• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Asymmetric scattering behaviors of spin wave dependent on magnetic vortex chirality

    2023-11-02 08:12:30XueFengZhang張雪楓JeHoShim沈帝虎XiaoPingMa馬曉萍ChengSong宋成HaimingYu于海明andHongGuangPiao樸紅光
    Chinese Physics B 2023年10期
    關(guān)鍵詞:紅光

    Xue-Feng Zhang(張雪楓), Je-Ho Shim(沈帝虎), Xiao-Ping Ma(馬曉萍),Cheng Song(宋成), Haiming Yu(于海明), and Hong-Guang Piao(樸紅光)

    1Hubei Engineering Research Center of Weak Magnetic-Field Detection,China Three Gorges University,Yichang 443002,China

    2Department of Physics,College of Science,Yanbian University,Yanji 133002,China

    3Key Laboratory of Advanced Materials(MOE),School of Materials Science and Engineering,Tsinghua University,Beijing 100084,China

    4Fert Beijing Institute,School of Integrated Circuit Science and Engineering,Beijing Advanced Innovation Center for Big Data and Brain Computing,Beihang University,Beijing 100191,China

    Keywords: magnonics,magnetic vortex,spin wave,magnetic chirality

    Nonlinear science is an interdisciplinary science which studies the common law of nonlinear behaviors in various systems.[1,2]In recent years, nonlinear interaction between spin wave (magnon) and topological magnetic texture (magnetic soliton)has received a great deal of attention in magnetic systems,[3,4]because it provides a good platform for exploring nonlinear science and has potential application prospects.[5-7]In many nonlinear magnetic systems,the equilibrium position(vortex core position in the steady state)of magnetic vortices exhibits notable robustness.[8]In other words,the vortex structure remains remarkably stable even under the interference of the external field.Hence, the interaction between spin waves(SWs) and magnetic vortices can provide a stable platform for research of nonlinear dynamics and may have application prospects in the field of spintronics.[9]

    SWs,as a collective precession behavior of spins in magnetic systems,[10,11]can transmit information using spin angular momentum rather than electron as a carrier, which can effectively solve the problem of thermal effect related power consumption caused by electron scattering.Since SWs has a wide frequency range from GHz to THz and their wavelengths can also reach nanometer scales,[12,13]it is advantageous to transmit information in magnetic nanodevices.Particularly,since they can propagate in magnetic materials, wave properties like diffraction,[14]refraction,[15]and interference[16,17]can be used to realize a variety of useful functions.At present,some SW-based functional devices have been reported, such as SW-based diodes and logic devices.[18-20]Interestingly, a nonreciprocal behavior of SW propagation can be achieved by modulating Dzyaloshinskii-Moriya interaction[21,22]and magnetic anisotropy[23,24]in magnetic systems, which is expected to be applied to the magnonic logics as an asymmetric behavior.However, it is obvious that the best way to apply magnonics is not to control the SW behaviors by changing the inherent structural properties of magnetic materials.Therefore, it will be of great significance for development of ultrafast, low power consumption and stable performance magnonic devices if the control of SW behavior can be realized through reconstruction of magnetic texture.[25]

    Recently, it has been found that behaviors of SW propagation become richer and easier to be controlled with introduction of topological spin textures,[4]due to the fact that the spin texture exhibits structurally stable soliton-like dynamic behavior,[26,27]which can produce SWs when excited by an external field and influence the behavior of SWs as they propagate.[27-29]Among various spin textures, the magnetic vortex not only effectively excites SWs[30,31]through the gyromotion,[32,33]azimuth mode motion[34,35]or radial mode motion[36]of its core, but also controls the SW propagation behaviors by switching its chirality.[30]The vortex has two chirality with right and left handedness,[37]which are characterized by the circulation sense of the in-plane circling spins[c=-1 for clockwise(CW),c=1 for counterclockwise(CCW)]and the polarity of the vortex core(VC)(p=1 for upward core,p=-1 for downward core).That is,there are four chiral states:vortex(1,1)and vortex(-1,-1)for right-handed chirality,and vortex(1,-1)and vortex(-1,1)for left-handed chirality.Therefore, if the propagation behavior of SWs can be effectively manipulated by controlling the four chiral states of the magnetic vortex,it will benefit the design of magnonic devices and promote the exploration of nonlinear science.

    In this paper,an asymmetric SW scattering behavior,depending on the chirality of magnetic vortices, is investigated in a cross-shaped ferromagnetic nanostructure.The results show that there are four scattering mechanisms in the magnetic system,including asymmetric skew scattering,back scattering(reflection),side deflection scattering,and geometrical scattering,which depend on the VC polarity,the VC stiffness,structural symmetry of the vortex circulation, and the waveguide structure.Moreover,based on the asymmetric effect of chiral topological structure on scattering behaviors of SWs,a control scheme of SWs propagating in the cross-shaped nanostructure is proposed by reconstructing the chiral structure.

