楊 萍,黃清杰,李喜香,宋 薇,王雪梅
橙皮苷藥理作用及機(jī)制的研究進(jìn)展
楊 萍,黃清杰,李喜香,宋 薇,王雪梅
甘肅省中醫(yī)院,甘肅 蘭州 730050
橙皮苷廣泛存在于柑橘屬、蕓香科、茜草科、唇形科、十字花科植物果實(shí)或根莖中,是一種二氫黃酮類化合物,也是中藥陳皮、枳實(shí)、枳殼、款冬花等的主要藥效成分,屬于維生素P類藥,可增強(qiáng)毛細(xì)血管的韌性、縮短出血時(shí)間,臨床多用于心血管系統(tǒng)疾病的輔助治療,在食品工業(yè)中可用作天然抗氧化劑,也可用于化妝品行業(yè)。現(xiàn)代藥理研究表明橙皮苷具有抗炎、抗氧化、保護(hù)心血管系統(tǒng)、抗糖尿病并發(fā)癥、抗菌、抗腫瘤、提升免疫力、保護(hù)神經(jīng)系統(tǒng)等多種生物學(xué)活性,因此,通過(guò)對(duì)橙皮苷的藥理作用及機(jī)制進(jìn)行歸納總結(jié),以期為其臨床應(yīng)用及藥物開(kāi)發(fā)提供依據(jù)。
橙皮苷;抗炎;抗氧化;心血管系統(tǒng);抗菌;抗腫瘤
橙皮苷別名陳皮苷、橘皮苷、川陳皮素等,是一種天然酚類化合物,為二氫黃酮衍生物,具有雙氫黃酮氧苷結(jié)構(gòu),呈弱酸性,為白色針狀結(jié)晶,是中藥陳皮、枳實(shí)、枳殼、款冬花等的主要有效成分,由于其溶解度低,極大地限制了其在醫(yī)學(xué)、食品領(lǐng)域中的應(yīng)用[1]。現(xiàn)代研究發(fā)現(xiàn)橙皮苷在提高人體免疫力、抗炎、抗菌、抗病毒、保護(hù)心血管系統(tǒng)等方面具有重要作用[2],已成為一種新的潛在治療劑。目前,橙皮苷在醫(yī)藥食品行業(yè)有一定的應(yīng)用,但效果并不顯著,這主要與其難溶于水,不溶于脂溶性溶劑的特性有關(guān)[3],口服后需經(jīng)腸道微生物發(fā)酵轉(zhuǎn)化為單糖苷或苷元等成分發(fā)揮藥效,存在生物利用度低等問(wèn)題[4],因此,通過(guò)查閱文獻(xiàn),對(duì)橙皮苷的藥理作用及機(jī)制進(jìn)行梳理總結(jié),為其后續(xù)進(jìn)一步開(kāi)發(fā)利用提供理論依據(jù)。
炎癥在多種疾病的發(fā)病機(jī)制中具有重要作用,包括慢性炎癥性疾病,如類風(fēng)濕性關(guān)節(jié)炎、炎癥性腸病、過(guò)敏和哮喘,此外,還涉及心血管疾病、代謝疾病、神經(jīng)退行性疾病和認(rèn)知能力下降[5]。橙皮苷可減少關(guān)節(jié)炎大鼠足趾腫脹和關(guān)節(jié)炎評(píng)分,改善紅細(xì)胞和血小板計(jì)數(shù)及血紅蛋白和血細(xì)胞的比值,顯著降低血清γ干擾素和白細(xì)胞介素-4(interleukin-4,IL-4)水平[6]。Heo等[7]發(fā)現(xiàn)橙皮苷100 mg/kg可減少脊髓損傷大鼠神經(jīng)病理學(xué)變化及促炎因子腫瘤壞死因子-α(tumour necrosis factor-α,TNF-α)、IL-1β表達(dá),可能通過(guò)核因子E2相關(guān)因子2(nuclear factor E2 related factor 2,Nrf2)/血紅素加氧酶-1通路發(fā)揮抗炎作用。Xiao等[8]發(fā)現(xiàn)橙皮苷改善人間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)的自我更新能力和軟骨形成,調(diào)節(jié)炎癥因子γ干擾素、IL-2、IL-4和IL-10分泌,表明橙皮苷可作為治療劑通過(guò)抑制炎癥促進(jìn)軟骨組織修復(fù)來(lái)有效促進(jìn)MSC的軟骨形成。橙皮苷可減輕炎癥細(xì)胞向氣道的募集,減少二氯甲烷和IL-12的產(chǎn)生,可通過(guò)調(diào)節(jié)炎癥反應(yīng)來(lái)保護(hù)機(jī)械通氣小鼠的肺部[9]。Adefegha等[10]發(fā)現(xiàn)橙皮苷40、80 mg/kg可減輕關(guān)節(jié)炎大鼠的炎癥,降低血漿髓過(guò)氧化酶(myeloperoxidase,MPO)活性及血清硝酸鹽、亞硝酸鹽水平,調(diào)節(jié)血小板外泌酶活性和血清嘌呤水平,減輕細(xì)胞內(nèi)活性氧,調(diào)節(jié)腺苷核苷酸和核苷水解酶表達(dá),減弱細(xì)胞凋亡過(guò)程并激活細(xì)胞周期阻滯,表明橙皮苷可能是一種天然抗炎化合物,可用于治療關(guān)節(jié)炎。橙皮苷20 mg/kg可顯著抑制脂多糖誘導(dǎo)的炎癥介質(zhì)基因表達(dá),緩解抗原誘導(dǎo)的關(guān)節(jié)炎,降低成纖維細(xì)胞樣滑膜細(xì)胞中基質(zhì)金屬蛋白酶3(matrix metalloproteinase 3,MMP3)、MMP9和MMP13水平,并抑制巨噬細(xì)胞向M1的極化,表明橙皮苷具有顯著的抗炎活性,可能通過(guò)抑制磷脂酰肌醇3-激酶/蛋白激酶B信號(hào)通路治療類風(fēng)濕性關(guān)節(jié)炎[11]。綜上,橙皮苷抗炎作用顯著,其作用機(jī)制可能是抑制促炎因子分泌,減輕炎癥反應(yīng),抑制炎癥信號(hào)通路等。
自由基與有機(jī)底物如脂質(zhì)、蛋白質(zhì)和DNA發(fā)生反應(yīng),通過(guò)氧化破壞這些分子,擾亂其正常功能,因此可能導(dǎo)致各種疾病[12]。橙皮苷顯著提高應(yīng)激劑H2O2或百草枯處理的釀酒酵母超氧化物歧化酶(superoxide dismutase,SOD)、過(guò)氧化氫酶(catalase,CAT)及其缺陷菌株的真核細(xì)胞中自由基1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl,DPPH)水平,其功效與奎諾二甲基丙烯酸酯(trolox)相似,可提供強(qiáng)大的細(xì)胞抗氧化保護(hù)作用[13]。Elavarasan等[14]發(fā)現(xiàn)橙皮苷100 mg/kg可增強(qiáng)老年大鼠SOD、CAT、谷胱甘肽過(guò)氧化物酶(glutathione peroxidase,GSH-Px)、谷胱甘肽還原酶(gluathione reductase,GR)和6-磷酸葡萄糖脫氫酶(glucose-6-phosphate dehydrogenease,G6PD)活性,恢復(fù)心臟中的非酶抗氧化劑(谷胱甘肽、抗壞血酸、α-生育酚)水平,降低過(guò)氧化脂質(zhì)(lipid peroxidation,LPO)及蛋白質(zhì)羰基化合物水平,上調(diào)心肌組織SOD、CAT及Nrf2表達(dá),下調(diào)Kelch樣ECH關(guān)聯(lián)蛋白1(Kelch-like ECH-associated protein 1,Keap1)表達(dá),表明橙皮苷可用于保護(hù)心肌細(xì)胞免受Nrf2上調(diào)介導(dǎo)的與年齡相關(guān)的氧化應(yīng)激增加,提高細(xì)胞抗氧化狀態(tài)。