• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin-orbit torque in perpendicularly magnetized[Pt/Ni]multilayers

    2023-11-02 08:38:46YingCao曹穎ZhichengXie謝志成ZhiyuanZhao趙治源YuminYang楊雨民NaLei雷娜BingfengMiao繆冰鋒andDahaiWei魏大海
    Chinese Physics B 2023年10期
    關(guān)鍵詞:志成大海

    Ying Cao(曹穎), Zhicheng Xie(謝志成), Zhiyuan Zhao(趙治源), Yumin Yang(楊雨民),Na Lei(雷娜), Bingfeng Miao(繆冰鋒), and Dahai Wei(魏大海),?

    1State Key Laboratory for Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2College of Materials Science and Opto-Electronic Technology,University of Chinese Academy of Sciences,Beijing 100049,China

    3Fert Beijing Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,Beihang University,Beijing 100191,China

    4National Laboratory of Solid State Microstructures and Department of Physics,Nanjing University,Nanjing 210093,China

    Keywords: spin-orbit torque,perpendicular magnetic anisotropy,spintronics

    1.Introduction

    The rapid development of emerging information technologies, such as artificial intelligence, requires highperformance and energy-efficient memory devices.[1,2]The spintronic memories, where information is encoded by the magnetization,provide a promising solution for the next generation data storage and processing.[3]Magnetic films exhibiting perpendicular magnetic anisotropy (PMA) are of great significance in the fabrication of magnetic tunnel junctions (MTJs),[4]which are the core of the magnetic randomaccess memory (MRAM) with high storage density and high thermal stability at room temperature.[5,6]Meanwhile the spin-orbit torque (SOT) MRAM has advantages of high energy efficiency, sub-ns switching and high endurance for writing operation.[7,8]These advancements have been pivotal in driving forward research and development efforts,enabling integration with traditional complementary metaloxide-semiconductor (CMOS) processes.[9]Thus, the magnetic materials and structures with both strong PMA and high SOT efficiency are crucial for the development of the MRAM applications.

    The perpendicular magnetized CoFeB/MgO bilayer is one of the most promising MTJ materials systems, which has been intensively investigated and widely utilized in various spintronics applications.[10]However,the interfacial PMA originated from the CoFeB/MgO interface is insufficient to maintain high thermal stability for MTJs at reduced dimension smaller than 20 nm.[11,12]To achieve stronger PMA for future sub-10 nm technology node, a number of material systems,such as Co(Tb,Gd),[13,14]L10-ordered FePt,[15]MnGa[16]alloys and CoPt[17]multilayers have been explored,which have significant magnetocrystalline anisotropy.The bulk PMA in such alloys is very sensitive to the crystal structures of the films,and requires epitaxial growth or strict heat treatment.[18]In contrast, the PMA in the multilayers mainly arises from the interfacial effect at the multiple interfaces which can be easily tuned and are much easier for fabrication in practical device applications.[19]The perpendicular magnetized Co/(Pt,Pd)[20]and Fe/Pt[21]have been realized and intensively studied.However,the PMA of Ni/Pt multilayer is relatively complex.There may be several mechanisms,like the magnetoelastic anisotropy induced by lattice stress[22]and magnetocrystalline anisotropy of the interfaces,[23]that can lead to PMA in Ni/Pt multilayers.Therefore, the dependence of PMA for Ni/Pt multilayer on the thickness of the Ni and Pt layer is intriguing.

    Furthermore, the magnetization switching of ferromagnets through current-induced spin-orbit torque (SOT) has received significant attention in recent years.[24]In ferromagnetic metal (FM)/ heavy metal (NM) heterostructures, it is mainly the spin Hall effect(SHE)and the inverse spin galvanic effect that provide SOT.[25]When the FM layer exhibits perpendicular magnetic anisotropy,achieving deterministic magnetization switching under current-induced SOT often requires an in-plane bias field to break the symmetry.[26]However,there have been few reports on the SOT of Ni/Pt multilayer films before.This urgently requires us to further explore SOT in Ni/Pt multilayer, in particular, the SOT efficiency and bias field dependence,which could enrich the content of Ni/Pt multilayer films in the field of SOT.

    Here we fabricated a multilayer structure composed of[Pt(2-t)/Ni(t)]4, where the thicknesstof the Ni layer in the periodic layer was adjusted to achieve PMA within a relatively narrow range of thicknesses (below the intrinsic spin diffusion length).The observed PMA phenomenon arises from the interplay between magnetoelastic anisotropy and interface anisotropy.Subsequently, we successfully achieved SOT induced switching of the PMA magnetic multilayer films using a current density of approximately 1×107A/cm2.The effectiveness of the spin switching process in the device was found to be influenced by the regulation of the thicknesst.