    In order to investigate the effect of magnetic vortex chirality on the SW scattering behavior, the SW propagation in a cross-shaped ferromagnetic nanostructure is carefully explored by using micromagnetic simulations based on the Landau-Lifshitz-Gilbert equation.[38]In all the simulations,the material parameters of the permalloy are considered, the saturation magnetizationMS=8.6×105A/m, the exchange stiffness coefficientAex=13×10-12J/m,the Gilbert damping constantα=0.01,and the zero magnetocrystalline anisotropy.As schematically illustrated in Fig.1,the cross-shaped nanostructure is composed of two flat rectangular strips of 2000×200×2 nm3,overlapping each other,which is discretized into 106unit cells of 2×2×2 nm3.Initially,a magnetic vortex is set in the cross region of the nanostructure, as shown in two insets of Fig.1,which illustrates two chiral structures of vortex(1,1)and vortex(1,-1).All spins in the four arms of the nanostructure are initially set to point toward the cross center(see the white arrows)to form a stable magnetic vortex structure.An SW source is placed at the end of the left arm (arm 1),as the black part shown in Fig.1.The SW is excited by the sinusoidal microwave fieldBext=B0sin(2π ft)^z(^zisz-axis unit vector), withB0=200 mT andf=50 GHz.An original monochromatic SW(SWorg)propagates along the+x-axis direction from arm 1 to arm 3.To prevent the influence of SWs reflection from the ends,the high damping constant is set in the 30nm-width region(see gray parts)at the three ends of each arm(arms 2,3 and 4).

    Fig.1.Geometry and dimension of the cross-shaped nanostructure in Cartesian coordinates.The color ring and white arrows indicate the inplane magnetization distribution.The black and gray parts show the positions of wave source and high damping regions, respectively.The upper-left and lower-right insets represent the right- and left-handed magnetic vortex structure,respectively.

    As shown in Fig.2(a), it can be clearly observed that when the SWorgpropagates to the cross region of the nanostructure, the majority of the SWorgtravels through the vortex structure,and reaches arm 3,while a minority of SWorgis scattered to arms 2 and 4.As shown in Fig.2(b),there is a significant difference(asymmetry)in the average amplitudes of the SWs scattered into arms 2 and 4,whereas no such significant difference is observed in the no-vortex case(see Fig.S1 in the supplementary information).Hence,it can be found that there exists an interaction between the SW and the vortex, which suggests the occurrence of asymmetric behaviors in SW propagation.In addition, it is worth mentioning that in the vortex(1,1) case (see Fig.2(b)), the average amplitude of SWs injected into arm 2 is about 12 times larger than that injected into arm 4.

    The asymmetric scattering of SWs is compared in the cases of four different chiral vortices [vortex (1,1), vortex(-1,1),vortex(-1,-1),and vortex(1,-1)]and the case without vortex(no-vortex)in order to verify the universality of the interaction between SW and vortex.As shown in Fig.2(c),the percentages of the average amplitudes of SWs scattered into arm 2(red)and arm 4(green)are compared in each case.In the no-vortex cases, the percentages of SW amplitudes for arms 2 and 4 are nearly identical, whereas in the presence of vortex structures,the percentages of SW amplitudes for arms 2 and 4 are noticeably different.It is obvious that the asymmetric scattering behavior of SWs in this system occurs due to the interaction between SW and vortex.It is worth reminding that the SWs scattered into arm 2 are relatively dominant when the VC polarity is up (p=1), while the SWs scattered into arm 4 are dominant when the VC polarity is down(p=-1).The change of vortex circulation (c=±1) does not significantly affect the asymmetric scattering effect.All of these reveal that the asymmetric scattering effect of the SWs in this system is mainly dependent on the VC polarity rather than the vortex circulation.

    In order to further confirm the dominant role of VC polarity on the asymmetric scattering behavior of SWs in this system,a no-VC case was simulated in the redesigned nanostructure with an 8×8 nm2hole at the center of the cross region,as shown in Fig.3(a).The hole can pin the equilibrium point of the vortex circulation at the center of the cross region,and the vortex circulation structure still maintains symmetry[see inset of Fig.3(a)].The results show that the asymmetric scattering behavior of SWs cannot be observed in the no-VC case, as shown in Fig.3(b).However, by comparing the no-VC case and the no-vortex case[see Figs.3(b)and 3(c)],it can be clearly observed that the SW scattering effect in the no-VC case is more significant(~4.6 times)than that in the no-vortex case,and it is found that there is a phase difference(Δt ≈3 ps)between them,which suggests that the circulation structure of the magnetic vortex also has a scattering effect on the SWorg.In the no-vortex case,it can be clearly observed that the SWs are symmetrically scattered into arms 2 and 4, as illustrated in Fig.S1 of the supplementary information.The dispersion effect of SWs caused by the geometric characteristics of the waveguide structure can be called geometric scattering of SWs(SWgeo).[39]Therefore,it can be considered that the source of SWgeois located at the edges of both sides of the cross region.Obviously, in the no-VC case, the SWs scattered into arms 2 and 4 consist of two parts: one is the SWgeoand the other is the SWs caused by the vortex circulation scattering (SWC).Asymmetric scattering of SWs can also be achieved by modulating the vortex circulation structure,as shown in Fig.S2 of the supplementary information.

