtered gallium-magnesium co-doped zinc oxide thin films

    2023-11-07 09:15:40ZHONGZhiyouWANXinGUJinghuaLONGHaoYANGChunyongCHENShoubu
    關(guān)鍵詞:時(shí)所光學(xué)薄膜

    ZHONG Zhiyou,WAN Xin,GU Jinghua,LONG Hao,YANG Chunyong,CHEN Shoubu

    (1 College of Electronic Information Engineering,South-Central Minzu University,Wuhan 430074,China;2 Hubei Key Laboratory of Intelligent Wireless Communications,South-Central Minzu University,Wuhan 430074,China;3 Experimental Teaching and Engineerring Training Center,South-CentralMinzu University,Wuhan 430074,China)

    Abstract The transparent conductor thin films of gallium-magnesium co-doped zinc oxide(ZnO:Ga-Mg)were deposited by magnetron-sputtering process.The deposition power dependence of structural,morphological,optical and electrical properties of the thin film was characterized by various techniques.The experimental results indicate that all the thin films have hexagonal wurtzite structure with highly c-axis preferred orientation along the(002)plane,and the deposition power strongly affects the properties of ZnO:Ga-Mg thin films.The thin film prepared at the deposition power of 150 W exhibits the best crystallinity quality and photoelectric properties,with the highest average visible transmittance of 92.2%,the lowest resistivity of 1.18×10-3 Ω·cm,the maximum figure of merit of 1.04×104 Ω-1·cm-1,and the minimum lattice strain of 1.95×10-3 and dislocation density of 1.17×1015 m-2.The optical constants of the thin films were obtained by the optical characterization methods.The optical dispersion behavior of the thin films was studied in terms of the single-oscillator Wemple-DiDomenico(WDD)model,and the oscillator parameters,non-linear optical constants and optical energy-gaps were achieved.The results demonstrate that the deposition power is one of the most important processing parameters to affect the structure,optical and electrical properties of ZnO:Ga-Mg thin films.

    Keywords ZnO;thin films;doping;photoelectric properties

    Gallium-doped zinc oxide(ZnO:Ga)is a promising transparent conductor material which has numerous applications in modern technologies such as organic light emitting diodes(OLEDs)[1-2],flat panel displays(FPDs)[3-4],thin film transistors(TFTs)[5-6],photovoltaic cells(PVCs)[7-8],gas sensitive devices[9-10]and ultraviolet(UV)photodetectors[11-13].Besides good electrical conductivity and high visible light transparency,the ZnO:Ga thin films have a variety of advantages,such as material abundance,non-toxicity,low manufacture cost,high exciton binding energy(about 60 meV at room temperature),broad direct energy-gap(about 3.3 eV at room temperature)and excellent chemical-stability under hydrogen plasma,as compared to the tin-doped indium oxide(In2O3:Sn)thin films[14-17].In order to further improve the optical and electrical properties of ZnO:Ga thin films,the codoping process with two elements have been used.Up to now,the titanium-gallium(Ti-Ga),aluminumgallium(Al-Ga),gallium-zirconium(Ga-Zr),galliumindium(Ga-In),boron-gallium(B-Ga),galliumfluorine(Ga-F),magnesium-gallium(Mg-Ga)and nickel-gallium(Ni-Ga)co-doping cases have been reported[18-27].However,few reports have been devoted to the non-linear optical properties and optical dispersion behavior of the co-doped ZnO thin films.

    In this work,the Ga-Mg co-doped ZnO(ZnO:Ga-Mg)thin films were prepared by radio-frequency(RF)magnetron-sputtering process under various deposition powers.The dependence of structure,morphology,photoelectric and non-linear optical properties of the thin films on power was investigated in detail.In addition,the optical constants of the thin films were obtained using the optical characterization methods,and the optical dispersion behavior was studied in terms of the single-oscillator Wemple-DiDomenico(WDD)model.

    1 Experimental

    A quartz glass was employed as the transparent substrate,and a ceramic target(ZnO:95 wt%,Ga2O3:3 wt%,MgO:2 wt%,4N in purity)was used as the sputtering source material.The ZnO:Ga-Mg samples were prepared on the quartz glass substrates by RF magnetron-sputtering system(13.56 MHz).The base pressure in deposition chamber was kept blow 2.25×10-4Pa and high purity argon gas(5N in purity)was used as the working gas.Prior to the ZnO:Ga-Mg samples deposition,the pre-sputtering for 20 min was conducted in order to clean contamination on the ceramic target surface.The ZnO:Ga-Mg samples were prepared under the following processing parameters:7.5 cm of target-substrate distance,300 ℃ of substrate temperature,3.5 Pa of gas pressure and 40 min of sputtering time.In order to investigate the effect of deposition power on the properties of ZnO:Ga-Mg thin films,the power was controlled from 110 to 170 W.