    2.Experimental details

    In this work, a serials of substrate/Ge(3)/[Pt(2-t)/Ni(t)]4/Ge(3)multilayers were grown on thermally oxidized Si substrates using a high vacuum magnetron sputtering system with a base pressure of 8×10-8Torr at room temperature,as shown by the inset in Fig.1(a).The[Pt(2-t)/Ni(t)]4multilayers were deposited by the alternative deposition of Pt and Ni using radio-frequency and direct current sputterings.The deposition rates for Pt and Ni are 0.019 nm/s and 0.018 nm/s,respectively,which were calibrated by atomic force microscopy(AFM).The thicknesstis varied from 1.45 nm to 1.85 nm.Both buffer and capping layer are 3 nm Ge layers.The AFM measurements also indicate smooth surfaces and the surface root mean square roughness is about 0.3 nm for our stacks.These multilayers were further fabricated into 10×40μm2Hall bar devices using photolithography and ion milling.The electric transport measurements were performed by a Quantum Design physical property measurement system(PPMS)at room temperature,figure 1(a)illustrates the testing geometry.The magnetic properties of all multilayers were characterized by a Quantum Design magnetic property measurement system(MPMS)with a superconducting quantum interference device(SQUID)at room temperature.

    Figure 1(b) exhibits the anomalous Hall loops of the[Pt(2-t)/Ni(t)]4multilayers with differentt.The multilayers with thicker Ni layers, as shown by the blue (t=1.65),red (t=1.75), and black (t=1.85) curves, exhibit squareshaped loops, which suggest a strong PMA.Otherwise,these multilayers witht <1.65 exhibit in-plane magnetic anisotropy(IMA).The anomalous Hall effect(AHE)coefficients of these multilayers are all negative, which is consistent with the previous results for Ni.[27]The saturation magnetization(MS)of all multilayers was obtained from theM-Hhysteresis loops and plotted as black triangles in the top panel of Fig.1(c).TheMSmonotonically increases with Ni thicknesst.The magnetic moment per Ni atom was calculated and plotted as the red triangles.It increases from 0.129μB/atom att=1.45 nm to 0.216μB/atom att=1.85 nm,which is far below the bulk value of Ni (~0.6μB/atom).[23]Such a small atomic moment at room temperature can be attributed to the reduced Curie temperature (TC) as Ni film in ultrathin region.It increases with thicknesstand would finally reach the bulk value for thick Ni films.[23]Notably,the multilayer[Pt(2-t)/Ni(t)]Ncan show room temperature ferromagnetism only whenN >3,while for smallerNthe reducedTCis lower than room temperature due to the small total thickness of Ni layer.

    To investigate the relation between PMA andtin[Pt(2-t)/Ni(t)]4multilayer films,both in-plane and out-of-plane hysteresis loops were measured to extract the values of the effective anisotropy field(HK).Then,the effective perpendicular magnetic anisotropy energy density(Keff)was further calculated from the in-plane and out-of-plane hysteresis loops.HK(black squares)andKeff(red circles)are plotted as a function oftin the middle panel of Fig.1(c).Consistent with the anomalous Hall loops shown in Fig.1(b),Keffis positive as a perpendicular magnetic anisotropy att ≥1.65 and presents a nonmonotonic trend with the maximumKeff=8.21 kJ/m3appearing att=1.75.

    The resistivity increases as the thickness decreases due to the additional scattering at the interface and surface of the film.The resistivity(ρxx)of[Pt(2-t)/Ni(t)]4multilayer,composed aslinearly decreases from 90.8μΩ·cm att=1.45 to 61.36μΩ·cm att=1.85,as shown in Fig.1(c),which is due to the increase of Ni atoms witht.This means that astincreases, the proportion of Ni increases, and the resistance gradually approaches the resistivity of the Ni layer,resulting in a decrease in the total resistivity.The multilayer structure can also be viewed as incorporating Pt intercalation into the Ni layer,which introduces interlayer impurity scattering,and subsequently enhances the resistivity of the material.Although the anomalous Hall resistivity(ρAH)should be proportional toρxy,ρAHis factually inversely proportional toρxywith increasingt, which is mainly due to the huge enhancement ofMSrelated with increasingt.

    Fig.1.(a)The structure of the[Pt(2-t)/Ni(t)]4 multilayers and the Hall bar device used for the electrical transport measurements.(b)RAH vs. Hz curves of the[Pt(2-t)/Ni(t)]4 multilayers at different t.(c)The t dependence of the saturation magnetization(MS),coercive field(HC),anisotropic field(HK),anomalous Hall resistivity(ρxy),and resistivity(ρxx).

    3.Results and discussion

    3.1.Current-driven switching of magnetization for the PMA[Pt(2-t)/Ni(t)]4 multilayer

    We investigated the current-driven magnetization switching for the [Pt(2-t)/Ni(t)]4multilayers with PMA fromt=1.65 tot=1.85.A series of current pulses with a 50 μs duration are applied to the Hall bar device along thexdirection.The in-plane bias field (Hx) is necessary to be applied along with the current, which can assist in deterministic magnetization switching.Figure 2(a) shows the current-driven magnetization switching curves for the [Pt(2-t)/Ni(t)]4multilayer att=1.65 withHxfrom-800 Oe to 800 Oe, which exhibit clockwise and counterclockwise polarity with positive and negativeHx,respectively.This is opposite to that of Pt/Co bilayer, which is due to the negative anomalous Hall coefficient of Ni compared with the positive anomalous Hall coefficient of Co.[28]