    Fig.3.(a) Snapshots of SW distribution for the no-VC case at 20 ns after the SW excitation, the inset shows the magnetization distribution and SW distribution in the cross region.Time-varying mz signals collected at the detecting positions in arms 2 and 4, 550 nm far from the geometric center of the nanostructure,in the cases of(b)no-VC and(c)no-vortex.

    The asymmetric scattering behavior caused by the interaction between SW and VC is an interesting physical phenomenon which belongs to the field of nonlinear science.In order to explore this phenomenon, the vortex (1,1) case was carefully analyzed in the following.In Fig.4(a), it can be clearly observed that 600 ns after the VC is excited by the SWorg,its gyromotion is effectively suppressed under the mechanical action of damping(FDM,red arrows),and finally converges(see the red time region)at a position~1.24 nm away from the cross center.This means that the SWorgalso has a skew mechanical effect on the VC, that is, an SW current force.[40]Although the VC deviates from the cross center under the SWorgcurrent force (FSW, the green arrow), it will not deviate further after~1.24 nm shift because there is a restoring force (FEP, the blue arrow) in this system that always points the cross center and its magnitude is related to the distribution of stray fields around the VC.Therefore, in this system the direction of theFEPis always opposite to theFSWwhile its magnitude is always equal to theFSWand depends on the distance(R)of the equilibrium position(EP)of the vortices from the cross geometric center.That is,the EP is determined byFEPandFSW.Nevertheless, after the equilibrium position of the vortex shifts a certain distance under the combined action ofFEPandFSW,the gyromotion behavior of the VC still follows the Thiele equation,[40-42]as shown by the dotted fitting line in Fig.4(a).The Thiele equation can be written as

    Fig.4.(a)The VC trajectory in the vortex(1,1)case during 600 ns,the black arrow represents the VC gyromotion direction and the red,blue and green arrows show the mechanical relationships among FDM,FEP,and FSW.Color bar indicates the time variation and the dotted line represents the numerical fitting.(b)The time-varying mz signals collected at the detecting positions 160 nm far from the geometric center of the nanostructure are shown in(b)arm 1,(c)arm 2,and(d)arm 4,for the cases of vortex(1,1)and no vortex.

    In order to further confirm the possibility of SW scattering behavior caused by the reaction ofFSWon the VC, the distribution of SWs around the VC in the no-vortex and vortex (1,1) cases are compared.In the signals detected in arm 1, it is found that the mean amplitude of the signals in the vortex(1,1)case is obviously larger than that in the no-vortex case,Δˉmz ≈0.0025,indicating that the VC reflects the SWorgin the vortex (1,1) case, as shown in Fig.4(b).In the signals detected in arm 2, it is also found that the mean amplitude of the signals in the vortex (1,1) case is significantly larger than that in the no-vortex case, Δˉmz ≈0.0016, which is attributed to the skew scattering of the SWorgin the vortex(1,1)case,as shown in Fig.4(c).However,in the signals detected in arm 4,although the mean amplitude of the signals in the vortex (1,1) case is found to be larger than that in the no-vortex case, Δˉmz ≈0.0005, it is obviously weaker than that in arm 2(Δˉmz ≈0.0016).This means that the skew scattering effect of the VC on the SWorgobviously has asymmetric nature, as shown in Fig.4(c).According to the above phenomena, the conclusions are as follows: (1)The VC can cause reflection or skew scattering of the SWs.(2)The reaction forceFSWof the scattering or reflection will cause the oblique shift of vortex EP.(3)The skew scattering effect of VC on the SW is asymmetric and depends on the VC polarity(see Fig.S3 of the supplementary information).At present,the asymmetric interaction between VC and SW is considered originating from a socalled nonlinear topological magnon spin Hall effect, which is related to magnon spin-transfer torque effect[45-48]and depends on the magnon chirality and the VC polarity.However,the scattering behavior of vortex circulation structure on SWs has not received much attention so far,because the asymmetric scattering effect induced by vortex circulation structure is insignificantly compared with that of the VC,especially in the case of the SW driving the VC motion.In this paper,it is found that the vortex circulation structure contributes to the asymmetric scattering behavior of the SW and cannot be ignored.The obliqued shift of VC will make the vortex circulation distribution in the cross region of the nanostructure asymmetric,which will form an asymmetric scattering cross-section for the propagating SW,and eventually lead to asymmetric scattering effect.This conclusion is further confirmed by artificially designing a new micromagnetic simulation in which the vortex EP in the cross region is not located at the geometric center(see Fig.3(a)).

