• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Long-range interacting Stark many-body probes with super-Heisenberg precision

    2023-11-02 08:08:54RozhinYousefjaniXingjianHe何行健andAbolfazlBayat
    Chinese Physics B 2023年10期
    關鍵詞:行健

    Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat

    Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610051,China

    Keywords: quantum information,quantum statistical mechanics,quantum phase transitions

    1.Introduction

    Quantum sensors can achieve unprecedented precision in measuring time,[1,2]electric,[3,4]magnetic,[5-7]and gravitational fields,[8,9]way beyond the capability of their classical counterparts.They can be manufactured in atomic scales and have found applications in a wide range of fields, from cosmology[10-12]to biology.[13-15]The precision of estimating an unknown parameterh, encoded in a quantum density matrixρ(h),is fundamentally bounded by Cram′er-Rao inequality aswhere Δhis the standard deviation that quantifies the accuracy of the estimation,Mis the number of repetitions andFis a positive quantity called Fisher information.The scaling of Fisher information with respect to sensing resources,such as the probe sizeL,is a figure of merit that can be used for comparing the precision of different sensors.Typically,Fisher information scales are algebraically with the size of the resource,namelyF∝Lβ.In the absence of quantum features,classical sensing at best results inβ=1,is known as the standard limit.Quantum sensors,however,can achieve superlinear scaling withβ >1 through exploiting quantum features such as entanglement.[16,17]Originally,enhancement in precision has been discovered for a special form of entangled states,known as GHZ states,[18]which results inβ=2 also known as Heisenberg limit.[19-27]Although there are several experimental demonstrations of GHZ-based quantum sensors,[28-32]their scalability is challenging due to the sensitivity of such delicate quantum states to decoherence.In addition,the interaction between particles in these probes is detrimental to their precision.[33-35]

    Strongly correlated many-body systems are very resourceful for realizing quantum technology tasks, such as sensing.These quantum probes,which harness the interaction between particles, are naturally scalable and expected to be more robust against decoherence.In particular,various forms of phase transitions in such systems have been used for achieving quantum-enhanced sensitivity,including first-order,[36-39]second-order,[25,40-53]Floquet,[54,55]dissipative,[56-62]time crystals,[63,64]topological,[65-68]many-body[69]and Stark localization[70]phase transitions.Other types of manybody probes profit from diverse measurement methods including adaptive,[71-80]continuous,[29,62,81,84]and sequential[85,86]measurements.Since most of the sensing proposals in many-body probes have been dedicated to short-range interactions, a key open problem is whether long-range interactions can provide more benefits for sensing tasks? Longrange interactions naturally arise in certain quantum devices,such as ion traps[87-89]and Rydberg atoms.[90,91]The nature of these interactions prevents the systematic study of their interesting physics and except for some models such as Lipshin-Meshkov-Glick(LMG),[42,92]and long-range Kitaev chain,[93]the effect of long-range interaction on sensing precision remains almost untouched.

    Gradient field sensing is of major importance in various fields, including biological imaging[94,95]and gravitometry.[96-99]In the former,the ultra-precise sensing of a weak gradient magnetic field increases imaging resolution,enabling the visualization of smaller tumors for early cancer detection.In the latter,precise gravity measurement is essential for detection of gravitational waves,[100,101]investigating the equivalence principle,[102]obtaining the fine-structure[103]and measuring Newton’s gravitational constant.[104]Recently,we have shown that Stark probes can be exploited for measuring weak gradient fields with super-Heisenberg precision,[70]in which the scaling exponentβcan be as large asβ~= 6.This sensor relies on Stark localization transition which could even happen in the presence of an infinitesimal gradient field in single- and multi-particle quantum systems.The effect of a longer range of interaction on this sensor has not yet been explored.Addressing this issue is essential since the physical platforms for experimental realization of Stark localization,including ion traps[87-89]and Rydberg atoms[90,91]are naturally governed by long-range interactions.