    Furthermore,the critical current density(JC)as a function ofHxwith differenttis shown in Fig.2(b), which decreases monotonically with the increase of|Hx|.This is becauseJCis expressed as[29]

    wheree,μ0,tFM, ˉhandξDLare the elementary charge, the permeability of vacuum, the thickness of the magnetic layer,the reduced Plank constant, and the damping-like SOT efficiency, respectively.Of course, the current-driven magnetization switching amplitude (Rxy/RAH) also decreases, when the magnetization of[Pt(2-t)/Ni(t)]4multilayer is gradually pulled into thex-yplane with|Hx|increasing.BecauseRxyis dependent on the magnetization of thezcomponent.[30]

    We note that the current-driven magnetization switching of[Pt(2-t)/Ni(t)]4multilayer can be achieved even under the residual field (~10 Oe) of the PPMS, which might accidentally be mistaken as field-free current-driven magnetization switching.However, this is actually a significant advantage in spintronic application,because even a tinyHxcan break the symmetry in SOT process.We believe that the main reason should be that the Dzyaloshinskii-Moriya interaction (DMI)of[Pt(2-t)/Ni(t)]4multilayer is very small.It is well known that DMI represents an obstacle for current-driven magnetization switching.[31]

    Subsequently, the thermal stability is estimated by the thermal stability factorΔT=Ku,effVFM/(kBT), considering a cylinder with typical diameter of 28 nm for MRAM nodes.[32]ΔTof these PMA[Pt(2-t)/Ni(t)]4multilayers are on the same order of magnitude as the previously reportedΔTof the applicable MRAM.[5]Obviously, our [Pt(2-t)/Ni(t)]4multilayer maintains the thermal stability and meets some application standards, which can be further optimized by MgO capping layer for practical applications.Therefore, [Pt(2-t)/Ni(t)]4multilayer indeed enriches the material system in the field of SOT.

    Fig.2.(a)The current-driven switching of magnetization for the[Pt(2-t)/Ni(t)]4 multilayer at t=1.65 with different Hx.(b)The Hx dependence of JC and ΔRxy/RAH.

    3.2.The harmonic Hall measurements

    Next,in order to directly evaluate the current-driven magnetization switching for the [Pt(2-t)/Ni(t)]4multilayers, we quantified the damping-like SOT efficiency(ξDL)by employing the extended harmonic Hall measurement.The harmonic Hall measurement geometry is shown in Fig.3(a).A sinusoidal current with a frequency of 521 Hz was applied along thexdirection,and then the second harmonic Hall resistances(R2ω)were obtained under a constant external magnetic field(Hext)rotating in thex-yplane.The azimuthal angle(φ)is betweenHextand the current.Theφdependence ofR2ωfor the[Pt(2-t)/Ni(t)]4multilayers att=1.65 is shown in Fig.3(b)under a series ofHext.Usually, the second harmonic Hall resistancesR2ωcan be expressed as[33]

    whereRAHis the anomalous Hall resistance,HDLis the damping-like SOT effective field,HKis the effective anisotropy field,defined asHK=Hani-Hdem,withHaniandHdembeing the anisotropy field and the demagnetization field,respectively,RPHis the planar Hall resistance,HFLis the fieldlike SOT effective field, andHOeis the Oersted field.R0ΔTis the thermoelectric contribution forR2ω, which needs to be ruled out.

    According to Eq.(2), we calculated and plotted the-R[cosφ]/RAHvs.1/(Hext-HK) curves under differentHext,the damping-like field(HDL)was obtained as the slope of linear fitting,as shown in Fig.3(c).Furthermore,ξDLwas calculated by[34]

    whereJeis the current density of the Pt layer.Here, we assume that all Pt land Ni layers are simplified as Pt/Ni bilayer.The variation ofξDLas a function oftis plotted in Fig.3(d),which shows an almost decreasing trend.It reveals a noticeable trend:ξDLin the[Pt(2-t)/Ni(t)]4multilayer diminishes rapidly from 0.125(t=1.55 nm)to 0.035(t=1.85 nm).This observation indicates a direct influence of the thicknesstof the Pt layer in the periodic structure on the SOT of the multilayer film.In the [Pt(2-t)/Ni(t)]4configuration, two SOT sources contribute to the damping torque: the bulk spin Hall effect(SHE)in the Pt layer and the Rashba effect at the Pt/Ni interface.[26]In typical bilayer film systems such as Pt/Co,Pt/Fe,and Pt/Ni,the generation of damping-like torque is originated from the SHE of the Pt layer in the specific context of SHE.Consequently,it follows that the thickness of the Pt layer directly affectsξDLin the Pt/Ni multilayer structure.[23]

    We have completely adopted a Pt/Ni bilayer in the above description and discussion, just like the classical Pt/Co bilayer in the specific context of SHE.However, the original consideration as Pt/Ni bilayer is not very accurate, as our[Pt(2-t)/Ni(t)]4multilayer seems to be more similar to a PtNi alloy in terms of material preparation,although the corresponding properties can be well explained considering as Pt/Ni bilayer.But if[Pt(2-t)/Ni(t)]4multilayer is simply regarded as a PtNi alloy,it is difficult to explain the significant current driven magnetization switching andξDLin [Pt(2-t)/Ni(t)]4multilayer.Because there should be no net spin current flowing in a uniform PtNi alloy.We think that the main reason is that the film quality gradient always exists in thez-direction,which leads to the net SOT in[Pt(2-t)/Ni(t)]4multilayer.Because the contribution of Pt/Ni at the lower interface to SOT is always greater than that of Ni/Pt at the upper interface,similar to previous reports.Therefore, considering [Pt(2-t)/Ni(t)]4multilayer as Pt/Ni bilayer is more reasonable than considering[Pt(2-t)/Ni(t)]4multilayer as a PtNi alloy.