橙皮苷10 μg/mL表現(xiàn)出比抗壞血酸和trolox等更大的自由基清除活性,不同濃度H2O2處理后發(fā)現(xiàn)橙皮苷2.5 mmol/L可將pBR322 DNA的開(kāi)放環(huán)狀形式(oc)轉(zhuǎn)化為超卷曲(ccc)形式,10 μg/mL可防止膜損傷,表明橙皮苷是一種有價(jià)值的抗氧化劑,可保護(hù)pBR322 DNA和紅細(xì)胞膜免受自由基誘導(dǎo)的氧化損傷[15]。Ali等[16]發(fā)現(xiàn)橙皮苷10 mg/kg可顯著減輕紫杉醇引起的雄性Wistar大鼠氧化應(yīng)激,降低腎臟和心臟脂質(zhì)過(guò)氧化水平,增加谷胱甘肽含量及SOD和GSH-Px活性,表明橙皮苷可能通過(guò)抑制氧化應(yīng)激和增強(qiáng)抗氧化防御來(lái)對(duì)抗腎臟和心臟功能障礙及組織病理學(xué)變化。橙皮苷200 mg/kg可減弱CCl4誘導(dǎo)的大鼠肝臟和腎臟脂質(zhì)過(guò)氧化水平,顯著改善谷胱甘肽消耗,提高SOD及CAT水平,表明橙皮苷對(duì)CCl4誘導(dǎo)的大鼠肝臟和腎臟氧化應(yīng)激的保護(hù)作用與其直接的抗氧化作用有關(guān)[17]。綜上,橙皮苷抗氧化機(jī)制可能為上調(diào)SOD、CAT、GSH-Px、GR、DPPH水平,減輕氧化應(yīng)激,增強(qiáng)抗氧化防御等。
心血管疾病是世界上首位死亡原因,約占全世界所有死亡人數(shù)的31%[18]。其病因復(fù)雜且涉及遺傳、疾病狀況和生活方式等因素[19]。橙皮苷在心血管疾病模型中顯示出預(yù)防血脂異常和動(dòng)脈粥樣硬化(atherosclerosis,AS)的作用,在高血壓模型中顯示出抗高血壓和抗氧化作用[20],然其臨床報(bào)道資料較少,仍需進(jìn)一步完善。
高血壓以動(dòng)脈壓升高為特征,主要表現(xiàn)為肌層增厚和內(nèi)膜增生,并伴有動(dòng)脈壁的透明質(zhì)狀樣改變和彈性層增生[21]。給予雄性高血壓大鼠橙皮苷20、40 mg/kg 4周,發(fā)現(xiàn)橙皮苷可呈劑量相關(guān)性降低血壓,下調(diào)主動(dòng)脈組織中受體蛋白表達(dá),抑制氧化應(yīng)激標(biāo)志物和酰胺腺嘌呤二核苷酸磷酸氧化酶(nicotinamide adenine dinucleotide phosphate oxidase,NOX),恢復(fù)血漿一氧化氮代謝物水平,其抗高血壓作用可能與減少腎素-血管緊張素系統(tǒng)級(jí)聯(lián)誘導(dǎo)的NOX2過(guò)度表達(dá)和交感神經(jīng)興奮有關(guān)[22]。給予自發(fā)性高血壓大鼠橙皮苷8周可顯著預(yù)防高血壓并抑制主動(dòng)脈中NOX亞基和血栓烷A2合酶mRNA表達(dá),其代謝物橙皮素可減少主動(dòng)脈中血栓素B2的釋放,表明橙皮苷可通過(guò)調(diào)節(jié)與血管張力相關(guān)的基因表達(dá)來(lái)預(yù)防高血壓[23]。橙皮苷可通過(guò)抗氧化作用調(diào)節(jié)一氧化氮的失活,保護(hù)內(nèi)皮功能免受活性氧的影響,顯著抑制自發(fā)性高血壓大鼠的血壓升高,表明橙皮苷可能通過(guò)增加一氧化氮的生物利用度改善內(nèi)皮功能防治高血壓[24]。橙皮苷可抑制-硝基--精氨酸甲酯鹽酸鹽誘導(dǎo)的大鼠高血壓和血管障礙,降低血清血管緊張素轉(zhuǎn)換酶活性和血漿轉(zhuǎn)化生長(zhǎng)因子-β1(transforming growth factor-β1,TGF-β1)水平,可能與抑制腎素-血管緊張素系統(tǒng)的激活,減少氧化應(yīng)激有關(guān)[25]。綜上,橙皮苷可能通過(guò)調(diào)節(jié)血管張力,減輕氧化應(yīng)激,改善內(nèi)皮功能,抑制腎素-血管緊張素系統(tǒng)的激活防治高血壓。
高脂血癥直接影響心臟的收縮功能和心臟電生理反應(yīng),是AS和心血管疾病的主要原因之一[26]。Kumar等[27]給予高脂血癥模型大鼠橙皮苷100 mg/kg,持續(xù)30 d,結(jié)果發(fā)現(xiàn)血脂應(yīng)激和氧化還原失衡減輕,表明橙皮苷對(duì)高血脂大鼠具有保護(hù)作用。橙皮苷可顯著增加正常血脂大鼠和高脂血癥大鼠高密度脂蛋白(high density lipoprotein,HDL)含量,下調(diào)血漿總膽固醇(total cholesterol,TC)、低密度脂蛋白(low density lipoprotein,LDL)、總脂質(zhì)和三酰甘油(triglyceride,TG)水平,具有調(diào)節(jié)血脂活性的作用[28]。橙皮苷50 mg/kg可顯著恢復(fù)大鼠體內(nèi)升高的膽固醇/磷脂的值,改善高膽固醇血癥,其機(jī)制可能與穩(wěn)定高膽固醇血癥大鼠肝臟中的溶酶體有關(guān)[29]。綜上,橙皮苷對(duì)正常血脂及高脂血癥均有調(diào)節(jié)血脂作用,其作用機(jī)制可能為減輕氧化應(yīng)激,調(diào)控DL、TC、總脂質(zhì)及TG水平等。
AS是導(dǎo)致心血管疾病發(fā)病率和死亡率升高的主要原因。脂蛋白水平的變化,尤其是LDL或其變體,及炎癥標(biāo)志物的變化是AS的危險(xiǎn)因素[30]。橙皮苷改善高脂飲食引起的體質(zhì)量增加和胰島素抵抗及高脂血癥,抑制肝脂肪變性、AS斑塊面積和巨噬細(xì)胞泡沫細(xì)胞形成,下調(diào)乙酰輔酶A羧化酶α(acetyl CoA carboxylase,ACCα)和脂肪酸合成酶(fatty acid synthase,F(xiàn)AS)表達(dá),上調(diào)肝ATP結(jié)合盒轉(zhuǎn)運(yùn)蛋白G8(ATP binding cassette transporter G8,ABCG8)、巨噬細(xì)胞ABCA1和ABCG1表達(dá),調(diào)控抗氧化酶活性和炎癥因子表達(dá),表明橙皮苷通過(guò)改善胰島素抵抗及脂質(zhì)分布、抑制巨噬細(xì)胞泡沫細(xì)胞形成、抗氧化、抗炎減少AS[31]。Koga等[32]指出橙皮苷抑制伐尼克蘭對(duì)載脂蛋白E敲除小鼠的整個(gè)主動(dòng)脈、主動(dòng)脈弓和主動(dòng)脈根部的加重作用,通過(guò)上調(diào)小鼠單核巨噬RAW264.7細(xì)胞中ABCA1和ABCG1膽固醇流出轉(zhuǎn)運(yùn)蛋白表達(dá),下調(diào)清道夫受體CD36和血凝素樣氧化低密度脂蛋白受體-1(lectin-like oxidized low density lipoprotein receptor-1,LOX-1)表達(dá),減少巨噬細(xì)胞中氧化低密度脂蛋白(oxygenized low density lipoprotein,oxLDL)凈攝取,表明橙皮苷通過(guò)下調(diào)oxLDL阻斷AS斑塊形成。綜上,橙皮苷抗AS機(jī)制可能為抑制巨噬細(xì)胞泡沫細(xì)胞形成、抗氧化、抗炎、下調(diào)巨噬細(xì)胞中oxLDL等。