    In this paper,we systematically study the effects of longrange interaction on the sensing capability of Stark probes.We show that the strong super-Heisenberg scaling of the Stark probes persists even in the presence of long-range interaction and is achievable throughout the extended phase of the system until the transition point.Our results show that various range of interaction leaves distinct imprints on the scaling of the Fisher information.Making the interaction more longranged enhances the localization and, hence, decreases the value of the Fisher information andβ.The localization effect disappears as the system gets closer to a fully connected graph and thus the sensitivity enhances again.The achievable super-Heisenberg scaling remains valid even when the state preparation time is taken into account in resource analysis.Moreover,we provide a comprehensive investigation of the critical properties of long-range Stark probes and establish a concrete relationship between critical exponents of the system through an extensive finite-size scaling analysis.We show that the enhanced sensitivity can be captured by measuring spin configurations in the relevant sector of the Hilbert space.Finally,we analyze the effect of filling factor (i.e., the number of excitations per site) on the sensing power of our Stark probes.While super-Heisenberg scaling is achievable for all studied filling factors,lower filling factors provide better precision.

    This paper is organized as follows.We start by presenting the tools for assessing a quantum probe in Section 2.After introducing our long-range Stark many-body probe in Section 3,we present the numerical results of sensing with the probe in the half-filling sector in Section 4.In the subsections of Section 4,the scaling behavior of the probe,its critical properties,the resource analysis, and the optimal measurement are discussed.Section 5 contains the analysis of the filling factor and the paper is summarized in Section 6.

    2.Ultimate precision limit

    In this section, we briefly review the implications of Cram′er-Rao inequality for quantum sensing problems.In order to estimate an unknown parameterhencoded in a probe,described by density matrixρ(h), one has to perform a measurement which is described by a set of positive operatorvalued measure (POVM){Πi}.Each measurement outcome appears with the probabilitypi(h)=Tr[Πiρ(h)].For this classical probability distribution one can show that the classical Fisher information(CFI),defined as[16,105]

    which establishes a bound on the estimation uncertainty Δh,known as Cram′er-Rao bound

    whereMrepresents the number of samples.The saturation of the inequality requires an optimal estimation algorithm.For large values ofM, it is known that the optimal algorithm is the Bayesian estimator.[106,107]Note that the CFI depends on the choice of measurement.In order to have a measurement-independent quantity, as an ultimate precision limit, one can maximize the CFI with respect to all possible measurements.The corresponding quantity, known as quantum Fisher information (QFI), is thus defined asFQ(h) =max{Πi}FC(h).[108,109]Therefore,the Cram′er-Rao inequality can be written in a hierarchical form as[24,110]

    This hierarchical inequality shows that the QFI can serve as a benchmark for evaluating any sensing protocol with a given measurement setup through a comparison of its corresponding CFI with the ultimate precision limit, quantified by the QFIFQ.Saturation of the ultimate precision bound, in Eq.(3),relies on both selecting the optimal measurement basis and choosing the best estimation algorithm.While the maximization with respect to measurement in the definition of the QFI seems notoriously challenging, alternative methods can provide computational-friendly methods for calculating the QFI.In particular, it turns out that the QFI is related to a quantity called fidelity susceptibilityχ(h)asFQ=4χ(h).The fidelity susceptibility is defined as[41,48,51,111]

    withδhbeing an infinitesimal variation inh.It has been shown that for systems that go through a second-order quantum phase transition, the fidelity susceptibility and, hence,QFI show non-analytic behavior in the vicinity of the critical point.[48,111-114]This reflects the tremendous sensitivity of the system with respect to the control parameterhwhich drives the system into the phase transition.In this paper,we rely on Eq.(4) for calculating the QFI and investigating the sensing power of a Stark many-body probe with long-range interaction.