    Fig.3.(a) Schematic of the harmonic Hall measurement geometry.(b) The φ dependence of R2ω under different H.The inset illustrates the harmonic Hall measurement geometry (c) The -Rcosφ/RAH vs.1/(Hext-HK)curves at different t.(d)The t dependence of ξDL.

    In comparison to Pt/Co and Pt/Fe bilayer films,the Pt/Ni system exhibits weaker interface SOC and magnetic proximity effects.Consequently, it experiences a smaller spin backflow phenomenon and spin memory loss at the interface.[35]As a result, in most cases, it is reasonable to consider that the damping-like torque in Pt/Ni systems primarily originates from the bulk spin Hall effect(SHE)of the heavy metal layer Pt, while the contribution from the Rashba effect at the interface is relatively minor.Furthermore,the interface Rashba field can be modulated by varying the number of periodic layers.[35]However, in this experiment, the number of periodic layers is fixed at 4, and only the thickness (t) is varied.Therefore, the contribution of the interface Rashba effect remains unchanged with the thicknesst.Hence, our analysis can focus solely on the SHE contribution of the Pt layer.

    To investigate the origin of the damping-like torque in the[Pt (2-t)/Ni(t)]4multilayer film structure, we can begin by examining a symmetrical three-layer film structure consisting of Pt/Ni/Pt,where the thicknesses of the top and bottom Pt layers are equal.Since the top and bottom Pt layers have equal thickness in the Pt/Ni/Pt three-layer film structure, and considering the SHE,the majority of the spin current contribution from the Pt layer is anticipated to have the same magnitude but opposite spin directions.Theoretically, this implies that the damping-like torque experienced by the middle Ni layer should cancel out due to the opposing spin currents.Consequently, in the [Pt(2-t)/Ni(t)]4multilayer film, only the top Ni layer is affected by the damping torque generated by the current flowing through the lower Pt layer.As a result,the damping-like switching efficiency of the Pt layer thickness within the range of 0.15-0.45 nm is expected to be extremely low.

    However, as shown in the SOT tests and the second harmonic tests in Figs.2 and 3,it has been demonstrated that the damping torque efficiency in the [Pt(2-t)/Ni(t)]4multilayer film is still very significant, close to the torque efficiency of Pt/Ni in the literature(~0.05),[36]which means that the spin current from the Pt layer has not been completely offset.This means that the asymmetry between the top Ni/Pt and bottom Pt/Ni interfaces of the multilayer film is the key to the existence of a large damping torque in the symmetric three layers.

    In the SOT study of Pt/Co multilayers with similar structures, there are different interface structures between Co/Pt and Pt/Co.The bottom Pt/Co exhibits a chemically sharp interface,but the top Co/Pt is slightly intermixed during the sputtering process,which may be the reason for the obvious dampinglike torque.[37]This can also be used to explain the cause of symmetry breaking of the Pt/Ni system.Meanwhile,considering that the thickness of the Pt layer is relatively smaller compared to the Ni layer,as the Pt thickness increases,the increase in interface mixing may change the interface difference,which may also lead toξDLincreasing.

    4.Conclusion

    In this work, we have successfully fabricated a series of perpendicular magnetized [Pt(2-t)/Ni(t)]4multilayers and studied the SOTs as a function of the thickness of Ni layer.The damping-like SOT efficiencyξDLwas extracted from an extended harmonic Hall measurement.We find that theξDLincreases with increasing thetPt/tNiratio due to pronounced contribution from the Pt layers.Our experimental results indicate that the perpendicularly magnetized Ni/Pt multilayers have a sizeable SOT efficiency which can be tuned by thetPt/tNiratio,and could be a promising material for the future SOT-MRAM.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at https://doi.org/10.57760/sciencedb.j00113.00126.

    Acknowledgements

    Project supported by the National Key R&D Program of China (Grant No.2021YFB3502400), the National Natural Science Foundation of China (Grant Nos.52061135105,12074025, 11834013, and 12274203), the CAS Project for Yong Scientists in Basic Research (Grant No.YSBR-030),and the Key Research Project of Frontier Science of Chinese Academy of Sciences (Grant Nos.XDB44000000 and XDB28000000).