    Fig.5.Schematic diagram of SW symmetric scattering mechanism for the SW propagating in the magnetic nonlinear system.The thick black arrow represents the SWorg propagating direction,the green arrows represent the geometric scatterings of SWgeo,the yellow arrows represent the SWC scatterings, the red curved arrow represents the SWre reflection,and the purple arrow represents the skew scattering of SWP.The red and blue interference patterns represent the main propagation distribution of SWorg.

    In conclusion, it is found that there are four scattering mechanisms for SWs traveling in a cross-shaped ferromagnetic nonlinear system, as schematically illustrated in Fig.5:(i) the asymmetric skew scattering (SWP, purple arrow), related to VC polarity; (ii) the reflection (SWre, red curved arrow), associated with the scattering cross-section and stiffness of VC; (iii) the side deflection scattering (SWC, yellow arrows), depending on structural symmetry of vortex circulation; and (iv) the geometrical scattering (SWgeo, green arrows),depending on waveguide structural characteristics.The four mechanisms will play an important role in the exploration of nonlinear science and the development of magnonic devices.

    Acknowledgments

    Project supported by the Basic Science Research Program of the National Research Foundation of Korea (Grant No.2021R1F1A1050539), the Yanbian University Research Project(Grant No.482022104),and the Yichang Natural Science Research Project(Grant No.A22-3-010).