    3.Stark many-body probe

    We consider a one-dimensional spin-1/2 chain ofLsites that is affected by a gradient fieldh.While spin tunneling is restricted to nearest-neighbor sites,the interaction between particles is taken to be long-range which algebraically decays by exponentη >0.The Hamiltonian reads

    whereJis the exchange coupling,are Pauli operators acting on sitei, andhis the amplitude of the applied gradient field, which has to be estimated.By varying the powerlaw exponentη,one can smoothly interpolate between a fully connected graph(η=0)and a standard nearest-neighbor onedimensional chain (η →∞).Inherently, many interactions are long-range.Coulomb and dipole-dipole interactions are notable examples of this interaction that can be modeled in certain quantum simulators,e.g.,ion traps[87-89]and Rydberg atoms.[90,91]The Hamiltonian Eq.(5) conserves the number of excitations in thezdirection, namely [H,Sz] = 0, whereThis implies that the Hamiltonian is blockdiagonal with respect to the number of excitationsN.Hence,each block can be described by a filling factor ofn=N/L.Here, we focus on the sensing power of our probe assuming that the filling factornis fixed and the probe is prepared in the lowest energy eigenstate of the relevant sector.Note that the true ground state of the Hamiltonian lies in the sector withn=0(i.e.,N=0 excitations).Nonetheless,throughout the paper,for the sake of convenience,we call the lowest eigenstate of the Hamiltonian for any given filling factornthe ground state which should not be mistaken by the true ground state of the Hamiltonian at filling factorn=0.

    Regardless of the range of interaction, by increasing the strength of the fieldh, the probe undergoes a quantum phase transition from an extended phase to a many-body localized one.[115-119]It is known that the many-body localization(MBL) transition occurs across the entire spectrum, in contrast to the conventional quantum phase transition which occurs only at the ground state.[51]Detecting and characterizing the MBL transition across the whole spectrum usually rely on exact diagonalization which severely restricts the numerical simulations to small systems.[120]For analyzing the sensing power of a probe,one requires large system size behavior which is not accessible through exact diagonalization.Therefore,we exploit matrix product state(MPS)simulation[121]to capture the behavior of QFI in large system sizes.While this allows us to extract a precise scaling analysis, it comes with the price that we will be limited to the ground state in each filling factor and cannot analyze the sensing power of excited states.

    4.Sensing at half-filling sector(n=1/2)

    We first focus on the half-filling sector of the Hamiltonian in which we haveN=L/2 excitations.In Fig.1(a), we plotFQas a function of Stark fieldh/Jfor a probe of sizeL=30 with various choices ofη.Several interesting features can be observed.First, by increasingh/Jthe QFI shows a dramatic change in its behavior from being almost constant in the extended phase to a decreasing function in the localized regime.During this transition, the QFI peaks at somehmax(η),which asymptotically converge to the transition pointhcin the thermodynamic limit.[111,114]Second,variousηleave distinct imprints on the QFI.By moving from a fully connected probe(η=0)to a nearest-neighbor one(η →∞), the peaks of the QFI first decrease and then show a revival behavior.This is because asηdecreases (i.e., interaction becomes more long-range) each spin configuration induces a different Zeeman energy splitting at any given site.This effect is like random disorder potential, which helps the system to localize and thus reduces the QFI.The observed behavior continues until the system becomes close to a fully connected graph(forη~0.1) in which all spin configurations induce almost the same energy splitting and thus the localization effect from off-resonant energy separations gradually disappears.Third,strong long-range interaction indeed enhances the sensitivity of the probe by providing the highest value ofFQin both the extended phase(i.e.,h <hmax)and at the transition point(i.e.,h=hmax).

    To explore the behavior of the QFI in the thermodynamic limit,namely forL →∞,one can study the QFI for various system sizes.In Figs.1(b)-1(d),we plot the ground state QFI as a function of Stark fieldh/Jfor various system sizesLand selectedη=0,1,and 5,respectively.Regardless of the range of the interaction,by enlarging the probe size,the peak of the QFI increases andhmaxgradually approaches zero, signaling the divergence ofFQin the thermodynamic limit for a vanishing transition pointhc→0.While the finite-size effect can be seen in the extended phase,in the localized regime one deals with a size-independent algebraic decay of the QFI which can be perfectly described byFQ∝|h-hmax|-α(η)(dashed lines).From Figs.1(b)-1(d),one can see that the exponentαtakes the valuesα(η=0)=4.00,α(η=1)=4.94,andα(η=5)=3.97,respectively.