糖尿病是一種代謝性疾病,以高血糖為特征,可導(dǎo)致多種并發(fā)癥[33]。Visnagri等[34]發(fā)現(xiàn)橙皮苷50、100 mg/kg與胰島素聯(lián)合使用,可減輕實(shí)驗(yàn)性糖尿病性神經(jīng)病變,通過(guò)控制高血糖和高脂血癥下調(diào)自由基的產(chǎn)生、促炎因子的釋放及膜結(jié)合酶的升高,從而逆轉(zhuǎn)神經(jīng)性疼痛。Syed等[35]發(fā)現(xiàn)橙皮苷100 mg/kg顯著緩解實(shí)驗(yàn)性糖尿病性神經(jīng)病變大鼠的葡萄糖和胰島素抵抗,通過(guò)上調(diào)沉默調(diào)節(jié)蛋白1來(lái)抑制NOX4介導(dǎo)的氧化應(yīng)激和炎癥,具有抗糖尿病和神經(jīng)保護(hù)作用。何偉等[36]通過(guò)研究橙皮苷對(duì)鏈脲佐菌素(streptozotocin,STZ)誘導(dǎo)的糖尿病腎病大鼠模型的影響,發(fā)現(xiàn)橙皮苷可抑制糖尿病腎病大鼠腎組織中Wnt4和β-catenin表達(dá),進(jìn)而改善腎功能,減輕蛋白尿,最終起到對(duì)腎臟的保護(hù)作用。Kandemir等[37]指出橙皮苷可降低STZ誘導(dǎo)的糖尿病腎病大鼠血清尿素、肌酐和丙二醛水平,升高抗氧化酶活性,減少TGF-β1表達(dá)及DNA氧化損傷,減輕腎組織病理組織學(xué)改變。Shi等[38]發(fā)現(xiàn)橙皮苷100、200 mg/kg顯著抑制STZ誘導(dǎo)的糖尿病大鼠血-視網(wǎng)膜屏障分解并增加視網(wǎng)膜厚度、降低血糖、醛糖還原酶(aldose reductase,AR)活性和視網(wǎng)膜TNF-α、細(xì)胞間黏附分子-1(intercellular cell adhesion molecule-1,ICAM-1)、血管內(nèi)皮生長(zhǎng)因子(vascular endothelial growth factor,VEGF)、IL-1β和晚期糖基化終末產(chǎn)物(advanced glycation end products,AGEs)水平,降低血漿丙二醛含量并增加SOD活性,表明橙皮苷通過(guò)抗血管生成、抗炎和抗氧化作用及對(duì)多元醇途徑和AGEs積累的抑制作用減輕視網(wǎng)膜和血漿異常。Shehata等[39]發(fā)現(xiàn)橙皮苷200 mg/kg與胰島素聯(lián)合使用可顯著改善糖尿病視網(wǎng)膜并發(fā)癥,減輕糖尿病大鼠視網(wǎng)膜組織形態(tài)學(xué)變化,降低丙二醛和升高血清抗氧化標(biāo)志物,減少GSH-Px表達(dá)。綜上,橙皮苷可防治糖尿病并發(fā)癥,作用機(jī)制可能為改善胰島素抵抗,調(diào)控葡萄糖代謝相關(guān)酶及基因表達(dá),減輕氧化應(yīng)激損傷,下調(diào)炎癥因子表達(dá)等。
因此,橙皮苷保護(hù)心血管系統(tǒng)、抗糖尿病并發(fā)癥均與其抗炎、抗氧化作用密切相關(guān),可能通過(guò)調(diào)節(jié)炎癥因子表達(dá)、減輕氧化應(yīng)激損傷發(fā)揮防治心血管疾病及糖尿病并發(fā)癥的作用,見(jiàn)圖1。
“↑”升高 “↓”降低,下圖同
致病菌引起的感染嚴(yán)重者可危及生命,通過(guò)對(duì)細(xì)菌毒力的作用機(jī)制研究,發(fā)現(xiàn)其對(duì)大多數(shù)抗生素具有耐藥性,遏制細(xì)菌耐藥性是目前亟待解決的問(wèn)題,其中來(lái)源于植物的抗菌劑引起了研究者的廣泛關(guān)注[40]。Vijayakumar等[41]發(fā)現(xiàn)橙皮苷可顯著抑制脂肪酶、溶血素、自溶素、自聚集和葡萄黃素的產(chǎn)生,增加耐甲氧西林金黃色葡萄球菌對(duì)H2O2氧化應(yīng)激條件的易感性,下調(diào)生物膜相關(guān)基因、多糖細(xì)胞內(nèi)黏附基因、自溶素、纖連蛋白結(jié)合蛋白和葡萄黃素生成,抑制耐甲氧西林金黃色葡萄球菌的生物膜形成及毒力。橙皮苷對(duì)革蘭陽(yáng)性菌的抗菌作用高于對(duì)革蘭陰性菌的抗菌作用,能有效抑制細(xì)菌生長(zhǎng),對(duì)金黃色葡萄球菌、蠟樣芽孢桿菌、大腸桿菌和銅綠假單胞菌的最小抑菌濃度分別為1000、2000、2000、2000 μg/mL,最低殺菌濃度大于2000 μg/mL[42]。Pyrzynska[43]發(fā)現(xiàn)橙皮苷可直接抑制細(xì)菌生長(zhǎng)或通過(guò)調(diào)節(jié)毒力因子的表達(dá)間接起作用,這2種方式都降低了微生物的致病性。體內(nèi)外研究結(jié)果表明橙皮苷對(duì)嗜水氣單胞菌具有抗菌活性,顯著增加抗脂多糖免疫球蛋白M(immunoglobulin M,IgM)水平,并將抗脂多糖和抗嗜酸性粒細(xì)胞陽(yáng)離子蛋白IgA水平降低至正常值,具有抗鼠類嗜水氣單胞菌感染的抗菌活性[44]。張啟煥等[45]發(fā)現(xiàn)0.15%~0.50%的橙皮苷對(duì)金黃色葡萄球菌和大腸桿菌均具有較好抑菌效果,能夠作為一種廣譜抗菌藥物開(kāi)發(fā)。綜上,橙皮苷的抗菌機(jī)制可能為下調(diào)細(xì)菌生物膜相關(guān)基因、多糖細(xì)胞內(nèi)黏附基因、自溶素、纖連蛋白結(jié)合蛋白和葡萄黃素生成,抑制細(xì)菌毒力及生長(zhǎng)等,見(jiàn)圖2。
圖2 橙皮苷抗菌作用機(jī)制