    猜你喜歡
    紅光
    以前的村莊
    基于吩嗪類受體的紅光至近紅外TADF材料與器件的研究進(jìn)展
    發(fā)紅光的蔬菜
    學(xué)與玩(2022年6期)2022-10-28 09:18:52
    高速鐵路線路紅光帶故障應(yīng)急處置箱的設(shè)計及運(yùn)用
    先鋒引領(lǐng)致富路
    ——記嘉蔭縣紅光鄉(xiāng)燎原村黨支部
    奮斗(2020年24期)2021-01-16 06:23:36
    尊嚴(yán)
    遼河(2020年12期)2020-01-05 07:03:17
    移風(fēng)易俗的路徑探索——基于涴市鎮(zhèn)紅光村鄉(xiāng)村振興促進(jìn)會的分析
    活力(2019年17期)2019-11-26 00:41:04
    二維水力學(xué)模型在紅光大橋洪水影響評價中的應(yīng)用
    The Advantages of the application of Multimedia—assisted Teaching to English Reading Class in Junior Middle Schools
    10分鐘
    汽車生活(2015年3期)2015-03-27 22:18:05
    亚洲不卡免费看| 欧美日韩亚洲国产一区二区在线观看| 精品国产美女av久久久久小说| 在线观看av片永久免费下载| www日本黄色视频网| 国产精品免费一区二区三区在线| 国产国拍精品亚洲av在线观看 | 国产在线精品亚洲第一网站| 日韩欧美国产在线观看| 久9热在线精品视频| 全区人妻精品视频| 香蕉久久夜色| 午夜日韩欧美国产| 小蜜桃在线观看免费完整版高清| 欧美日本视频| 成人高潮视频无遮挡免费网站| 九九在线视频观看精品| 12—13女人毛片做爰片一| 久久精品人妻少妇| 国产成人系列免费观看| 午夜免费观看网址| 久久精品影院6| 久久久久久久午夜电影| 日本a在线网址| 亚洲aⅴ乱码一区二区在线播放| 日韩高清综合在线| 无人区码免费观看不卡| 国产色爽女视频免费观看| 白带黄色成豆腐渣| 欧美av亚洲av综合av国产av| 日韩av在线大香蕉| 法律面前人人平等表现在哪些方面| 欧美精品啪啪一区二区三区| 久久精品国产亚洲av香蕉五月| 两个人视频免费观看高清| 在线免费观看不下载黄p国产 | 狂野欧美白嫩少妇大欣赏| 一级毛片女人18水好多| 好男人电影高清在线观看| 亚洲熟妇熟女久久| 在线免费观看不下载黄p国产 | 最新美女视频免费是黄的| av福利片在线观看| 黄色女人牲交| 免费在线观看亚洲国产| 天堂av国产一区二区熟女人妻| 亚洲成人久久性| 国产精品一区二区三区四区久久| 久久九九热精品免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99在线视频只有这里精品首页| 亚洲欧美精品综合久久99| 看黄色毛片网站| 夜夜看夜夜爽夜夜摸| 日本与韩国留学比较| www.色视频.com| 丁香欧美五月| 国产精品三级大全| 色综合站精品国产| 成年人黄色毛片网站| 性欧美人与动物交配| 国产在线精品亚洲第一网站| 国产精品亚洲美女久久久| av天堂中文字幕网| 亚洲中文字幕日韩| 一进一出抽搐gif免费好疼| 亚洲精品日韩av片在线观看 | 禁无遮挡网站| 精品无人区乱码1区二区| 欧美日韩亚洲国产一区二区在线观看| 久久国产精品人妻蜜桃| 久久久久久久久中文| 亚洲专区国产一区二区| 91久久精品电影网| 色噜噜av男人的天堂激情| 国产91精品成人一区二区三区| 中文字幕熟女人妻在线| www.www免费av| 女人被狂操c到高潮| 波多野结衣巨乳人妻| 精品国产亚洲在线| 丁香欧美五月| 亚洲av电影在线进入| 悠悠久久av| 熟女电影av网| 日韩人妻高清精品专区| 国产不卡一卡二| 欧美在线黄色| 国产精品 欧美亚洲| 无限看片的www在线观看| 悠悠久久av| 国产真人三级小视频在线观看| 国产一区二区激情短视频| 最近视频中文字幕2019在线8| 在线观看午夜福利视频| 欧美黄色淫秽网站| 中文字幕久久专区| 国产精品99久久99久久久不卡| 国产一区二区三区视频了| 亚洲乱码一区二区免费版| 琪琪午夜伦伦电影理论片6080| 午夜福利视频1000在线观看| 99精品久久久久人妻精品| 蜜桃亚洲精品一区二区三区| 国产伦在线观看视频一区| 我的老师免费观看完整版| 亚洲精品在线观看二区| 国产私拍福利视频在线观看| 日韩av在线大香蕉| 很黄的视频免费| 欧美最黄视频在线播放免费| 在线十欧美十亚洲十日本专区| 好看av亚洲va欧美ⅴa在| 好看av亚洲va欧美ⅴa在| 小说图片视频综合网站| 亚洲 国产 在线| 久久人人精品亚洲av| 国产蜜桃级精品一区二区三区| 欧美性猛交黑人性爽| 在线观看午夜福利视频| 