    The thickness of the ZnO:Ga-Mg thin films was measured by an Alpha-step 500 type surface profiler.The surface morphology of the thin films was observed by a JSM-6700F type scanning electron microscope(SEM).The electrical properties of the thin films were investigated at room temperature using a RH-2035 type four-point probe measurement system.The X-ray diffraction(XRD)patterns of the thin films were characterized with a D8-Advanced type diffractometer using standard Cu Kα source(wavelengthλ=0.15406 nm).The optical transmittance(T)of the thin films were measured at room temperature by using a TU-1901 type double beam UV-visible spectrophotometer.The optical constants of the ZnO:Ga-Mg thin films were obtained from the measured transmittance data using the method of optical spectrum fitting[28].All measurements were performed in ambient air.

    2 Results and discussion

    Figure 1 shows the XRD patterns of the standard ZnO powder(PDF 036-1451)and the ZnO:Ga-Mg samples prepared at various powers.From the figure,we note that these XRD peaks of the investigated samples can be assigned to ZnO according to PDF 036-1451 card.All the investigated samples exhibit a dominant(002)peak with slight(101)and(004)peaks,indicating that the ZnO:Ga-Mg thin films have hexagonal wurtzite structure of ZnO with preferredcaxis orientation along the(002)plane,regardless of power.Also,no diffraction peaks from other impurities can be detected from Figure 1,which indicates that all the ZnO:Ga-Mg thin films in this work do not have any phase segregation or secondary phase formation.Similar results have been reported by other researchers who investigated the structural properties of ZnObased thin films[18,21,29-30].

    圖1 PDF 036-1451和不同功率時(shí)所制備薄膜的XRD圖譜Fig.1 XRD patterns of PDF 036-1451 and the thin films prepared at various powers

    The intensity of(002)diffraction peak(I(002))for the ZnO:Ga-Mg samples as a function of power is shown in Figure 2a.As can be seen,the value ofI(002)rises first and thereafter drops with the increment of power.The ZnO:Ga-Mg thin film deposited at the power of 150 W presents the highest intensity of(002)diffraction peak.The degree of preferred(002)orientation of the ZnO:Ga-Mg thin films was quantified by means of the orientation factor(P(002))[31]:

    圖2 不同功率時(shí)所制備薄膜的I(002)和P(002)數(shù)值Fig.2 The values of I(002) and P(002) for the thin films prepared at various powers

    whereI(002)is the intensity of(002)diffraction peak,the subscripth,kandlare Miller indices,I(hkl)denotes the diffraction intensity of the(hkl)plane,andNis the number of the diffraction peaks.Figure 2b shows the variation ofP(002)with power for the ZnO:Ga-Mg thin films.It is found that with increasing power from 110 to 170 W,theP(002)value raises first and subsequently falls.When the power is 150 W,the maximumP(002)value can be obtained,indicating that the ZnO:Ga-Mg sample has the highestc-axis preferred orientation when the power is 150 W.

    The mean particle size(Dm)of the ZnO:Ga-Mg samples was evaluated using the Debye-Scherrer formula[31-32]:

    whereθis the Bragg’s diffraction angle,βis the fullwidth at half-maximum(FWHM,in radians)of(002)diffraction peak,andλdenotes the wavelength of XRD measurement used(λ=0.15406 nm).The lattice strain(ε0)and the dislocation density(δ0)can be obtained by means of the following relationships[33-34]:

    whereDmrepresents the mean particle size,βis the value of FWHM in radians,θdenotes the Bragg’s angle,andλis the wavelength of X-ray used.Figure 3 shows the variation in theβ,Dm,ε0andδ0values of the investigated thin films as a function of power.It can be noticed from Figure 3 that with rising power from 110 to 170 W,the values ofβ,ε0andδ0increase in advance and then fall,but theDmtakes on an opposite trend.When the power is 150 W,the ZnO:Ga-Mg thin film exhibits the optimum crystallinity quality and structural properties,with the narrowestβ(4.91×10-3rad),the largestDm(29.3 nm),the lowestε0(1.95×10-3)and the minimumδ0(1.17×1015m-2),respectively.This result demonstrates that the grain growth and structural properties of the ZnO:Ga-Mg thin films are subjected to the deposition power.

    圖3 不同功率時(shí)所制備薄膜的β,Dm,ε0和δ0數(shù)值Fig.3 The values of β,Dm,ε0 and δ0 for the thin films prepared at various powers

    Figure 4 presents the dependence of optical transmittanceTon wavelengthλfor the ZnO:Ga-Mg samples prepared at various powers.As can be seen,all theT-λcurves exhibit an interference pattern where the transmittance falls rapidly at the edge of the bands,which indicates excellent film crystallinity and low surface roughness.Also,the absorption edge is observed to blue shift firstly with the increasing power from 110 to 150 W and then red shift from 150 to 170 W,as shown in the inset of Figure 4.The power dependence of the mean transmittance(Tm)in the visible wavelength range for the ZnO:Ga-Mg samples is presented in Figure 5a.Note that theTmvalue exceeds 85.7% for the investigated samples regardless of power,which indicates that all the ZnO:Ga-Mg thin films possess high transparency in the visible light region.The highest value(92.2%)ofTmfor the ZnO:Ga-Mg sample can be achieved when the power is 150 W.The enhancement of optical transmittance may be caused by the improvement of crystallinity quality and structural properties of the ZnO:Ga-Mg thin film.