    Fig.1.(a)The QFI versus Stark field h/J when our probe of size L=30 is prepared in the ground state of H(h)with n=1/2 and different powerlaw exponents η.(b)-(d)FQ as a function of h/J for probes of different sizes L initialized in the ground state of H(h) for η =0, 1, and 5, respectively.The dashed lines in all panels are the best fit of FQ, namely FQ∝|h-hmax|-α, representing the size-independent algebraic behavior of the QFI in the localized phase.

    4.1.Super-Heisenberg sensitivity

    Fig.2.Upper panels: the maximum of QFI(markers)versus probe size L for some values of η in(a)transition point(h=hmax)and(b)extended regime (h/J=10-4).The lines are the best fitting function of the form FQ ∝Lβ(h,η).Lower panels: the scaling exponent β(h,η)versus η obtained(c)at the transition point and(d)in the extended phase.

    To characterize the scaling of the QFI with the probe size, in Figs.2(a) and 2(b), we plotFQversusLfor some values ofηboth at the transition point, i.e.,h=hmax, and in the extended phase, i.e.,h/J= 10-4, respectively.In both panels, the markers represent the QFI obtained by numerical simulation and the lines are the best fitting function of the formFQ(h,η)∝Lβ(h,η).The best obtained exponentβ(h,η)has been plotted as a function ofηin Figs.2(c)and 2(d),forh=hmaxandh/J=10-4, respectively.Some interesting observations can be highlighted.First,regardless of the interaction rangeη, one can obtain super-Heisenberg sensitivity for our probe (i.e.,β >2) both at the transition point and in the extended regime.Second, as discussed before, by decreasingη(i.e., making interaction more long-range)the effective Zeeman energy splitting enhances the localization and thus reduces the QFI as well as the exponentβ.Asηfurther decreases,the probe becomes effectively fully connected,implying that all spin configurations induce equal energy splitting that does not contribute to the localization anymore.Therefore,βchanges its behavior and starts rising asηdecreases towards zero.

    4.2.Finite-size scaling analysis

    The observed trend of the QFI in Figs.1(b)-1(d)(shown with dashed lines)strongly implies the algebraic divergence of the QFI in the thermodynamic limit asFQ∝|h-hmax|-α.For the sake of the abbreviation, we drop the dependency of the parameters onηandh.This behavior which is attributed to all second-order phase transitions in the thermodynamic limit is accompanied by the emergence of a diverging length scale asξ~|h-hc|-ν,withνknown as the critical exponent.To extract the parametersαandνin finite-size systems one needs to establish finite-size scaling analysis.In this technical method,the QFI is rescaled as

    whereg(·) is an arbitrary function.Plotting the rescaled QFI, namelyL-α/νFQ, versusL1/ν(h-hc) collapses all the curves of different probe sizes and the best data collapse can be obtained for accurate selection of critical properties, i.e.,(hc,α,ν).Figures 3(a) and 3(b) illustrate the best-achieved data collapse for probes of sizeL= 20,...,30 for selectedη=0 andη=1,respectively.The critical properties for both panels, obtained using Python package PYFSSA,[122,123]are(hc,α,ν)=(1.04×10-5,4.00,1.01)and(hc,α,ν)=(0.70×10-5,4.94,1.39).For the sake of completeness,in Table 1 we report the exponentsαandνfor different values ofη.

    Fig.3.Finite-size scaling analysis of the QFI following the ansatz Eq.(6)in (a) a fully connected probe η =0 and (b) a probe with η =1.The optimal data collapses are obtained for the attached critical properties(hc,α,ν)in each panel.

    Table 1.Extracted critical exponents including α, ν, their ratio α/ν, and the exponent β for various values of η.Here, reported α and ν that control the speed of algebraic divergence of the QFI FQ ∝|h-hmax|-α and the length scale ξ ~|h-hc|-ν in the thermodynamic limit,respectively,are obtained through finite-size scaling analysis.As it is evident from the values in the table,α/ν and β are very close to each other,which guarantees the validation of Eq.(8)for all ranges of interaction.Small deviations between α/ν and β are due to finite-size effects.