    猜你喜歡
    志成大海
    大海撈金
    眾志成誠迎戰(zhàn)特大暴雨
    大海才是我的家
    問大海
    歌海(2019年4期)2019-11-04 06:22:17
    大海依舊在那兒
    冬日的大海
    連志成:一心向戰(zhàn)
    令人興奮的大海
    大灰狼(2016年7期)2016-08-04 11:17:02
    周志成:我們要從跟跑邁向領(lǐng)跑
    太空探索(2016年1期)2016-07-12 09:56:03
    天天都是感恩節(jié)
    国产高清视频在线播放一区| 禁无遮挡网站| 亚洲av一区综合| 亚洲最大成人手机在线| 成人美女网站在线观看视频| 亚洲av二区三区四区| 97碰自拍视频| 天堂√8在线中文| 成人无遮挡网站| 精品99又大又爽又粗少妇毛片| 搡老熟女国产l中国老女人| 身体一侧抽搐| 精品午夜福利在线看| 美女内射精品一级片tv| 久久精品国产鲁丝片午夜精品| 日韩,欧美,国产一区二区三区 | 久久久久国产网址| 精品久久久久久久久亚洲| 美女xxoo啪啪120秒动态图| av女优亚洲男人天堂| av在线老鸭窝| 在线观看66精品国产| 国产毛片a区久久久久| 男人的好看免费观看在线视频| 深爱激情五月婷婷| avwww免费| 久久婷婷人人爽人人干人人爱| 狂野欧美激情性xxxx在线观看| 亚洲七黄色美女视频| 亚洲婷婷狠狠爱综合网| 99久久精品国产国产毛片| 亚洲欧美中文字幕日韩二区| 最近2019中文字幕mv第一页| 国产精品一二三区在线看| 国产91av在线免费观看| 亚洲av熟女| 久久久久国内视频| 午夜爱爱视频在线播放| 久久久国产成人精品二区| av在线老鸭窝| 伦精品一区二区三区| 全区人妻精品视频| 欧美+亚洲+日韩+国产| 床上黄色一级片| 午夜精品在线福利| 久久久久久久亚洲中文字幕| 国产精品99久久久久久久久| 黄片wwwwww| 中文字幕熟女人妻在线| 午夜精品在线福利| 精品一区二区三区av网在线观看| 全区人妻精品视频| 蜜臀久久99精品久久宅男| 美女免费视频网站| 国产精品精品国产色婷婷| 在线免费十八禁| 青春草视频在线免费观看| 寂寞人妻少妇视频99o| 亚洲av免费在线观看| 久久国内精品自在自线图片| 成人欧美大片| 久久精品人妻少妇| 日本爱情动作片www.在线观看 | 大型黄色视频在线免费观看| 国产一区二区亚洲精品在线观看| 99热这里只有是精品在线观看| 午夜免费男女啪啪视频观看 | 中出人妻视频一区二区| 大香蕉久久网| www.色视频.com| 久久午夜福利片| 精品久久久久久成人av| 国产一级毛片七仙女欲春2| 黑人高潮一二区| 日韩亚洲欧美综合| 亚洲图色成人| 赤兔流量卡办理| 看片在线看免费视频| 精品一区二区三区av网在线观看| 午夜精品一区二区三区免费看| 日韩欧美在线乱码| 在线天堂最新版资源| 亚洲精品成人久久久久久| 床上黄色一级片| 一区二区三区四区激情视频 | 六月丁香七月| 午夜激情福利司机影院| 直男gayav资源| 免费av观看视频| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩无卡精品| 精品午夜福利在线看| 91久久精品国产一区二区成人| 简卡轻食公司| 免费黄网站久久成人精品| 人人妻人人看人人澡| 全区人妻精品视频| 欧美日韩精品成人综合77777| 久久久精品欧美日韩精品| 国产片特级美女逼逼视频| 别揉我奶头 嗯啊视频| 久久精品国产亚洲av涩爱 | 成人午夜高清在线视频| 丝袜喷水一区| 大型黄色视频在线免费观看| 两个人视频免费观看高清| 亚洲美女搞黄在线观看 | 午夜激情福利司机影院| 伦理电影大哥的女人| 婷婷色综合大香蕉| 久久综合国产亚洲精品| 直男gayav资源| 欧美日韩一区二区视频在线观看视频在线 | 一区二区三区高清视频在线| 欧美性感艳星| 亚洲av电影不卡..在线观看| 1000部很黄的大片| 18禁在线播放成人免费| 国产大屁股一区二区在线视频| 国产亚洲精品久久久久久毛片| 黑人高潮一二区| 国产精品一区www在线观看| h日本视频在线播放| 久久久久久久久大av| 一本一本综合久久| 亚洲无线观看免费| 国产一区二区在线观看日韩| 露出奶头的视频| 麻豆av噜噜一区二区三区| 日韩精品中文字幕看吧| 草草在线视频免费看| 美女xxoo啪啪120秒动态图| 亚洲av不卡在线观看| 亚洲最大成人中文| 国产成人91sexporn| 亚洲四区av| 国产在线男女| 少妇被粗大猛烈的视频| 给我免费播放毛片高清在线观看| 国产91av在线免费观看| 亚洲电影在线观看av| 国产精品三级大全| 男人狂女人下面高潮的视频| 熟女电影av网| a级毛片免费高清观看在线播放| 欧美3d第一页| 人人妻人人澡人人爽人人夜夜 | 一卡2卡三卡四卡精品乱码亚洲| 一级黄色大片毛片| 国产精品三级大全| 国产精品久久久久久久久免| av.