    圖4 不同功率時(shí)所制備薄膜的T-λ曲線Fig.4 The curves of T-λ for the thin films prepared at various powers

    圖5 不同功率時(shí)所制備薄膜的Tm,ρ和FM數(shù)值Fig.5 The values of Tm,ρ and FM for the thin films prepared at various powers

    In order to quantify the photoelectric properties of the ZnO:Ga-Mg transparent conductor oxide (TCO)thin films,the figure of merit(FM)was introduced.TheFMis defined by the following relation[35-36]:

    whereρdenotes the resistivity of the investigated sample,andTmis the average transmittance in the visible range.The power dependence ofρa(bǔ)ndFMfor the ZnO:Ga-Mg samples is shown in Figure 5.It is observed from Figure 5b that theρfalls firstly with the rising power from 110 to 150 W and then increases from 150 to 170 W.The minimumρ(1.18×10-3Ω·cm)of the ZnO:Ga-Mg sample can be obtained when the power is 150 W.The optimalρvalue in this work is comparable to the results of previous studies.For the ZnO-based thin films deposited by RF-sputtering technique,the lowestρvalues were reported to be ranging from 7.23×10-4to 1.52×10-3Ω·cm[19,37-38].Note also from Figure 5c that theFMvalues are found to be 1.26×103,2.49×103,1.04×104and 1.67×103Ω-1·cm-1for the ZnO:Ga-Mg samples fabricated at the power of 110,130,150 and 170 W,respectively.Clearly,theFMraises first and subsequently falls with the increment of power,the ZnO:Ga-Mg thin film deposited at the power of 150 W exhibits the maximumFMvalue,indicating that the optimum deposition power is 150 W for preparing ZnO:Ga-Mg thin film in the present work.

    The direct optical energy-gap()of the ZnO:Ga-Mg thin films was evaluated by using the Tauc’s relation in the region of high absorption[39-40]:

    圖6 不同功率時(shí)所制備薄膜的(αhν)2-hν曲線Fig.6 The curves of(αhν)2-hν for the thin films prepared at various powers

    wherehis Planck’s constant,νis the photon frequency,Bis an energy-independent constant,tfis the film thickness,andαis the absorption coefficient of the thin film[41-42].Figure 6 shows the (αhν)2vs.hνplots of the ZnO:Ga-Mg samples prepared at various powers.As can be seen,a good straight line can be obtained in the band edge region for all the investigated thin films.The straight-line portion of the curve gives the direct optical energy-gapwhen extrapolated to zero((αhν)2=0).The values ofare evaluated to be ranging from 3.41 to 3.49 eV for the ZnO:Ga-Mg samples prepared at various powers.Obviously,the obtainedvalues of all the ZnO:Ga-Mg thin films are larger than that of standard ZnO sample(3.30 eV)[18,43].The broadening inof the ZnO:Ga-Mg thin films mainly be attributed to the Burstein-Moss(B-M)effect[44-47].Similar results have been observed by many researchers who studied the optical properties of ZnObased thin films[47-50].

    Based on the measured transmittance,the optical constants including extinction coefficient(k)and refractive index(n)of the ZnO:Ga-Mg thin films were obtained by the method of optical spectrum fitting[28],and the dependence ofkandnonλfor all the samples is shown in Figure 7.It can be seen from Figure 7a that thekvalues of the investigated samples are very small at long wavelength region,which indicates that all the investigated thin films have high visible transparency.Similar to thek-λcurves,thengradually falls with raisingλfor all the ZnO:Ga-Mg samples.The result suggests that all the ZnO:Ga-Mg thin films exhibit the normal dispersion characteristics in the visible wavelength range[31].For the ZnO:Ga-Mg samples deposited at the power of 110,130,150 and 170 W,the values ofkandnare 1.16×10-2,1.87;8.93×10-3,1.96;3.54×10-3,1.91;and 8.45×10-3,1.94 atλ=450 nm,respectively.The result is in agreement with the previously reported works[51-53].

    圖7 不同功率時(shí)所制備薄膜的k-λ和n-λ曲線Fig.7 The curves of k-λ and n-λ for the thin films prepared atvarious powers

    The refractive index dispersion behavior of the ZnO:Ga-Mg samples was studied according to the single-oscillator WDD model as follows[54-55]:

    whereλis the wavelength of incident light,hdenotes Planck’s constant,cis the light speed,andE,EdandEoare the incident photon energy,the dispersion energy and the single-oscillator energy,respectively.The dependence of (n2-1)-1onE2for the ZnO:Ga-Mg samples prepared at various powers is shown in Figure 8.As can be seen,the data of all the investigated thin films can be fitted into straight lines,indicating that the single-oscillator WDD model is applicable to the ZnO:Ga-Mg samples in this work.TheEdandEoof all the ZnO:Ga-Mg thin films can be deduced from the slopeand intercept(Ed-1Eo)on the vertical axis.The lattice dielectric constant(εL),the static refractive index(n0),theM-1andM-3moments of the optical spectra were obtained using the following equations[56]:

    whereEois the single-oscillator energy,andEdis the dispersion energy.Table 1 lists the values ofEd,Eo,n0,εL,M-1andM-3for all the ZnO:Ga-Mg thin films.TheEovalues can be found to range from 6.07 to 6.80 eV,andEdfrom 11.79 to 14.43 eV for the ZnO:Ga-Mg samples deposited at various powers.In compared with theEd,theEochanges in a very narrow range.Also,it is observed from Table 1 that the deposition power significantly affects the optical parameters of the ZnO:Ga-Mg thin films.