    Since in the finite-size systems, the peaks of the QFI athmaxare cutoff by the system size,one hasFQ∝Lβ.The two expected behaviors of the QFI,namelyFQ∝|h-hc|-αin the thermodynamic limit andFQ(hmax)∝Lβfor finite systems at the transition point,suggest a unified ansatz for the QFI as

    whereAis a constant.One can indeed retrieve the two behaviors from the above ansatz by either choosingL →∞orh=hmax.Note that, the two ansatzes of Eqs.(6) and (7) describe the same quantity and thus have to match with each other.A simple factorization ofL-βfrom the denominator of Eq.(7) shows that the two ansatzes are the same provided that the exponents satisfy

    The validity of the above equation for all the consideredηis evidenced in the presented data in Table 1, in whichα/νobtained from finite-size scaling analysis of Eq.(6), matches closely withβ,obtained from scaling analysis in Fig.2(a).

    4.3.Resource analysis

    Up to now, we have shown that quantum criticality can indeed offer significant advantages for quantum sensing.Nevertheless, this advantage is usually hindered by the time required to prepare the ground state close to the critical points.Initializing a probe in its ground state via, for instance, adiabatic evolution,[43]demands a time that scales with the probe size ast∝Lz,[53]in which the exponentzis known as dynamical exponent and determines the rate of the energy gap closing,namely ΔE∝L-z, for a system approaching to its criticality.Taking initialization time into consideration offers the normalized QFI, i.e.,FQ/tas a new figure of merit.[42,53,86]SinceFQ(hmax)∝Lβone can easily show that the normalized QFI scales as

    In order to estimate the dynamical exponentz,one has to numerically compute the energy gap ΔEversus the system sizeL.In Fig.4(a),we plot energy gap ΔEobtained through exact diagonalization as a function ofLfor a fully connected probe(η=0)in the extended phase(i.e., 0.0001 ≤h≤0.1),at the transition point(i.e.,h=hmax)and in the localized phase(i.e.,h/J=1).An algebraic decay as a function ofLfor energy gap is observed in the extended phase withz=0.91,at the transition point withz=1.04,and in the localized phase withz=0.In Fig.4(b), we plot the dynamical exponentzas a function ofηfor a probe in the extended phase (h/J=10-4) and at the transition point(h=hmax).As the results show,the exponentzqualitatively behaves similarly to the exponentβas the interaction rangeηvaries.It is worth emphasizing that even by considering time into the resource analysis, the exponentβ-zremains larger than 2 in all interaction ranges.This super-Heisenberg scaling can indeed provide a significant advantage for weak-field sensing.

    4.4.Optimal measurement

    Recovering the precision enhancement offered by the QFI, generally, demand performing complex measurements that may dependent on the unknown parameter.This makes it crucial to provide a suboptimal yet local and experimentally achievable set of measurements that capture the precision enhancement.Remarkably,in our probe measuring spin configurations described by observable ∑Li=1σziin the sectorSz=0 closely saturates the Cram′er-Rao inequality Eq.(3).To show this,in Fig.5 we plot both CFI(markers)and QFI(lines)captured by Eqs.(1) and (4), respectively.The curves show the sensitivity of the probe as a function of the Stark fieldhfor a system of sizeL=20 which is prepared in the ground state ofH(h)withη ∈{0,0.1,1,2}.Clearly,regardless of the interaction range, the CFI and QFI closely match showing that spin configuration is indeed an optimal measurement.The maximum of CFI happens exactly at the transition point, namelyhmax,and this quantity resembles the behavior of QFI with respect toη.

    Fig.5.The QFI(filled lines)and the CFI(markers)versus Stark filed h/J for a probe of size L=20 prepared in the ground state of Hamiltonian Eq.(5)with different η.

    5.Filling factor analysis

    Having described the many-body Stark probe in a halffilling sector of the Hilbert space, we now focus on the effect of the filling factornon the performance of our sensor.In Figs.6(a) and 6(b), we plot the QFI at the transition pointh=hmaxas a function ofηfor filling factorsn=1/4 andn= 1/8, respectively.Clearly, analogs to the scenario ofn=1/2 (see Fig.1(a)) asηdecreases (the interaction becomes more long-range)the QFI goes down and then revives as the effective localization impact disappears.Interestingly,for larger filling factors(e.g.,n=1/2 and somehown=1/4),a fully connected probe withη= 0 outperforms the other choices ofη.As the filling factor reduces, the best performance belongs to the nearest-neighbor probe withη →∞.In addition,our results evidence that decreasingncan remarkably boost the achievable QFI.This can be observed in Fig.6(c)which representsFQ(hmax)in a probe of sizeL=32 prepared in various sectors ofn=1/2,1/4 and 1/8.These results are in line with our previous results in which the highest advance was obtained for a Stark probe with single excitation.[70]