在线天堂| 欧美一区二区国产精品久久精品| 内地一区二区视频在线| 亚洲最大成人中文| 免费电影在线观看免费观看| 51国产日韩欧美| 熟妇人妻久久中文字幕3abv| 国产男人的电影天堂91| 高清毛片免费观看视频网站| aaaaa片日本免费| 真人做人爱边吃奶动态| 3wmmmm亚洲av在线观看| 欧美色视频一区免费| 国产亚洲精品综合一区在线观看| 热99在线观看视频| 国产美女午夜福利| 亚洲专区国产一区二区| 噜噜噜噜噜久久久久久91| 晚上一个人看的免费电影| 成人亚洲欧美一区二区av| 天堂√8在线中文| 国产69精品久久久久777片| 两性午夜刺激爽爽歪歪视频在线观看| 久久人人精品亚洲av| 国产欧美日韩一区二区精品| 国产精品99久久久久久久久| 哪里可以看免费的av片| 内地一区二区视频在线| 精品人妻偷拍中文字幕| 女人十人毛片免费观看3o分钟| 国产又黄又爽又无遮挡在线| 午夜影院日韩av| 六月丁香七月| 看黄色毛片网站| 色噜噜av男人的天堂激情| 国内精品宾馆在线| 日韩精品中文字幕看吧| 久久久久久大精品| 观看免费一级毛片| 少妇被粗大猛烈的视频| 少妇熟女欧美另类| 午夜福利在线观看免费完整高清在 | 最近视频中文字幕2019在线8| 亚洲av电影不卡..在线观看| 午夜福利在线在线| 好男人在线观看高清免费视频| 久久亚洲国产成人精品v| 一a级毛片在线观看| 最近在线观看免费完整版| 国产免费男女视频| 精品国产三级普通话版| 国产精品久久久久久av不卡| 精品久久久久久久久久久久久| 成人亚洲欧美一区二区av| 我的女老师完整版在线观看| 精品一区二区三区视频在线| 可以在线观看毛片的网站| 日本黄色视频三级网站网址| 丰满的人妻完整版| 一本久久中文字幕| 亚洲第一电影网av| 久久久久国产精品人妻aⅴ院| 日本色播在线视频| 一级毛片久久久久久久久女| 99热这里只有是精品在线观看| av在线亚洲专区| 村上凉子中文字幕在线| 乱人视频在线观看| 在线免费十八禁| 成人欧美大片| 亚洲激情五月婷婷啪啪| 国产精品日韩av在线免费观看| 日韩 亚洲 欧美在线| 真人做人爱边吃奶动态| 欧美一区二区精品小视频在线| 精品久久国产蜜桃| 可以在线观看的亚洲视频| 国产激情偷乱视频一区二区| 在线观看av片永久免费下载| 色哟哟·www| 在线免费十八禁| 18+在线观看网站| 亚洲成人精品中文字幕电影| 日日干狠狠操夜夜爽| 精品久久久久久成人av| 91午夜精品亚洲一区二区三区| 美女内射精品一级片tv| 日韩,欧美,国产一区二区三区 | 欧美三级亚洲精品| 日日摸夜夜添夜夜爱| 亚洲丝袜综合中文字幕| 日本免费一区二区三区高清不卡| 亚洲av熟女| 国产精品电影一区二区三区| 久久久久久久久久黄片| 色尼玛亚洲综合影院| 波多野结衣高清无吗| 男人的好看免费观看在线视频| 国产成人一区二区在线| 十八禁网站免费在线| 国产v大片淫在线免费观看| 免费在线观看影片大全网站| 亚洲婷婷狠狠爱综合网| 黄色一级大片看看| 午夜亚洲福利在线播放| 国产欧美日韩精品一区二区| 国产av在哪里看| 久久人人爽人人爽人人片va| 亚洲欧美精品自产自拍| 无遮挡黄片免费观看| 91久久精品国产一区二区三区| 午夜激情福利司机影院| 精品国内亚洲2022精品成人| 寂寞人妻少妇视频99o| 女生性感内裤真人,穿戴方法视频| 成人无遮挡网站| 一本精品99久久精品77| 亚洲国产高清在线一区二区三| 久久人人爽人人爽人人片va| 国产中年淑女户外野战色| 成人永久免费在线观看视频| 一级a爱片免费观看的视频| 亚洲aⅴ乱码一区二区在线播放| 欧洲精品卡2卡3卡4卡5卡区| 寂寞人妻少妇视频99o| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 国产精品乱码一区二三区的特点| 国产亚洲91精品色在线| 国产大屁股一区二区在线视频| 一级a爱片免费观看的视频| 久久精品夜色国产| 两个人的视频大全免费| 国产亚洲精品久久久com| 久久鲁丝午夜福利片| 国产欧美日韩精品亚洲av| 日韩欧美精品免费久久| 天堂影院成人在线观看| 久久精品夜夜夜夜夜久久蜜豆| 插阴视频在线观看视频| 免费一级毛片在线播放高清视频| 国产高清视频在线观看网站| 