橙皮苷被認(rèn)為是一種抗癌劑,在多種類型癌細(xì)胞中表現(xiàn)出促細(xì)胞凋亡和抗增殖作用,然而其誘導(dǎo)生長(zhǎng)停滯和細(xì)胞凋亡的潛在機(jī)制尚不清楚[46]。橙皮苷的抗癌作用與其抗氧化和抗炎活性有關(guān),通過(guò)與細(xì)胞靶標(biāo)相互作用,誘導(dǎo)細(xì)胞凋亡和細(xì)胞周期阻滯抑制癌細(xì)胞增殖,具有抑制腫瘤細(xì)胞遷移和血管生成的潛在作用,還可逆轉(zhuǎn)癌細(xì)胞的耐藥性,這使其成為與現(xiàn)有抗癌藥物聯(lián)用的候選藥物之一[47]。Xia等[48]發(fā)現(xiàn)橙皮苷通過(guò)介導(dǎo)基質(zhì)細(xì)胞衍生因子-1/ CXC趨化因子受體4(stromal cell-derived factor-1/ CXC chemokine receptor 4,SDF-1/CXCR4)信號(hào)級(jí)聯(lián)抑制人肺癌A549細(xì)胞的遷移和侵襲能力,是一種安全、有效的抗癌藥物。橙皮苷可呈劑量和時(shí)間相關(guān)性抑制人宮頸癌HeLa細(xì)胞增殖,促進(jìn)活性氧形成、細(xì)胞內(nèi)Ca2+激活及線粒體膜電位損失,增加細(xì)胞色素C和線粒體凋亡誘導(dǎo)因子釋放,并促進(jìn)半胱氨酸天冬氨酸蛋白酶-3(cystein-asparate protease-3,Caspase-3)激活,下調(diào)細(xì)胞周期蛋白D1(Cyclin D1)、cyclin E1和Cyclin依賴性激酶2表達(dá),使HeLa細(xì)胞阻滯在細(xì)胞周期的G0/G1期,表明橙皮苷通過(guò)內(nèi)質(zhì)網(wǎng)應(yīng)激通路介導(dǎo)的細(xì)胞凋亡和細(xì)胞周期阻滯抑制HeLa細(xì)胞增殖[49]。橙皮苷通過(guò)核因子抑制蛋白信號(hào)通路抑制人肝癌細(xì)胞中核因子-κB(nuclear factor-κB,NF-κB)易位進(jìn)入細(xì)胞核及抑制p38激酶磷酸化和c-Jun氨基末端激酶(c-Jun-terminal kinase,JNK)信號(hào)通路下調(diào)激活蛋白-1(activator protein-1,AP-1)表達(dá),減少M(fèi)MP9轉(zhuǎn)錄,從而抑制腫瘤細(xì)胞侵襲和遷移,是一種有效的抗侵襲劑[50]。橙皮苷通過(guò)抑制人口腔癌HN6和HN15細(xì)胞中磷酸化轉(zhuǎn)錄激活因子1(signal transducer and activator of transcription 1,STAT1)和STAT3顯著下調(diào)γ干擾素誘導(dǎo)的程序性死亡配體1(programmed death-ligand 1,PD-L1)表達(dá),降低這2種細(xì)胞系的活力、增殖、遷移和侵襲[51]。王振東等[52]研究表明橙皮苷對(duì)人胃癌AGS細(xì)胞具有良好的殺傷作用,并通過(guò)提高AGS細(xì)胞內(nèi)活性氧水平,進(jìn)而調(diào)控MAPK信號(hào)通路來(lái)誘導(dǎo)AGS細(xì)胞發(fā)生線粒體依賴性凋亡。綜上,橙皮苷抗腫瘤作用廣泛,可抗肺癌、宮頸癌、肝癌、口腔癌、胃癌等,作用機(jī)制可能為抑制腫瘤細(xì)胞增殖、遷移和侵襲,阻滯細(xì)胞周期,介導(dǎo)凋亡信號(hào)通路等,見(jiàn)圖3。
免疫系統(tǒng)是機(jī)體抵御外來(lái)病原體(如細(xì)菌、病毒和真菌等致病性病原微生物)侵襲的第1道固有防線[53]。橙皮苷對(duì)環(huán)磷酰胺誘導(dǎo)的免疫抑制大鼠具有保護(hù)作用,增加體液抗體產(chǎn)生、定量溶血、巨噬細(xì)胞吞噬作用、脾淋巴細(xì)胞增殖、抗氧化標(biāo)記物和自然殺傷細(xì)胞的細(xì)胞毒性水平,降低促炎因子水平,減少脂質(zhì)過(guò)氧化標(biāo)志物及肝臟、脾臟和骨髓中的組織損傷,表明橙皮苷可通過(guò)增強(qiáng)先天性和適應(yīng)性免疫反應(yīng)來(lái)降低環(huán)磷酰胺的免疫抑制作用[54]。Ruiz-Iglesias等[55]發(fā)現(xiàn)橙皮苷200 mg/kg可增強(qiáng)疲勞大鼠自然殺傷細(xì)胞的細(xì)胞毒性和吞噬單核細(xì)胞比例,減少巨噬細(xì)胞分泌細(xì)胞因子,防止疲勞引起的白細(xì)胞增多,增加胸腺、血液和脾臟中T輔助細(xì)胞(CD4+)比例,表明橙皮苷可防止疲勞運(yùn)動(dòng)引起的免疫改變。橙皮苷可提高免疫低下小鼠的臟器指數(shù)、碳廓清指數(shù)K和吞噬指數(shù)α,改善脾淋巴細(xì)胞增殖反應(yīng),恢復(fù)小鼠遲發(fā)型變態(tài)反應(yīng),提高CD4+、細(xì)胞毒性T細(xì)胞(CD8+)細(xì)胞數(shù),對(duì)特異性血清溶血素IgM、IgG和脾溶血空斑形成細(xì)胞無(wú)影響,表明橙皮苷對(duì)小鼠的非特異性免疫和特異性細(xì)胞免疫反應(yīng)均有促進(jìn)作用,對(duì)特異性體液免疫反應(yīng)無(wú)影響[56]。Camps-Bossacoma等[57]發(fā)現(xiàn)橙皮苷100、200 mg/kg可改變腹膜內(nèi)免疫大鼠的腸系膜淋巴結(jié)淋巴細(xì)胞組成,增加T細(xì)胞受體(T cell receptor,TCR)αβ+細(xì)胞百分比,并降低B淋巴細(xì)胞比例,0.5%的橙皮苷可改變口服致敏模型大鼠腸上皮細(xì)胞和固有層中的淋巴細(xì)胞組成。綜上,橙皮苷提升免疫力機(jī)制可能為增強(qiáng)先天性和適應(yīng)性免疫反應(yīng),增強(qiáng)自然殺傷細(xì)胞的細(xì)胞毒性和吞噬單核細(xì)胞比例,提高碳廓清指數(shù)K和吞噬指數(shù)α,改善脾淋巴細(xì)胞增殖反應(yīng),恢復(fù)遲發(fā)型變態(tài)反應(yīng),提高CD4+和CD8+細(xì)胞數(shù),改變淋巴細(xì)胞組成等,見(jiàn)圖4。
圖4 橙皮苷提升免疫力作用機(jī)制