    The third-order non-linear optical susceptibility(χ(3)),the non-linear refractive index(n2)and the non-linear absorption coefficient(α2)of the ZnO:Ga-Mg thin films can be obtained using the following formulae[57-58]:

    表1 不同功率時(shí)所制備薄膜的光學(xué)參數(shù)Tab.1 The optical parameters of the thin films prepared at various powers

    圖8 不同功率時(shí)所制備薄膜的(n2-1)-1-E2曲線Fig.8 The curves of(n2-1)-1-E2 for the thin films prepared at various powers

    whereA=1.7×10-10esu is a constant,cis the speed of light,λis the wavelength of incident light,andnis the refractive index of the thin films.Figure 9 shows the variation in theχ(3),n2andα2values of the ZnO:Ga-Mg thin films as a function of power.Note from Figure 9a that theχ(3)raises rapidly withλdecrease until it reaches a maximum value,and it drops slowly withλincrease until it reaches a constant value for higher wavelengths.In addition,the deposition power has a great influence on theχ(3)in the ultraviolet region,and little influence on theχ(3)in the visible and near-infrared range of the investigated thin films.From Figure 9,we can observe that the variation ofn2andα2follow the similar trend asχ(3)for all the ZnO:Ga-Mg thin films,and the values ofn2andα2are also subjected to the deposition power.When wavelengthλ=450 nm,corresponding to the power of 110,130,150 and 170 W,the values ofχ(3),n2andα2are 2.71×10-13,5.45×10-12,8.49×10-13;4.38×10-13,8.45×10-12,1.26×10-12;3.19×10-13,6.31×10-12,9.73×10-13;4.01×10-13esu,7.78×10-12m2W-1,1.17×10-12mW-1,respectively.The result is in agreement with the data obtained by Aida et al.who studied the optical properties of the sputtered Sm-doped ZnO thin films[58].

    圖9 不同功率時(shí)所制備薄膜的χ(3)-λ,n2-λ和α2-λ曲線Fig.9 The curves of χ(3)-λ,n2-λ and α2-λ for the thin films prepared at various powers

    3 Conclusion

    The TCO thin films of ZnO:Ga-Mg were prepared by magnetron sputtering.The effects of sputtering power on the microstructural,electrical and optical characteristics of the deposited films were investigated.The XRD analysis results show that all the deposited films have hexagonal wurtzite structure with highlycaxis preferred orientation along the(002)plane regardless of the sputtering powers.When the sputtering power is 150 W,the ZnO:Ga-Mg thin film possesses the best crystal quality and photoelectric properties,with the minimum resistivity,dislocation density and lattice strain,and the maximum figure of merit,average visible transmittance and mean particle size.The optical constants of all the deposited films were determined by the method of optical spectrum fitting from the measured transmittance data.It is observed that the refractive index and extinction coefficient tend to reduce with the increment of wavelength.Meanwhile,the dispersion behavior of the refractive index was analyzed by means of the single-oscillator WDD model,and the optical parameters including direct energygap,single-oscillator energy,dispersion energy,the first order of moment,the third order of moment,static refractive index and lattice dielectric constant were achieved.In addition,the dependence of nonlinear optical properties of the deposited films on sputtering power were also investigated in detail.The results demonstrate that the sputtering power is one of the most important deposition parameters to affect the microstructure,optical and electrical properties of ZnO:Ga-Mg TCO thin films.