日韩欧美国产在线观看| 热99在线观看视频| 蜜桃久久精品国产亚洲av| 色在线成人网| 久久精品国产亚洲网站| 在线观看免费视频日本深夜| 国产av不卡久久| 最近2019中文字幕mv第一页| 成人毛片a级毛片在线播放| 午夜免费激情av| 大香蕉久久网| 岛国在线免费视频观看| 日本熟妇午夜| 校园人妻丝袜中文字幕| 淫妇啪啪啪对白视频| 深夜a级毛片| 在线免费观看不下载黄p国产| av在线蜜桃| 午夜免费激情av| 一个人看的www免费观看视频| 日韩强制内射视频| 级片在线观看| 国产精品av视频在线免费观看| 91精品国产九色| 波多野结衣高清无吗| 高清毛片免费观看视频网站| 搡老熟女国产l中国老女人| 久久久久久国产a免费观看| 成人美女网站在线观看视频| 亚洲国产欧洲综合997久久,| a级毛色黄片| 一级黄色大片毛片| 99九九线精品视频在线观看视频| 亚洲国产精品国产精品| 亚洲一区二区三区色噜噜| 久久久久久久久久黄片| 中文字幕精品亚洲无线码一区| 国产亚洲精品综合一区在线观看| 男人舔女人下体高潮全视频| 99久国产av精品国产电影| 中文资源天堂在线| 国产高清激情床上av| 国产淫片久久久久久久久| 熟妇人妻久久中文字幕3abv| 99热只有精品国产| 久久久久性生活片| 看十八女毛片水多多多| 国产欧美日韩精品亚洲av| 一级av片app| 国产精品久久久久久久电影| 久久久久久久午夜电影| 别揉我奶头 嗯啊视频| 欧美+亚洲+日韩+国产| 亚洲高清免费不卡视频| 亚洲中文日韩欧美视频| 精品一区二区免费观看| 欧洲精品卡2卡3卡4卡5卡区| 丰满的人妻完整版| 真实男女啪啪啪动态图| 亚洲av免费在线观看| 久久人妻av系列| 99热网站在线观看| 亚洲国产精品国产精品| 美女黄网站色视频| 亚洲欧美日韩高清在线视频| 亚洲熟妇熟女久久| 国产av麻豆久久久久久久| av免费在线看不卡| 国产精品久久久久久久久免| 亚洲成人精品中文字幕电影| 欧美成人精品欧美一级黄| 亚洲成人精品中文字幕电影| 精品日产1卡2卡| 97人妻精品一区二区三区麻豆| 成人二区视频| 一级a爱片免费观看的视频| 国产精品伦人一区二区| 久久精品久久久久久噜噜老黄 | 国产成人a∨麻豆精品| 精品福利观看| 亚洲va在线va天堂va国产| 在线观看免费视频日本深夜| 99久国产av精品国产电影| 亚洲欧美精品自产自拍| 乱系列少妇在线播放| 男女啪啪激烈高潮av片| 热99re8久久精品国产| 97碰自拍视频| 在线播放国产精品三级| 国产成人91sexporn| 一本精品99久久精品77| 亚洲熟妇中文字幕五十中出| 美女被艹到高潮喷水动态| 亚洲国产欧洲综合997久久,| 精品久久久久久久人妻蜜臀av| 久久精品综合一区二区三区| 在线播放无遮挡| 美女xxoo啪啪120秒动态图| 亚洲欧美成人精品一区二区| 精品免费久久久久久久清纯| 国语自产精品视频在线第100页| 性插视频无遮挡在线免费观看| 内射极品少妇av片p| 久久久久久大精品| 国内精品久久久久精免费| 少妇的逼好多水| 麻豆一二三区av精品| 久久久精品94久久精品| 欧美日韩国产亚洲二区| 国产高清有码在线观看视频| 亚洲专区国产一区二区| 国产精品嫩草影院av在线观看| 寂寞人妻少妇视频99o| 成人av在线播放网站| 永久网站在线| 毛片一级片免费看久久久久| 欧美激情久久久久久爽电影| 少妇猛男粗大的猛烈进出视频 | av在线老鸭窝| 午夜福利高清视频| 我的女老师完整版在线观看| 少妇人妻精品综合一区二区 | 亚洲天堂国产精品一区在线| 国产一区二区三区av在线 | 成人鲁丝片一二三区免费| 色哟哟哟哟哟哟| 亚洲高清免费不卡视频| 欧美+日韩+精品| АⅤ资源中文在线天堂| 国产精品永久免费网站| 国产三级在线视频| 精品一区二区三区视频在线| 精品福利观看| 我要看日韩黄色一级片| 人妻丰满熟妇av一区二区三区| 久久这里只有精品中国| 成人二区视频| 亚洲av二区三区四区| 日本撒尿小便嘘嘘汇集6| 伦精品一区二区三区| 精品久久久久久久久av| 亚洲国产精品国产精品| 无遮挡黄片免费观看| 美女 人体艺术 gogo| 在线天堂最新版资源| 91久久精品国产一区二区成人| 欧美激情国产日韩精品一区| 国产黄a三级三级三级人| 亚洲在线观看片| 久久久久久伊人网av| 国产精品久久电影中文字幕| 亚洲精品亚洲一区二区| 午夜精品在线福利| 亚洲中文字幕日韩| 亚洲精品影视一区二区三区av| 日本熟妇午夜| 欧美性猛交╳xxx乱大交人| 大又大粗又爽又黄少妇毛片口| 黄色配什么色好看| 亚洲精品色激情综合| 亚洲最大成人av| 