常見(jiàn)的神經(jīng)系統(tǒng)疾病包括神經(jīng)退行性疾病、精神障礙、脫髓鞘疾病、缺血再灌注損傷和神經(jīng)炎癥,大量研究表明橙皮苷會(huì)阻礙神經(jīng)系統(tǒng)疾病的發(fā)展[58]。在各種臨床前研究中,橙皮苷對(duì)阿爾茨海默病、癲癇、帕金森病、多發(fā)性硬化癥、抑郁癥、神經(jīng)性疼痛等多種腦部疾病具有顯著的保護(hù)作用,可能是通過(guò)調(diào)節(jié)抗氧化防御活動(dòng)和神經(jīng)生長(zhǎng)因子、減少細(xì)胞凋亡和神經(jīng)炎癥通路來(lái)介導(dǎo)的[59]。Chang等[60]發(fā)現(xiàn)橙皮苷10、50 mg/kg可減弱紅藻氨酸誘導(dǎo)的海馬神經(jīng)元死亡,可能通過(guò)螯合細(xì)胞外Ca2+并阻斷N型和P/Q型通道或蛋白激酶C的活性抑制谷氨酸釋放和由4-氨基吡啶(4-aminopyridine,4-AP)誘發(fā)的細(xì)胞游離Ca2+濃度升高,但不改變4-AP介導(dǎo)的去極化,表明橙皮苷具有神經(jīng)保護(hù)作用。Welbat等[61]采用甲氨蝶呤誘導(dǎo)成年大鼠,發(fā)現(xiàn)橙皮苷可減少海馬齒狀回亞顆粒區(qū)的p21陽(yáng)性細(xì)胞數(shù)量,上調(diào)海馬雙皮質(zhì)素(doublecortin,DCX)、腦源性神經(jīng)營(yíng)養(yǎng)因子(brain-derived neurotrophic factor,BDNF)、Nrf2、SOD、GSH-Px和CAT表達(dá),下調(diào)海馬體和前額皮質(zhì)中的丙二醛水平,可能通過(guò)減少氧化應(yīng)激和增強(qiáng)海馬體的神經(jīng)發(fā)生來(lái)預(yù)防甲氨蝶呤的神經(jīng)毒性,從而保護(hù)神經(jīng)。橙皮苷可恢復(fù)七氟醚誘導(dǎo)大鼠的認(rèn)知功能損害,降低IL-1β、S100β、剪切型Caspase-3(cleaved Caspase-3)、Bax、高遷移率族蛋白B1(high-mobility group box-1,HMGB1)、NOD樣受體蛋白3(NOD-like receptor thermal protein domain associated protein 3,NLRP3)、cleaved-Caspase-1表達(dá),上調(diào)神經(jīng)生長(zhǎng)因子(nerve growth factor,NGF)、BDNF、B淋巴細(xì)胞瘤-2(B-cell lymphoma-2,Bcl-2)表達(dá),增加神經(jīng)元細(xì)胞數(shù)量,降低細(xì)胞凋亡率,使用NLRP3激活劑Nigericin發(fā)現(xiàn)橙皮苷對(duì)新生大鼠的神經(jīng)保護(hù)作用明顯減弱,表明橙皮苷可能通過(guò)抑制HMGB1/NLRP3軸發(fā)揮神經(jīng)保護(hù)作用[62]。綜上,橙皮苷保護(hù)神經(jīng)系統(tǒng)機(jī)制可能為調(diào)節(jié)抗氧化防御活動(dòng)和神經(jīng)生長(zhǎng)因子、抑制細(xì)胞凋亡和神經(jīng)炎癥通路,減少氧化應(yīng)激,減輕海馬組織損傷,降低促炎因子表達(dá),提高神經(jīng)營(yíng)養(yǎng)因子表達(dá)等,見(jiàn)圖5。
研究表明橙皮苷具有抗破骨作用,抑制破骨細(xì)胞標(biāo)志物表達(dá),增加前成骨細(xì)胞的成骨潛能并誘導(dǎo)成骨標(biāo)記物的過(guò)度表達(dá),促進(jìn)骨缺損的再生,減少骨質(zhì)流失并增加骨礦物質(zhì)密度[63]。Li等[64]發(fā)現(xiàn)橙皮苷100 mg/kg可部分減輕十溴二苯醚(PBDE-209)誘導(dǎo)的小鼠睪丸組織病理學(xué)損傷和細(xì)胞凋亡,表明橙皮苷可部分保護(hù)青春期小鼠免受PBDE誘導(dǎo)的生殖毒性。Han等[65]發(fā)現(xiàn)橙皮苷可減輕博來(lái)霉素誘導(dǎo)的小鼠肺纖維化,下調(diào)衰老標(biāo)記蛋白p53、p21和p16表達(dá)及肌成纖維細(xì)胞標(biāo)記物α-SMA,減少衰老相關(guān)β-半乳糖苷酶陽(yáng)性細(xì)胞數(shù)量,可能通過(guò)介導(dǎo)IL-6/STAT3信號(hào)通路抑制肺成纖維細(xì)胞衰老發(fā)揮抗肺纖維化作用。橙皮苷增加結(jié)腸組織中5-羥色胺受體4的熒光強(qiáng)度和細(xì)胞內(nèi)游離鈣離子,增強(qiáng)環(huán)磷酸腺苷(cyclic adenosine monophosphate,cAMP)/蛋白激酶A通路相關(guān)蛋白和p-cAMP反應(yīng)成分結(jié)合蛋白表達(dá),顯著改善洛哌丁胺誘導(dǎo)的慢傳輸便秘模型大鼠的胃腸傳輸功能[66]。綜上,橙皮苷藥理作用廣泛,對(duì)多種疾病均有治療作用,然其發(fā)揮作用的機(jī)制尚不明確,仍需進(jìn)一步研究。
圖5 橙皮苷保護(hù)神經(jīng)系統(tǒng)作用機(jī)制
橙皮苷來(lái)源廣泛,在柑橘屬、蕓香科、茜草科、唇形科等藥用植物中普遍存在,是多種中藥的藥效成分,在保護(hù)心血管系統(tǒng)、抗菌、抗炎、抗氧化、抗腫瘤、提升免疫力、保護(hù)神經(jīng)系統(tǒng)等方面藥理作用顯著,具有很強(qiáng)的生物活性,已開(kāi)展的動(dòng)物及細(xì)胞實(shí)驗(yàn)對(duì)其有效靶點(diǎn)和通路進(jìn)行了深入研究,文獻(xiàn)資料報(bào)道詳實(shí),具有開(kāi)發(fā)成新藥的潛力。
橙皮苷在水中溶解度僅為(6.32±0.12)μg/mL,脂溶性也較差,在體內(nèi)容易受到各種代謝酶、腸道菌群等影響,口服吸收生物利用度僅為3.51%[67],因此,對(duì)其進(jìn)行結(jié)構(gòu)修飾改良以增加藥物溶解度,促進(jìn)藥物吸收,提高臨床療效具有重要意義。目前,對(duì)橙皮苷進(jìn)行結(jié)構(gòu)改良應(yīng)用的制劑新技術(shù)主要有脂質(zhì)體[68-69]、納米混懸劑[70]、納米乳液[71]、微丸[72]、固體分散體[73-74]、包合物[75]、自微乳[76]等,從而改善橙皮苷口服吸收差、生物利用度低的問(wèn)題。
橙皮苷在骨代謝、抗生殖毒性、改善便秘等方面也具有顯著活性,但其具體作用機(jī)制尚不完善,需在今后的研究中加強(qiáng),為充分發(fā)揮橙皮苷的臨床療效及其新藥開(kāi)發(fā)提供更加有利的證據(jù)。綜上,橙皮苷在多種疾病模型中均表現(xiàn)出顯著活性,具有廣闊的開(kāi)發(fā)應(yīng)用前景,采用現(xiàn)代制劑技術(shù)對(duì)其提取分離純化并進(jìn)行結(jié)構(gòu)修飾改良,有望成為治療心血管疾病及腫瘤等相關(guān)疾病的候選藥物。
利益沖突 所有作者均聲明不存在利益沖突
[1]楊凱麗, 郭子碩, 張翼, 等. 甘草酸凝膠的流變學(xué)性質(zhì)及其對(duì)橙皮苷的增溶作用研究 [J]. 中草藥, 2023, 54(11): 3468-3479.
[2]張東霞, 張火旺. 高效液相色譜法測(cè)定復(fù)方半夏片中橙皮苷含量 [J]. 中國(guó)藥業(yè), 2023, 32(3): 84-86.