    猜你喜歡
    時(shí)所光學(xué)薄膜
    復(fù)合土工薄膜在防滲中的應(yīng)用
    滑輪組的裝配
    Kappa運(yùn)動(dòng)搖搖杯
    中國品牌(2021年9期)2021-09-14 12:48:24
    光學(xué)常見考題逐個(gè)擊破
    β-Ga2O3薄膜的生長(zhǎng)與應(yīng)用
    光源與照明(2019年4期)2019-05-20 09:18:18
    一種不易起皮松散的柔軟型聚四氟乙烯薄膜安裝線
    電線電纜(2017年2期)2017-07-25 09:13:35
    CIGS薄膜太陽電池柔性化
    光學(xué)遙感壓縮成像技術(shù)
    Endress+Hauser 光學(xué)分析儀WA系列
    舉手之勞做環(huán)保之時(shí)令果蔬篇
    亚洲中文字幕一区二区三区有码在线看| 精品人妻1区二区| 在线天堂最新版资源| 老熟妇乱子伦视频在线观看| 小蜜桃在线观看免费完整版高清| 免费人成在线观看视频色| av专区在线播放| 成人精品一区二区免费| 人妻丰满熟妇av一区二区三区| 国产 一区 欧美 日韩| 国产在视频线在精品| 直男gayav资源| 国内久久婷婷六月综合欲色啪| 国产色婷婷99| 波野结衣二区三区在线| 高清日韩中文字幕在线| 日本一二三区视频观看| 九色国产91popny在线| 国产乱人伦免费视频| 亚洲国产精品sss在线观看| 国产一区二区三区在线臀色熟女| 欧美xxxx性猛交bbbb| 大又大粗又爽又黄少妇毛片口| 春色校园在线视频观看| 午夜精品一区二区三区免费看| 国产高清不卡午夜福利| 国产精品av视频在线免费观看| 一个人免费在线观看电影| 在线看三级毛片| 国产精品野战在线观看| 亚洲精品在线观看二区| 亚洲最大成人av| 欧美色视频一区免费| 真实男女啪啪啪动态图| 在线观看免费视频日本深夜| 国产高清视频在线观看网站| 国产成人aa在线观看| 免费在线观看日本一区| 中文字幕av在线有码专区| 国产精品乱码一区二三区的特点| 一a级毛片在线观看| 天美传媒精品一区二区| 欧美高清性xxxxhd video| 欧美日韩瑟瑟在线播放| 丰满的人妻完整版| 久久天躁狠狠躁夜夜2o2o| 亚洲人成网站在线播| 亚洲欧美日韩东京热| 国产精品福利在线免费观看| 一级毛片久久久久久久久女| 免费黄网站久久成人精品| 婷婷亚洲欧美| 一区福利在线观看| 亚洲欧美清纯卡通| 真实男女啪啪啪动态图| 在线观看av片永久免费下载| 亚洲性夜色夜夜综合| 非洲黑人性xxxx精品又粗又长| 中文字幕高清在线视频| 国产一区二区三区av在线 | 欧美三级亚洲精品| 亚洲精品粉嫩美女一区| 日本撒尿小便嘘嘘汇集6| 欧美高清成人免费视频www| 日韩欧美 国产精品| 国产欧美日韩精品亚洲av| 国产欧美日韩一区二区精品| 亚洲午夜理论影院| 亚洲自拍偷在线| 深爱激情五月婷婷| 国产精品伦人一区二区| 免费无遮挡裸体视频| 国内揄拍国产精品人妻在线| 国模一区二区三区四区视频| 99热精品在线国产| 人人妻人人澡欧美一区二区| 免费人成视频x8x8入口观看| 久久国产精品人妻蜜桃| 成年版毛片免费区| 深夜精品福利| 一级黄片播放器| 亚洲午夜理论影院| 精品国产三级普通话版| 最近最新免费中文字幕在线| 精品久久久久久久久久免费视频| 人妻夜夜爽99麻豆av| 亚洲av成人av| 亚洲欧美激情综合另类| 国产伦一二天堂av在线观看| 2021天堂中文幕一二区在线观| 免费看美女性在线毛片视频| 亚洲av电影不卡..在线观看| 免费观看在线日韩| 我要看日韩黄色一级片| 中文字幕免费在线视频6| 亚洲av五月六月丁香网| 精品一区二区免费观看| 在线免费十八禁| 小蜜桃在线观看免费完整版高清| eeuss影院久久| 免费搜索国产男女视频| 啦啦啦韩国在线观看视频| 国内少妇人妻偷人精品xxx网站| 国产一区二区激情短视频| 在线免费观看不下载黄p国产 | 亚洲欧美日韩卡通动漫| 亚洲在线自拍视频| 日日啪夜夜撸| 久久亚洲真实| 国产综合懂色| 12—13女人毛片做爰片一| 久久精品综合一区二区三区| 特大巨黑吊av在线直播| 亚洲第一区二区三区不卡| 九色成人免费人妻av| 三级毛片av免费| 亚洲无线观看免费| 少妇丰满av| 欧美成人一区二区免费高清观看| 日日摸夜夜添夜夜添小说| 人人妻,人人澡人人爽秒播| 欧美日韩乱码在线| 日本一本二区三区精品| 成人av一区二区三区在线看| а√天堂www在线а√下载| 欧美另类亚洲清纯唯美| 两个人的视频大全免费| 天美传媒精品一区二区| 免费黄网站久久成人精品| 久久精品国产亚洲av涩爱 | 