日韩欧美国产在线观看| 搞女人的毛片| 我要搜黄色片| 国产亚洲精品av在线| 亚洲精品粉嫩美女一区| 日韩大尺度精品在线看网址| av免费在线看不卡| 久久精品国产鲁丝片午夜精品| 自拍偷自拍亚洲精品老妇| 99久久成人亚洲精品观看| 有码 亚洲区| 美女cb高潮喷水在线观看| 在线免费观看不下载黄p国产| 毛片女人毛片| 免费人成在线观看视频色| 久久国产乱子免费精品| 成人无遮挡网站| 观看免费一级毛片| 国产爱豆传媒在线观看| 免费高清视频大片| 久久久久性生活片| 人妻制服诱惑在线中文字幕| 精品一区二区免费观看| 高清毛片免费观看视频网站| 欧美潮喷喷水| 男人舔奶头视频| 免费人成视频x8x8入口观看| 国产成人a区在线观看| 日韩精品青青久久久久久| av视频在线观看入口| 淫妇啪啪啪对白视频| 国产乱人视频| 99久久无色码亚洲精品果冻| 中文在线观看免费www的网站| 免费在线观看影片大全网站| 欧美一区二区亚洲| 色尼玛亚洲综合影院| 国产爱豆传媒在线观看| 99久久无色码亚洲精品果冻| 国产伦精品一区二区三区四那| 日韩欧美精品v在线| 男人的好看免费观看在线视频| 午夜免费男女啪啪视频观看 | 国产高清三级在线| 99国产极品粉嫩在线观看| 国产成人a∨麻豆精品| 波多野结衣巨乳人妻| 九九久久精品国产亚洲av麻豆| 在线免费观看不下载黄p国产| 一个人看的www免费观看视频| 久久久久久国产a免费观看| 蜜桃久久精品国产亚洲av| 国产乱人视频| 男人的好看免费观看在线视频| 欧美高清成人免费视频www| 久久精品国产清高在天天线| 非洲黑人性xxxx精品又粗又长| 国产高清不卡午夜福利| 少妇裸体淫交视频免费看高清| 欧美潮喷喷水| 亚洲熟妇中文字幕五十中出| 老司机福利观看| 不卡一级毛片| 日日摸夜夜添夜夜爱| 国产精品电影一区二区三区| 男人舔女人下体高潮全视频| 久久久久性生活片| 精品人妻偷拍中文字幕| 午夜福利视频1000在线观看| 一个人看的www免费观看视频| 狠狠狠狠99中文字幕| 18+在线观看网站| 在线免费观看的www视频| 午夜精品国产一区二区电影 | 中文字幕熟女人妻在线| 一级毛片aaaaaa免费看小| 91麻豆精品激情在线观看国产| 色av中文字幕| 少妇的逼好多水| 欧美xxxx性猛交bbbb| 白带黄色成豆腐渣| 欧美一区二区国产精品久久精品| 真实男女啪啪啪动态图| 美女免费视频网站| 一级av片app| 最好的美女福利视频网| 99在线视频只有这里精品首页| 国产视频一区二区在线看| 卡戴珊不雅视频在线播放| 国产免费男女视频| 舔av片在线| 久久久久久久亚洲中文字幕| 午夜a级毛片| 亚洲欧美精品综合久久99| 亚洲成人精品中文字幕电影| 美女 人体艺术 gogo| 寂寞人妻少妇视频99o| 男女视频在线观看网站免费| 搞女人的毛片| 亚洲av一区综合| 欧美日本视频| 久久久久久大精品| 日韩一区二区视频免费看| 国产国拍精品亚洲av在线观看| 国产乱人偷精品视频| 一a级毛片在线观看| 99热6这里只有精品| 欧美日韩一区二区视频在线观看视频在线 | 全区人妻精品视频| 舔av片在线| 久久久久久久久中文| 少妇的逼好多水| 人妻丰满熟妇av一区二区三区| 亚洲综合色惰| 国产久久久一区二区三区| 3wmmmm亚洲av在线观看| 欧美3d第一页| 国产男靠女视频免费网站| 久久精品夜色国产| 91午夜精品亚洲一区二区三区| 久99久视频精品免费| 亚洲中文字幕一区二区三区有码在线看| 亚洲精品影视一区二区三区av| 人人妻人人澡人人爽人人夜夜 | 国产精品福利在线免费观看| 午夜激情欧美在线| 国产精品综合久久久久久久免费| 亚洲最大成人手机在线| 在线a可以看的网站| 岛国在线免费视频观看| 亚洲最大成人中文| 在线观看美女被高潮喷水网站| 免费av观看视频| 我要看日韩黄色一级片| 免费av观看视频| 美女xxoo啪啪120秒动态图| 啦啦啦韩国在线观看视频| 国产成人福利小说| 国产精品电影一区二区三区| 欧美一区二区国产精品久久精品| av专区在线播放| 亚洲国产欧美人成| 一级毛片aaaaaa免费看小| 九色成人免费人妻av| 精品久久久噜噜| 日韩三级伦理在线观看| 高清毛片免费看| 久久精品久久久久久噜噜老黄 | 美女免费视频网站| 蜜桃久久精品国产亚洲av| 亚洲综合色惰| 日本一本二区三区精品| 亚州av有码| 联通29元200g的流量卡| АⅤ资源中文在线天堂| 免费观看精品视频网站| 国产一区二区在线av高清观看| 久久久欧美国产精品| 日韩成人av中文字幕在线观看 | 国产精品爽爽va在线观看网站| 欧美高清成人免费视频www|