亚洲成a人片在线一区二区| 好看av亚洲va欧美ⅴa在| eeuss影院久久| 久久精品91无色码中文字幕| a级一级毛片免费在线观看| 波多野结衣高清无吗| 天美传媒精品一区二区| 国产色爽女视频免费观看| 一区二区三区高清视频在线| 国产一区二区三区在线臀色熟女| www国产在线视频色| 婷婷亚洲欧美| 九色成人免费人妻av| 热99re8久久精品国产| 久久精品亚洲精品国产色婷小说| 久久99热这里只有精品18| 国产亚洲精品久久久com| 国产欧美日韩精品一区二区| 18禁黄网站禁片免费观看直播| 亚洲五月天丁香| 国产色爽女视频免费观看| 日本免费一区二区三区高清不卡| 在线观看美女被高潮喷水网站 | 午夜激情福利司机影院| 亚洲av五月六月丁香网| 国产黄a三级三级三级人| 免费在线观看亚洲国产| 欧美日韩综合久久久久久 | 精品一区二区三区人妻视频| 国产精品爽爽va在线观看网站| 国产v大片淫在线免费观看| 黄色日韩在线| 国产一区二区亚洲精品在线观看| 欧美另类亚洲清纯唯美| 国内少妇人妻偷人精品xxx网站| 俄罗斯特黄特色一大片| 99热这里只有是精品50| 日韩欧美精品v在线| 久久亚洲真实| 日日夜夜操网爽| 无遮挡黄片免费观看| 精品久久久久久久末码| 欧美高清成人免费视频www| 免费人成在线观看视频色| 午夜福利在线在线| 俺也久久电影网| a级一级毛片免费在线观看| 亚洲精品日韩av片在线观看 | 在线十欧美十亚洲十日本专区| 国产精品一及| 国产成人欧美在线观看| 亚洲一区二区三区色噜噜| 淫秽高清视频在线观看| 天堂影院成人在线观看| 此物有八面人人有两片| 一本久久中文字幕| 日本熟妇午夜| 少妇的逼好多水| 欧美丝袜亚洲另类 | a级一级毛片免费在线观看| 美女大奶头视频| 午夜老司机福利剧场| 成人欧美大片| 最新中文字幕久久久久| 黄色片一级片一级黄色片| 色综合婷婷激情| 国产免费一级a男人的天堂| 露出奶头的视频| 99热这里只有精品一区| 中文字幕av成人在线电影| 日韩av在线大香蕉| 国产亚洲精品av在线| 久久婷婷人人爽人人干人人爱| 99在线视频只有这里精品首页| 无限看片的www在线观看| 美女黄网站色视频| 人妻久久中文字幕网| 久久精品91蜜桃| 欧美性感艳星| 一级毛片女人18水好多| 国产精品久久久久久精品电影| 女警被强在线播放| 久久香蕉精品热| 最近视频中文字幕2019在线8| 国产精品永久免费网站| 无遮挡黄片免费观看| 禁无遮挡网站| 欧美不卡视频在线免费观看| 亚洲熟妇熟女久久| 午夜久久久久精精品| 亚洲精品在线观看二区| 精品一区二区三区视频在线 | 国产精华一区二区三区| 国产精品国产高清国产av| 国产黄a三级三级三级人| 欧美极品一区二区三区四区| 每晚都被弄得嗷嗷叫到高潮| 国模一区二区三区四区视频| 日本熟妇午夜| 最近视频中文字幕2019在线8| 级片在线观看| 国产真人三级小视频在线观看| 久9热在线精品视频| 国产精品国产高清国产av| 女生性感内裤真人,穿戴方法视频| 欧美日韩亚洲国产一区二区在线观看| 久久精品人妻少妇| 午夜精品在线福利| 国产精品98久久久久久宅男小说| 男女之事视频高清在线观看| 免费人成在线观看视频色| 最新中文字幕久久久久| 国产69精品久久久久777片| 亚洲国产高清在线一区二区三| 超碰av人人做人人爽久久 | 99久久精品热视频| 99久久综合精品五月天人人| 亚洲真实伦在线观看| 嫁个100分男人电影在线观看| 一区二区三区国产精品乱码| 免费电影在线观看免费观看| 蜜桃久久精品国产亚洲av| 欧美又色又爽又黄视频| 欧美日韩一级在线毛片| 日本黄色视频三级网站网址| 日本 欧美在线| 在线观看舔阴道视频| 亚洲精品色激情综合| 色综合欧美亚洲国产小说| 成人av一区二区三区在线看| 精品久久久久久久末码| 欧美激情久久久久久爽电影| 欧美性猛交黑人性爽| 国产aⅴ精品一区二区三区波| 国产午夜精品久久久久久一区二区三区 | 欧美日韩乱码在线| 国产激情欧美一区二区| 99精品欧美一区二区三区四区| 色av中文字幕| 国产野战对白在线观看| 无人区码免费观看不卡| ponron亚洲| 久久天躁狠狠躁夜夜2o2o| 91九色精品人成在线观看| 99精品欧美一区二区三区四区| 熟女少妇亚洲综合色aaa.