[3]陳平, 樊瑞勝, 聶芊. 水溶性橙皮苷的合成及結(jié)構(gòu)表征 [J]. 食品科學(xué), 2007(8): 143-147.
[4]楊元豐, 黎艷剛, 羅小泉, 等. 橙皮苷與陳皮酶轉(zhuǎn)化工藝研究及其對(duì)正常小鼠小腸推進(jìn)作用的比較 [J]. 中國(guó)新藥雜志, 2022, 31(18): 1831-1837.
[5]Miles E A, Calder P C. Effects offruit juices and their bioactive components on inflammation and immunity: A narrative review [J]., 2021, 12: 712608.
[6]Adefegha S A, Bottari N B, Leal D B,. Interferon gamma/interleukin-4 modulation, anti-inflammatory and antioxidant effects of hesperidin in complete Freund’s adjuvant (CFA)-induced arthritis model of rats [J]., 2020, 42(5): 509-520.
[7]Heo S D, Kim J, Choi Y,. Hesperidin improves motor disability in rat spinal cord injury through anti-inflammatory and antioxidant mechanism via Nrf-2/HO-1 pathway [J]., 2020, 715: 134619.
[8]Xiao S P, Liu W G, Bi J Q,. Anti-inflammatory effect of hesperidin enhances chondrogenesis of human mesenchymal stem cells for cartilage tissue repair [J]., 2018, 15: 14.
[9]de Souza A B F, de Matos N A, Castro T F,. Effectsandof hesperidin administration in an experimental model of acute lung inflammation [J]., 2022, 180: 253-262.
[10]Adefegha S A, Saccol R D S P, Jantsch M H,. Hesperidin mitigates inflammation and modulates ectoenzymes activity and some cellular processes in complete Freund’s adjuvant-induced arthritic rats [J]., 2021, 73(11): 1547-1561.
[11]Qi W Z, Lin C X, Fan K,. Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/Akt pathway in complete Freund’s adjuvant-induced arthritis in mice [J]., 2019, 306: 19-28.
[12]Somogyi A, Rosta K, Pusztai P,. Antioxidant measurements [J]., 2007, 28(4): R41-R55.
[13]Wilmsen P K, Spada D S, Salvador M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems [J]., 2005, 53(12): 4757-4761.
[14]Elavarasan J, Velusamy P, Ganesan T,. Hesperidin-mediated expression of Nrf2 and upregulation of antioxidant status in senescent rat heart [J]., 2012, 64(10): 1472-1482.
[15]Kalpana K B, Srinivasan M, Menon V P. Evaluation of antioxidant activity of hesperidin and its protective effect on H2O2induced oxidative damage on pBR322 DNA and RBC cellular membrane [J]., 2009, 323(1/2): 21-29.
[16]Ali Y A, Ahmed O M, Soliman H A,. Rutin and hesperidin alleviate paclitaxel-induced nephrocardiotoxicity in Wistar rats via suppressing the oxidative stress and enhancing the antioxidant defense mechanisms [J]., 2023, 2023: 5068304.
[17]Tirkey N, Pilkhwal S, Kuhad A,. Hesperidin, a citrus bioflavonoid, decreases the oxidative stress produced by carbon tetrachloride in rat liver and kidney [J]., 2005, 5: 2.
[18]Mas-Capdevila A, Teichenne J, Domenech-Coca C,. Effect of hesperidin on cardiovascular disease risk factors: The role of intestinal microbiota on hesperidin bioavailability [J]., 2020, 12(5): 1488.
[19]Gao C. Favourable lifestyle reduces cardiovascular disease risks in hypertensive patients [J]., 2022, 29(16): 2099-2100.
[20]喬偉珅, 侯靜波. 橙皮苷對(duì)心血管疾病危險(xiǎn)因素影響研究的進(jìn)展 [J]. 心血管康復(fù)醫(yī)學(xué)雜志, 2022, 31(6): 757-759.