一区二区三区四区激情视频 | 午夜精品久久久久久毛片777| 亚洲av中文字字幕乱码综合| 神马国产精品三级电影在线观看| 亚洲国产精品成人综合色| 精品人妻一区二区三区麻豆 | 国产午夜精品久久久久久一区二区三区 | 欧美日韩综合久久久久久 | 亚洲男人的天堂狠狠| 亚洲经典国产精华液单| 国产精品日韩av在线免费观看| 久久久久性生活片| 亚洲专区国产一区二区| 久久精品综合一区二区三区| 日韩欧美在线二视频| 永久网站在线| 日本a在线网址| 免费黄网站久久成人精品| 动漫黄色视频在线观看| 色综合站精品国产| 欧美国产日韩亚洲一区| 色5月婷婷丁香| 亚洲欧美日韩无卡精品| 美女cb高潮喷水在线观看| av在线老鸭窝| 久久人人精品亚洲av| 男女视频在线观看网站免费| 日日摸夜夜添夜夜添小说| 少妇人妻一区二区三区视频| 久久国内精品自在自线图片| 亚洲性久久影院| 久久婷婷人人爽人人干人人爱| 日本欧美国产在线视频| 欧美精品啪啪一区二区三区| 亚洲av成人av| 欧美极品一区二区三区四区| 欧美一区二区精品小视频在线| 18禁在线播放成人免费| 国产高清三级在线| 国产三级中文精品| 日韩高清综合在线| 国产亚洲精品综合一区在线观看| 一a级毛片在线观看| 久久国内精品自在自线图片| 欧美精品啪啪一区二区三区| 亚洲国产欧美人成| 久久久久精品国产欧美久久久| 12—13女人毛片做爰片一| 制服丝袜大香蕉在线| 国产av一区在线观看免费| 国产高清视频在线播放一区| 少妇猛男粗大的猛烈进出视频 | 人妻久久中文字幕网| 一区二区三区激情视频| 最近中文字幕高清免费大全6 | avwww免费| 在现免费观看毛片| 亚洲va日本ⅴa欧美va伊人久久| 亚洲综合色惰| 亚洲av成人av| 精品午夜福利视频在线观看一区| 日本黄色视频三级网站网址| 制服丝袜大香蕉在线| 国产又黄又爽又无遮挡在线| 亚洲国产精品sss在线观看| 嫁个100分男人电影在线观看| 日韩欧美在线乱码| 深夜精品福利| 蜜桃久久精品国产亚洲av| 亚洲成人久久性| 亚洲av第一区精品v没综合| 最近最新中文字幕大全电影3| 国产av在哪里看| 色精品久久人妻99蜜桃| 欧美+日韩+精品| 美女黄网站色视频| 特大巨黑吊av在线直播| 此物有八面人人有两片| 免费观看的影片在线观看| av在线亚洲专区| 亚洲av.av天堂| 国产日本99.免费观看| 波野结衣二区三区在线| 国产黄色小视频在线观看| 久久久久久久亚洲中文字幕| 一a级毛片在线观看| av女优亚洲男人天堂| 日本熟妇午夜| 亚洲无线在线观看| 国产大屁股一区二区在线视频| 日日啪夜夜撸| 午夜精品久久久久久毛片777| 黄色一级大片看看| 欧美性猛交╳xxx乱大交人| 天堂影院成人在线观看| 欧美日本亚洲视频在线播放| 国产真实乱freesex| 国产精品国产高清国产av| 亚洲内射少妇av| 校园春色视频在线观看| av中文乱码字幕在线| 国产成人影院久久av| 91狼人影院| 亚州av有码| 男人狂女人下面高潮的视频| 此物有八面人人有两片| 好男人在线观看高清免费视频| 亚洲va日本ⅴa欧美va伊人久久| АⅤ资源中文在线天堂| 天堂影院成人在线观看| 午夜a级毛片| 国产成人av教育| 在线a可以看的网站| 亚洲最大成人av| av在线老鸭窝| 免费av毛片视频| 97超级碰碰碰精品色视频在线观看| 在线天堂最新版资源| 在线观看美女被高潮喷水网站| 亚洲人成网站高清观看| 亚洲综合色惰| 九九爱精品视频在线观看| 97碰自拍视频| 国产淫片久久久久久久久| 少妇高潮的动态图| 天美传媒精品一区二区| 国产亚洲精品av在线| 高清日韩中文字幕在线| 亚洲精品乱码久久久v下载方式| 欧美日韩黄片免| 亚洲七黄色美女视频| 天堂av国产一区二区熟女人妻| 亚洲综合色惰| 日韩欧美在线二视频| 日本五十路高清| 男人和女人高潮做爰伦理| 亚洲最大成人中文| 欧美性猛交黑人性爽| 中文字幕人妻熟人妻熟丝袜美| 国产真实伦视频高清在线观看 | 精品久久久久久,| av女优亚洲男人天堂| av福利片在线观看| 国产一区二区在线av高清观看| x7x7x7水蜜桃| 成人永久免费在线观看视频| www日本黄色视频网| 成人无遮挡网站| 久久久久久久亚洲中文字幕| 日本免费一区二区三区高清不卡| 成人特级av手机在线观看| 久久99热6这里只有精品| 在线国产一区二区在线| 成人av一区二区三区在线看| 色综合站精品国产| 夜夜夜夜夜久久久久| 亚洲欧美日韩东京热| 国产蜜桃级精品一区二区三区| 亚洲va在线va天堂va国产| 欧美一级a爱片免费观看看| 日本-黄色视频高清免费观看| 国产成年人精品一区二区| 无人区码免费观看不卡| 一区二区三区高清视频在线| 久久国内精品自在自线图片| 