| 亚洲av成人不卡在线观看播放网| 久久久国产成人免费| 一级黄色大片毛片| 夜夜爽天天搞| 国产伦一二天堂av在线观看| 久久香蕉国产精品| 人妻丰满熟妇av一区二区三区| 最新中文字幕久久久久| 精品日产1卡2卡| 男人舔奶头视频| 国产精品嫩草影院av在线观看 | 国产av一区在线观看免费| 女人高潮潮喷娇喘18禁视频| x7x7x7水蜜桃| 人妻夜夜爽99麻豆av| 国产精品久久久久久人妻精品电影| 91在线观看av| a级毛片a级免费在线| 欧美一级a爱片免费观看看| 一区福利在线观看| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 午夜福利视频1000在线观看| 国产精品亚洲一级av第二区| 国模一区二区三区四区视频| 欧美最新免费一区二区三区 | 免费观看的影片在线观看| 成人国产综合亚洲| 国产精品精品国产色婷婷| 国内精品久久久久精免费| 他把我摸到了高潮在线观看| 欧洲精品卡2卡3卡4卡5卡区| 少妇丰满av| 亚洲成a人片在线一区二区| 91久久精品电影网| 午夜精品久久久久久毛片777| 国产精品98久久久久久宅男小说| 欧美黑人巨大hd| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美免费精品| 欧美日本视频| 99国产综合亚洲精品| 啦啦啦韩国在线观看视频| 丰满的人妻完整版| 久久久久精品国产欧美久久久| 美女大奶头视频| 99久久精品国产亚洲精品| 成人av一区二区三区在线看| av女优亚洲男人天堂| 国产亚洲精品久久久久久毛片| 亚洲av熟女| 国产成+人综合+亚洲专区| 欧美一区二区国产精品久久精品| 国产伦精品一区二区三区四那| 久久中文看片网| 在线播放国产精品三级| 久久久久久九九精品二区国产| a在线观看视频网站| 手机成人av网站| 一夜夜www| 久久精品国产综合久久久| 久久久久久国产a免费观看| 啦啦啦观看免费观看视频高清| 一进一出好大好爽视频| 精品久久久久久久久久久久久| 一级a爱片免费观看的视频| 亚洲成a人片在线一区二区| 午夜福利高清视频| 可以在线观看的亚洲视频| av在线蜜桃| 午夜福利视频1000在线观看| 亚洲中文字幕一区二区三区有码在线看| 99riav亚洲国产免费| 国产精品99久久99久久久不卡| 欧美zozozo另类| 内射极品少妇av片p| 嫩草影院精品99| 一区二区三区国产精品乱码| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| 99在线人妻在线中文字幕| 人妻丰满熟妇av一区二区三区| 亚洲精品色激情综合| 国产成人啪精品午夜网站| 国产精品影院久久| 熟女人妻精品中文字幕| 人妻夜夜爽99麻豆av| 日韩高清综合在线| 亚洲专区国产一区二区| 欧美激情在线99| av专区在线播放| 九九久久精品国产亚洲av麻豆| 国产精品亚洲av一区麻豆| 大型黄色视频在线免费观看| 99在线视频只有这里精品首页| 久久久久国产精品人妻aⅴ院| a级毛片a级免费在线| 免费在线观看日本一区| 国产欧美日韩一区二区三| 亚洲人成网站在线播| 人人妻人人澡欧美一区二区| 很黄的视频免费| 成年女人看的毛片在线观看| a在线观看视频网站| 精品福利观看| 日韩欧美免费精品| 国产精品亚洲美女久久久| 舔av片在线| 精品久久久久久久久久免费视频| 午夜免费观看网址| 欧洲精品卡2卡3卡4卡5卡区| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| 97人妻精品一区二区三区麻豆| 亚洲人成电影免费在线| 日韩欧美 国产精品| 中国美女看黄片| 国产精品国产高清国产av| 免费大片18禁| 国产熟女xx| 久久久国产精品麻豆| 99热精品在线国产| 亚洲精品粉嫩美女一区| 一级毛片女人18水好多| 天堂√8在线中文| 国产在线精品亚洲第一网站| 99热只有精品国产| 国产高清三级在线| 97超视频在线观看视频| 亚洲在线观看片| 国产精品一及| 欧美一级a爱片免费观看看| 在线免费观看的www视频| 九色国产91popny在线| 99久久精品热视频| 精品久久久久久久久久久久久| 搡女人真爽免费视频火全软件 | 尤物成人国产欧美一区二区三区| 欧美在线黄色| 精品久久久久久成人av| 午夜福利欧美成人| 欧美丝袜亚洲另类 | 一区二区三区高清视频在线| x7x7x7水蜜桃| 3wmmmm亚洲av在线观看| 亚洲第一电影网av| 日本精品一区二区三区蜜桃| 看片在线看免费视频| 精品久久久久久久毛片微露脸| 欧美日韩国产亚洲二区| 99国产精品一区二区蜜桃av| 午夜两性在线视频| 成人av在线播放网站| 久久欧美精品欧美久久欧美| 亚洲精品456在线播放app | 亚洲成人中文字幕在线播放| 丝袜美腿在线中文| 免费观看精品视频网站| eeuss影院久久| 在线免费观看的www视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品综合久久久久久久免费| 亚洲aⅴ乱码一区二区在线播放| 波多野结衣巨乳人妻| 高清日韩中文字幕在线| 老司机午夜福利在线观看视频| 91久久精品电影网| 性色avwww在线观看| 国产精品一区二区三区四区免费观看 | 一a级毛片在线观看| 三级毛片av免费| 动漫黄色视频在线观看| 欧美zozozo另类| 韩国av一区二区三区四区| 哪里可以看免费的av片| 久久伊人香网站| 色在线成人网| 狂野欧美白嫩少妇大欣赏| 全区人妻精品视频| 欧美成人性av电影在线观看| 