[21]Doyle A E. Hypertension and vascular disease [J]., 1991, 4(2 Pt 2): 103S-106S.
[22]Wunpathe C, Potue P, Maneesai P,. Hesperidin suppresses renin-angiotensin system mediated NOX2 over-expression and sympathoexcitation in 2K-1C hypertensive rats [J]., 2018, 46(4): 751-767.
[23]Yamamoto M, Jokura H, Suzuki A,. Effects of continuous ingestion of hesperidin and glucosyl hesperidin on vascular gene expression in spontaneously hypertensive rats [J]., 2013, 59(5): 470-473.
[24]Ikemura M, Sasaki Y, Giddings J C,. Preventive effects of hesperidin, glucosyl hesperidin and naringin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats [J]., 2012, 26(9): 1272-1277.
[25]Bunbupha S, Apaijit K, Potue P,. Hesperidin inhibits L-NAME-induced vascular and renal alterations in rats by suppressing the renin-angiotensin system, transforming growth factor-β1, and oxidative stress [J]., 2021, 48(3): 412-421.
[26]Yao Y S, Li T D, Zeng Z H. Mechanisms underlying direct actions of hyperlipidemia on myocardium: An updated review [J]., 2020, 19(1): 23.
[27]Kumar R, Akhtar F, Rizvi S I. Protective effect of hesperidin in poloxamer-407 induced hyperlipidemic experimental rats [J]., 2021, 72(2): 201-210.
[28]Monforte M T, Trovato A, Kirjavainen S,. Biological effects of hesperidin, aflavonoid. (note II): Hypolipidemic activity on experimental hypercholesterolemia in rat [J]., 1995, 50(9): 595-599.
[29]Rathi A B, Nath N, Chari S N. Action of vitamin P like compounds on lysosomal status in hypercholesterolemic rats [J]., 1983, 5(4): 255-261.
[30]Ahmad S, Alam K, Hossain M M,. Anti-arthritogenic and cardioprotective action of hesperidin and daidzein in collagen-induced rheumatoid arthritis [J]., 2016, 423(1/2): 115-127.
[31]Sun Y Z, Chen J F, Shen L M,. Anti-atherosclerotic effect of hesperidin inLDLrmice and its possible mechanism [J]., 2017, 815: 109-117.
[32]Koga M, Kanaoka Y, Inada K,. Hesperidin blocks varenicline-aggravated atherosclerotic plaque formation in apolipoprotein E knockout mice by downregulating net uptake of oxidized low-density lipoprotein in macrophages [J]., 2020, 143(2): 106-111.
[33]Dokumacioglu E, Iskender H, Sen T M,. The effects of hesperidin and quercetin on serum tumor necrosis factor-alpha and interleukin-6 levels in streptozotocin-induced diabetes model [J]., 2018, 14(54): 167-173.
[34]Visnagri A, Kandhare A D, Chakravarty S,. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions [J]., 2014, 52(7): 814-828.
[35]Syed A A, Reza M I, Yadav H,. Hesperidin inhibits NOX4 mediated oxidative stress and inflammation by upregulating SIRT1 in experimental diabetic neuropathy [J]., 2023, 172: 112064.
[36]何偉, 胡愛(ài)霞, 成鑫, 等. 橙皮苷對(duì)糖尿病腎病大鼠Wnt/β-catenin信號(hào)通路的調(diào)節(jié)作用研究 [J]. 湖北中醫(yī)藥大學(xué)學(xué)報(bào), 2018, 20(1): 28-33.
[37]Kandemir F M, Ozkaraca M, Kü?ükler S,. Preventive effects of hesperidin on diabetic nephropathy induced by streptozotocin via modulating TGF-β1 and oxidative DNA damage [J]., 2018, 37(4): 287-293.
[38]Shi X P, Liao S, Mi H J,. Hesperidin prevents retinal and plasma abnormalities in streptozotocin-induced diabetic rats [J]., 2012, 17(11): 12868-12881.
[39]Shehata A S, Mohamed D A, Hagras S M,. The role of hesperidin in ameliorating retinal changes in rats with experimentally induced type 1 diabetes mellitus and the active role of vascular endothelial growth factor and glial fibrillary acidic protein [J]., 2021, 54(4): 465-478.
[40]Verma A K, Ahmed S F, Hossain M S,. Molecular docking and simulation studies of flavonoid compounds against PBP-2a of methicillin-resistant[J]., 2022, 40(21): 10561-10577.
[41]Vijayakumar K, Muhilvannan S, Arun Vignesh M. Hesperidin inhibits biofilm formation, virulence and staphyloxanthin synthesis in methicillin resistantby targeting SarA and CrtM: Anandapproach [J]., 2022, 38(3): 44.
[42]Choi S S, Lee S H, Lee K A. A comparative study of hesperetin, hesperidin and hesperidin glucoside: Antioxidant, anti-inflammatory, and antibacterial activities[J]., 2022, 11(8): 1618.
[43]Pyrzynska K. Hesperidin: A review on extraction methods, stability and biological activities [J]., 2022, 14(12): 2387.
[44]Abuelsaad A S, Mohamed I, Allam G,. Antimicrobial and immunomodulating activities of hesperidin and ellagic acid against diarrheicin a murine model [J]., 2013, 93(20): 714-722.
[45]張啟煥, 嚴(yán)新, 許偉, 等. 超聲波輔助醇溶劑法提取橙皮苷及體外抑菌活性分析 [J]. 安徽農(nóng)業(yè)科學(xué), 2015, 43(31): 33-34.
[46]Birsu Cincin Z, Unlu M, Kiran B,. Anti-proliferative, apoptotic and signal transduction effects of hesperidin in non-small cell lung cancer cells [J]., 2015, 38(3): 195-204.
[47]Aggarwal V, Tuli H S, Thakral F,. Molecular mechanisms of action of hesperidin in cancer: Recent trends and advancements [J]., 2020, 245(5): 486-497.
[48]Xia R M, Xu G, Huang Y,. Hesperidin suppresses the migration and invasion of non-small cell lung cancer cells by inhibiting the SDF-1/CXCR-4 pathway [J]., 2018, 201: 111-120.
[49]Wang Y X, Yu H, Zhang J,. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest [J]., 2015, 15: 682.
[50]Lee K H, Yeh M H, Kao S T,. The inhibitory effect of hesperidin on tumor cell invasiveness occurs via suppression of activator protein 1 and nuclear factor-kappaB in human hepatocellular carcinoma cells [J]., 2010, 194(1/2): 42-49.
[51]Wudtiwai B, Makeudom A, Krisanaprakornkit S,. Anticancer activities of hesperidin via suppression of up-regulated programmed death-ligand 1 expression in oral cancer cells [J]., 2021, 26(17): 5345.
[52]王振東, 鞏會(huì)杰, 馬俊文. 橙皮苷誘導(dǎo)人胃癌AGS細(xì)胞凋亡機(jī)制的研究 [J]. 中草藥, 2019, 50(22): 5484-5491.
[53]李賽, 朱晨晨, 田雪飛, 等. 應(yīng)用網(wǎng)絡(luò)藥理學(xué)探討人參促白虎湯解熱作用的免疫學(xué)機(jī)制 [J]. 中草藥, 2018, 49(10): 2460-2468.