夜夜看夜夜爽夜夜摸| 久久亚洲真实| 成年版毛片免费区| 校园人妻丝袜中文字幕| 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 精品久久久久久久人妻蜜臀av| 99热只有精品国产| 国产色爽女视频免费观看| 久久亚洲精品不卡| 欧美另类亚洲清纯唯美| 一a级毛片在线观看| 久久久久久久久久黄片| 国产精品伦人一区二区| 国产一区二区三区视频了| 久久久久久久精品吃奶| 国产精品国产高清国产av| 偷拍熟女少妇极品色| 欧美潮喷喷水| 床上黄色一级片| 男女那种视频在线观看| 国产精品,欧美在线| 精品久久久久久成人av| 国内揄拍国产精品人妻在线| 内地一区二区视频在线| 97人妻精品一区二区三区麻豆| 精品无人区乱码1区二区| 99久久久亚洲精品蜜臀av| 久久久久九九精品影院| 国产熟女欧美一区二区| 久久久久国内视频| av福利片在线观看| 久久久久国内视频| 国产老妇女一区| 一个人观看的视频www高清免费观看| 亚洲,欧美,日韩| 亚洲狠狠婷婷综合久久图片| 免费av观看视频| 国产一区二区亚洲精品在线观看| 99久久精品一区二区三区| 亚洲av免费在线观看| 黄色丝袜av网址大全| 最新中文字幕久久久久| 亚洲人成网站在线播| 亚洲精品成人久久久久久| 日本黄色片子视频| 久久国产乱子免费精品| 亚洲av不卡在线观看| 亚洲美女黄片视频| 一级av片app| 亚洲精品一区av在线观看| 在线免费观看不下载黄p国产 | 三级毛片av免费| 欧美一区二区精品小视频在线| 国产精品嫩草影院av在线观看 | 丝袜美腿在线中文| 一个人看的www免费观看视频| 91在线精品国自产拍蜜月| 国产成人一区二区在线| 一个人免费在线观看电影| 国产精品亚洲美女久久久| 国产精品精品国产色婷婷| 看黄色毛片网站| 女生性感内裤真人,穿戴方法视频| 久久久精品大字幕| 国产国拍精品亚洲av在线观看| 真实男女啪啪啪动态图| 亚洲熟妇中文字幕五十中出| 日韩一区二区视频免费看| АⅤ资源中文在线天堂| 精品久久久久久久人妻蜜臀av| 成年女人永久免费观看视频| 午夜免费男女啪啪视频观看 | 很黄的视频免费| 又粗又爽又猛毛片免费看| 久99久视频精品免费| 成人毛片a级毛片在线播放| 在线免费十八禁| 一进一出抽搐gif免费好疼| 日韩亚洲欧美综合| 国产精品综合久久久久久久免费| 国产精品美女特级片免费视频播放器| 日韩精品青青久久久久久| 中文字幕精品亚洲无线码一区| 嫩草影视91久久| 狂野欧美白嫩少妇大欣赏| 嫩草影视91久久| 在线免费观看不下载黄p国产 | 亚洲国产精品久久男人天堂| 91麻豆精品激情在线观看国产| 中文在线观看免费www的网站| 久久精品国产清高在天天线| 黄色欧美视频在线观看| 国产精品日韩av在线免费观看| 国产午夜精品久久久久久一区二区三区 | 男女视频在线观看网站免费| av天堂中文字幕网| 99久久精品国产国产毛片| 亚洲欧美日韩东京热| 深爱激情五月婷婷| 成人国产综合亚洲| 性色avwww在线观看| 一区二区三区激情视频| 简卡轻食公司| 最好的美女福利视频网| 成熟少妇高潮喷水视频| 国产精品久久久久久精品电影| 国内久久婷婷六月综合欲色啪| 色综合亚洲欧美另类图片| 老女人水多毛片| 免费不卡的大黄色大毛片视频在线观看 | 亚洲人成网站高清观看| 女生性感内裤真人,穿戴方法视频| 真人做人爱边吃奶动态| 听说在线观看完整版免费高清| 欧美日本视频| 99国产精品一区二区蜜桃av| 又紧又爽又黄一区二区| 久9热在线精品视频| ponron亚洲| 麻豆国产av国片精品| 国产黄片美女视频| 欧美性猛交黑人性爽| 国产av一区在线观看免费| 午夜福利18| 一级黄片播放器| 两个人的视频大全免费| 国产成人影院久久av| 国产老妇女一区| 亚洲黑人精品在线| 日韩,欧美,国产一区二区三区 | 日韩欧美国产在线观看| 国产欧美日韩精品亚洲av| 午夜视频国产福利| 搡老妇女老女人老熟妇| h日本视频在线播放| 嫁个100分男人电影在线观看| 身体一侧抽搐| 日本撒尿小便嘘嘘汇集6| 在线观看av片永久免费下载| 成年人黄色毛片网站| 变态另类成人亚洲欧美熟女| 久久久久久久精品吃奶| 在线天堂最新版资源| 久久久国产成人免费| 国产三级中文精品| 国产精品久久久久久久久免| 九九久久精品国产亚洲av麻豆| 91午夜精品亚洲一区二区三区 | 三级男女做爰猛烈吃奶摸视频| 亚洲va在线va天堂va国产| 麻豆久久精品国产亚洲av| 无人区码免费观看不卡| 搡老岳熟女国产| 久久久久久久久久久丰满 | 蜜桃久久精品国产亚洲av| 久久精品国产清高在天天线| 国产av麻豆久久久久久久| 国产精品精品国产色婷婷| 