可以在线观看毛片的网站| 一区二区三区免费毛片| 日本成人三级电影网站| 成人av在线播放网站| 日本五十路高清| 国产精品久久久久久久久免 | 亚洲av日韩精品久久久久久密| 国产伦在线观看视频一区| 色播亚洲综合网| 亚洲 欧美 日韩 在线 免费| 少妇人妻精品综合一区二区 | 男女床上黄色一级片免费看| 人人妻人人看人人澡| 制服丝袜大香蕉在线| 免费av不卡在线播放| 1024手机看黄色片| 午夜福利18| 亚洲国产精品久久男人天堂| 亚洲熟妇熟女久久| 一级毛片高清免费大全| 亚洲国产欧美人成| 精品国内亚洲2022精品成人| 成年女人永久免费观看视频| 中文字幕av在线有码专区| 淫秽高清视频在线观看| 免费在线观看成人毛片| 日本五十路高清| 久久精品国产99精品国产亚洲性色| 在线观看午夜福利视频| 久久精品国产亚洲av涩爱 | 一a级毛片在线观看| 亚洲久久久久久中文字幕| 色噜噜av男人的天堂激情| 人妻久久中文字幕网| 午夜a级毛片| 午夜免费观看网址| 午夜a级毛片| 无人区码免费观看不卡| 亚洲欧美日韩东京热| 51午夜福利影视在线观看| 欧美精品啪啪一区二区三区| 69人妻影院| 伊人久久精品亚洲午夜| 一个人免费在线观看电影| 国产午夜精品论理片| 俄罗斯特黄特色一大片| 搞女人的毛片| 亚洲七黄色美女视频| 欧美日韩精品网址| 国模一区二区三区四区视频| 久久香蕉精品热| tocl精华| 精品人妻偷拍中文字幕| 18禁裸乳无遮挡免费网站照片| 欧美日韩综合久久久久久 | 一本综合久久免费| 欧美一区二区国产精品久久精品| 一级毛片女人18水好多| 97超视频在线观看视频| 日韩欧美三级三区| 天堂影院成人在线观看| 国产精品久久久久久精品电影| 一本精品99久久精品77| 美女黄网站色视频| 尤物成人国产欧美一区二区三区| 久久久久久久久大av| 午夜久久久久精精品| 国产精品,欧美在线| av黄色大香蕉| 久久久久久久久大av| svipshipincom国产片| 亚洲美女视频黄频| 午夜亚洲福利在线播放| 69人妻影院| 色老头精品视频在线观看| 女人十人毛片免费观看3o分钟| 日韩精品中文字幕看吧| а√天堂www在线а√下载| 757午夜福利合集在线观看| 日日干狠狠操夜夜爽| 欧美不卡视频在线免费观看| 国产精品久久久久久亚洲av鲁大| 久久精品国产清高在天天线| 中文在线观看免费www的网站| 久久精品国产清高在天天线| 精品一区二区三区av网在线观看| 天堂√8在线中文| 成人精品一区二区免费| 欧美一区二区国产精品久久精品| 久久久久久久久中文| a级毛片a级免费在线| 丰满人妻一区二区三区视频av | 免费看光身美女| 狠狠狠狠99中文字幕| 亚洲无线观看免费| 俄罗斯特黄特色一大片| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲七黄色美女视频| 亚洲av二区三区四区| 免费在线观看影片大全网站| 欧美乱妇无乱码| 国产99白浆流出| 狂野欧美白嫩少妇大欣赏| 国产三级中文精品| 首页视频小说图片口味搜索| 午夜a级毛片| 九色国产91popny在线| 亚洲精品国产精品久久久不卡| 18+在线观看网站| 国产高清有码在线观看视频| 手机成人av网站| 精品久久久久久久末码| 在线天堂最新版资源| 国产欧美日韩一区二区精品| 久久久久久九九精品二区国产| 狂野欧美白嫩少妇大欣赏| 亚洲精品在线观看二区| 桃色一区二区三区在线观看| 丁香欧美五月| 精品99又大又爽又粗少妇毛片 | 欧美成人免费av一区二区三区| 亚洲片人在线观看| 级片在线观看| 长腿黑丝高跟| 欧美高清成人免费视频www| 亚洲av一区综合| 一个人看的www免费观看视频| 成人无遮挡网站| 悠悠久久av| 老司机午夜福利在线观看视频| 91麻豆精品激情在线观看国产| 99精品在免费线老司机午夜| 丰满乱子伦码专区| 内射极品少妇av片p| 嫩草影院入口| 精品一区二区三区视频在线观看免费| 日韩欧美 国产精品| 嫁个100分男人电影在线观看| 99久久久亚洲精品蜜臀av| 精品无人区乱码1区二区| 美女免费视频网站| 亚洲不卡免费看| 久久久久久久久大av| 精品国内亚洲2022精品成人| 亚洲av熟女| 亚洲av成人不卡在线观看播放网| 观看免费一级毛片| 亚洲av熟女| 久久久久亚洲av毛片大全| 99热这里只有是精品50| 亚洲aⅴ乱码一区二区在线播放| 日韩欧美国产一区二区入口| 国产在线精品亚洲第一网站| 免费人成视频x8x8入口观看| av中文乱码字幕在线| 日韩大尺度精品在线看网址| 日本 欧美在线| 午夜福利18| 国产av麻豆久久久久久久| a在线观看视频网站| www日本黄色视频网| 午夜日韩欧美国产| 一本一本综合久久| 久久精品国产亚洲av香蕉五月| 欧美+日韩+精品| 国产精品美女特级片免费视频播放器| 国产精品久久久人人做人人爽| 欧美+日韩+精品| 国产成人av教育|