[54]Berk?z M, Yal?n S, ?zkan-Y?lmaz F,. Protective effect of myricetin, apigenin, and hesperidin pretreatments on cyclophosphamide-induced immunosuppression [J]., 2021, 43(3): 353-369.
[55]Ruiz-Iglesias P, Estruel-Amades S, Camps-Bossacoma M,. Influence of hesperidin on systemic immunity of rats following an intensive training and exhausting exercise [J]., 2020, 12(5): 1291.
[56]李榮, 李俊, 胡成穆, 等. 橙皮苷對(duì)免疫功能低下小鼠免疫調(diào)節(jié)作用的實(shí)驗(yàn)研究 [J]. 中國(guó)藥理學(xué)通報(bào), 2007, 23(2): 169-172.
[57]Camps-Bossacoma M, Franch à, Pérez-Cano F J,. Influence of hesperidin on the systemic and intestinal rat immune response [J]., 2017, 9(6): 580.
[58]Li X Y, Huang W, Tan R R,. The benefits of hesperidin in central nervous system disorders, based on the neuroprotective effect [J]., 2023, 159: 114222.
[59]Bansal K, Singh V, Singh S,. Neuroprotective potential of hesperidin as therapeutic agent in the treatment of brain disorders: Preclinical evidence-based review [J]., 2023, doi: 10.2174/156652402366623032 0144722.
[60]Chang C Y, Lin T Y, Lu C W,. Hesperidin inhibits glutamate release and exerts neuroprotection against excitotoxicity induced by kainic acid in the hippocampus of rats [J]., 2015, 50: 157-169.
[61]Welbat J U, Naewla S, Pannangrong W,. Neuroprotective effects of hesperidin against methotrexate-induced changes in neurogenesis and oxidative stress in the adult rat [J]., 2020, 178: 114083.
[62]張貴星, 祁星, 曹雪, 等. 橙皮苷抑制HMGB1/NLRP3軸對(duì)七氟醚誘導(dǎo)的新生大鼠的神經(jīng)保護(hù)作用研究 [J]. 中國(guó)優(yōu)生與遺傳雜志, 2023, 31(3): 453-459.
[63]Ortiz A C, Fideles S O M, Reis C H B,. Therapeutic effects offlavonoids neohesperidin, hesperidin and its aglycone, hesperetin on bone health [J]., 2022, 12(5): 626.
[64]Li S Q, Che S Y, Chen S N,. Hesperidin partly ameliorates the decabromodiphenyl ether-induced reproductive toxicity in pubertal mice [J]., 2022, 29(60): 90391-90403.
[65]Han D, Gong H Y, Wei Y,. Hesperidin inhibits lung fibroblast senescence via IL-6/STAT3 signaling pathway to suppress pulmonary fibrosis [J]., 2023, 112: 154680.
[66]Wu M N, Li Y R, Gu Y F. Hesperidin improves colonic motility in loeramide-induced constipation rat model via 5-hydroxytryptamine 4R/cAMP signaling pathway [J]., 2020, 101(6): 692-705.
[67]李茜, 張文周, 郝海軍. 橙皮苷磷脂復(fù)合物納米混懸劑的制備、表征及口服藥動(dòng)學(xué)研究 [J]. 中草藥, 2022, 53(24): 7740-7750.
[68]禹瑞, 呂東霞, 談秀鳳. 橙皮苷脂質(zhì)體的制備及其體內(nèi)藥動(dòng)學(xué)研究 [J]. 中成藥, 2022, 44(8): 2443-2449.
[69]熊傳爽, 田黎明, 洪怡, 等. 橙皮苷脂質(zhì)體凝膠的制備及其透皮吸收研究 [J]. 中國(guó)醫(yī)院藥學(xué)雜志, 2022, 42(5): 511-518.
[70]龍家英, 李小芳, 王嫻, 等. 茶皂素用于穩(wěn)定橙皮苷納米混懸劑及其機(jī)制研究 [J]. 藥學(xué)學(xué)報(bào), 2021, 56(11): 3159-3165.
[71]廖艷梅, 李小芳, 劉羅娜, 等. 橙皮苷納米乳液的制備及其穩(wěn)定性研究 [J]. 中草藥, 2019, 50(10): 2312-2318.
[72]劉謙鴻. 橙皮苷緩釋微丸的制備及藥效研究 [D]. 長(zhǎng)沙: 中南林業(yè)科技大學(xué), 2021.
[73]宋佳文, 李小芳, 龍家英, 等. 橙皮苷固體分散體的制備及其表征 [J]. 中藥與臨床, 2021, 12(1): 10-14.
[74]牛曉磊, 賈潤(rùn)霞, 談秀鳳. 橙皮苷磷脂復(fù)合物固體分散體的制備、表征及其體內(nèi)藥動(dòng)學(xué)研究 [J]. 中成藥, 2020, 42(9): 2255-2259.
[75]Wdowiak K, Rosiak N, Tykarska E,. Amorphous inclusion complexes: Molecular interactions of hesperidin and hesperetin with HP-Β-CD and their biological effects [J]., 2022, 23(7): 4000.
[76]凡小燕. 橙皮苷自微乳的制備與評(píng)價(jià) [D]. 合肥: 安徽醫(yī)科大學(xué), 2011.
Research progress on pharmacological action and mechanism of hesperidin
YANG Ping, HUANG Qing-jie, LI Xi-xiang, SONG Wei, WANG Xue-mei
Gansu Provincial Hospital of Traditional Chinese Medicine, Lanzhou 730050, China
Hesperidin is widely found in the fruits or roots of, Rutaceae, Rubiaceae, Labiaceae and Cruciferae plants. It is a dihydroflavonoid compound, and it is also the main pharmacodynamic component of Chenpi (), Zhishi (), Zhiqiao () and Kuandonghua (). It belongs to the class of vitamin P drugs, which can enhance the toughness of capillaries and shorten the bleeding time. It is often used in the auxiliary treatment of cardiovascular system diseases. It can be used as a natural antioxidant in the food industry and also in the cosmetics industry. Modern pharmacological studies have shown that hesperidin has many biological activities such as anti-inflammatory, antioxidant, protection of cardiovascular system, anti-diabetic complications, antibacterial, antitumor, enhancement of immunity, protection of nervous system, etc. Therefore, the summarization of the pharmacological effects and mechanisms of hesperidin provide a basis for its clinical application and drug development.
hesperidin; anti-inflammation; anti-oxidation; cardiovascular system; antibacterial; antitumor
R285
A
0253 - 2670(2023)21 - 7222 - 10
10.7501/j.issn.0253-2670.2023.21.031
2023-04-25
蘭州市科技計(jì)劃項(xiàng)目資助(2022-3-35);中醫(yī)藥人才培養(yǎng)重點(diǎn)學(xué)科項(xiàng)目(2022)
楊 萍(1989—),女,碩士,主管中藥師,從事中藥復(fù)方及配伍藥效機(jī)制研究。E-mail: yangping151@126.com
[責(zé)任編輯 趙慧亮]