久久久久国产精品人妻aⅴ院| 欧美成人一区二区免费高清观看| 日韩欧美 国产精品| 麻豆精品久久久久久蜜桃| 欧美日韩精品成人综合77777| 国产精品永久免费网站| 波多野结衣高清作品| 午夜视频国产福利| 一区二区三区四区激情视频 | 亚洲欧美日韩东京热| 久久天躁狠狠躁夜夜2o2o| 欧美日韩黄片免| 精品无人区乱码1区二区| 精华霜和精华液先用哪个| 高清在线国产一区| 哪里可以看免费的av片| 特级一级黄色大片| 亚洲五月天丁香| 亚洲中文字幕一区二区三区有码在线看| 日韩 亚洲 欧美在线| 国产av在哪里看| x7x7x7水蜜桃| 神马国产精品三级电影在线观看| 能在线免费观看的黄片| 午夜福利18| 动漫黄色视频在线观看| 麻豆成人午夜福利视频| 国产一区二区三区av在线 | 美女 人体艺术 gogo| 日韩欧美精品v在线| 别揉我奶头 嗯啊视频| 亚洲18禁久久av| 亚洲中文日韩欧美视频| 最近中文字幕高清免费大全6 | 亚洲欧美日韩卡通动漫| 欧美日韩黄片免| 97超级碰碰碰精品色视频在线观看| 最新中文字幕久久久久| 亚洲三级黄色毛片| 一夜夜www| 久久香蕉精品热| 少妇人妻精品综合一区二区 | 国产亚洲精品综合一区在线观看| 少妇猛男粗大的猛烈进出视频 | 国产黄片美女视频| 成人av在线播放网站| 人人妻人人澡欧美一区二区| 国产av一区在线观看免费| 国产一区二区激情短视频| 国产精品乱码一区二三区的特点| 一边摸一边抽搐一进一小说| 婷婷亚洲欧美| 亚洲av熟女| 国产免费男女视频| 国产黄色小视频在线观看| 欧美区成人在线视频| 无人区码免费观看不卡| 国产高清激情床上av| 成人欧美大片| 久久6这里有精品| 午夜福利在线观看免费完整高清在 | 亚洲18禁久久av| 欧美日韩国产亚洲二区| 18禁裸乳无遮挡免费网站照片| 此物有八面人人有两片| 色尼玛亚洲综合影院| 久久久久久国产a免费观看| 欧美激情久久久久久爽电影| 好男人在线观看高清免费视频| 亚洲自拍偷在线| 观看免费一级毛片| 免费看美女性在线毛片视频| 全区人妻精品视频| 久久99热6这里只有精品| 香蕉av资源在线| 亚洲午夜理论影院| 性色avwww在线观看| 人人妻,人人澡人人爽秒播| 国产精品永久免费网站| 91久久精品国产一区二区三区| 免费无遮挡裸体视频| 久99久视频精品免费| 午夜a级毛片| 日日摸夜夜添夜夜添小说| 丝袜美腿在线中文| 日本免费一区二区三区高清不卡| 亚洲久久久久久中文字幕| 国产一区二区在线av高清观看| 黄色一级大片看看| 久99久视频精品免费| avwww免费| 国产激情偷乱视频一区二区| 69人妻影院| 1000部很黄的大片| 亚洲av电影不卡..在线观看| 国产精品三级大全| 免费无遮挡裸体视频| 18禁黄网站禁片午夜丰满| 久久亚洲精品不卡| 午夜免费男女啪啪视频观看 | 级片在线观看| 18禁在线播放成人免费| 成年女人看的毛片在线观看| 国产精品伦人一区二区| 国产亚洲91精品色在线| 日本熟妇午夜| 午夜爱爱视频在线播放| 男女做爰动态图高潮gif福利片| 国产激情偷乱视频一区二区| 最近最新免费中文字幕在线| 99国产极品粉嫩在线观看| 国产综合懂色| 日本免费a在线| 在线观看免费视频日本深夜| 国产亚洲欧美98| 国产精品人妻久久久影院| 日韩,欧美,国产一区二区三区 | 深夜a级毛片| 日韩大尺度精品在线看网址| 日韩av在线大香蕉| 亚洲av中文av极速乱 | 露出奶头的视频| 国产老妇女一区| 免费看av在线观看网站| 天堂动漫精品| 黄色配什么色好看| 午夜激情欧美在线| 亚洲一级一片aⅴ在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久午夜亚洲精品久久| 最新中文字幕久久久久| 欧美高清成人免费视频www| 午夜免费激情av| 久久人人精品亚洲av| 亚洲三级黄色毛片| 亚洲五月天丁香| 国产三级在线视频| 国内精品久久久久精免费| 色播亚洲综合网| 精品人妻偷拍中文字幕| 午夜久久久久精精品| 国产黄色小视频在线观看| 欧美一区二区精品小视频在线| 久久久久久久久久久丰满 | 国产精品电影一区二区三区| 亚洲精品影视一区二区三区av| 最好的美女福利视频网| 日韩欧美国产在线观看| 亚洲国产欧美人成| 日本熟妇午夜| 午夜精品久久久久久毛片777| 久久精品国产亚洲av香蕉五月| a级一级毛片免费在线观看| 日本爱情动作片www.在线观看 | 久久久成人免费电影| 伦精品一区二区三区| 午夜精品久久久久久毛片777| www.色视频.com| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人aa在线观看| 我的女老师完整版在线观看|