    To characterize the impact of the filling factor on the scaling of the QFI with respect toL,similar to the scenario of then=1/2,we fit the obtained QFI for different probe sizeLwith functionFQ∝Lβ(h,η).The best fits result in reportedβas a function ofηin Figs.7(a)and 7(b)forn=1/4 andn=1/8,respectively.In each panel, we report the obtainedβat the transition point (h=hmax) as well as in the extended phase(h/J=10-4).As the Figs.7(a) and 7(b) show, the exponentβshows qualitatively similar behavior to the half-filling case as the interaction becomes more long-ranged.Importantly,for all interaction ranges the exponentβshows super-Heisenberg scaling, and the best performance is always obtained for a nearest-neighbor probe.By decreasing the filling factorn,the performance of the probe in the extended phase gets closer to the one at the transition point.This is in full agreement with our previous results obtained for the Stark probe with single particle[70]in which for the nearest-neighbor probe both cases yield the sameβ.

    Fig.7.The scaling of the QFI, namely FQ(h,η)∝Lβ(h,η), as a function of η for (a) n=1/4 and (b) n=1/8.In both panels the extracted β is reported for the transition point h=hmax and the extended phase h/J=10-4.

    6.Conclusion

    Stark localization transition in many-body systems, as a result of applying a gradient field in the lattice,has been harnessed to generate an ultra-precise sensor for measuring weak gradient fields.In this paper, we address the effect of longrange interactions on the capability of these probes.Our study shows that strong super-Heisenberg precision of the Stark probe can be obtained in all ranges of interaction in the extended phase until the transition point.However,as the interaction becomes more long-range two different behaviors can be observed.Initially,by making the system more long-ranged the sensing power, quantified by QFI and its exponentβ, decreases.Then, aroundη~0.1, where the system becomes effectively a fully connected graph, the sensitivity enhances again which can be seen in the rise of both QFI andβ.These different trends can be explained through long-range interaction induced localization.In long-range interacting systems,keeping the filling factor fixed,every given spin configuration induces a different Zeeman energy splitting at each site.This energy splitting behaves like an effective random disorder that enhances localization and decreases the sensing power.When the interaction becomes almost fully connected, the energy splitting of all spin configurations becomes equal and effective localization disappears,which boosts the sensitivity of the probe.Interestingly, even by incorporating state preparation time in our resource analysis, the super-Heisenberg scaling still remains valid.In the localized phase,the system becomes size-independent and QFI follows a universal function.Several critical exponents governing the localization transition as well as their relationship have been extracted through extensive finite-size scaling analysis.Finally, we have shown that the sensitivity decreases by increasing the filling factor.

    Acknowledgments

    Project supported by the National Key R&D Program of China (Grant No.2018YFA0306703), the National Science Foundation of China (Grant Nos.12050410253, 92065115,and 12274059), and the Ministry of Science and Technology of China (Grant No.QNJ2021167001L).Rozhin Yousefjani thanks the National Science Foundation of China for the International Young Scientists Fund(Grant No.12250410242).

    猜你喜歡
    行健
    陳雨瑄 顧行健
    From“TheUglyDuckling”to“TheWildSwan”
    淺析獨立學院應用型人才培養(yǎng)模式下的新聞采寫課程改革——以行健文理學院為例
    新聞傳播(2016年17期)2016-07-19 10:12:05
    莘莘學子來遠方 行健不息須自強
    空中之家(2016年1期)2016-05-17 04:47:52
    “騎行教育”讓網(wǎng)癮胖墩變身陽光少年
    萬里騎行戒網(wǎng)癮
    Les fleurs de Papa se fanent
    法語學習(2015年1期)2015-04-17 06:13:06
    老習慣
    故事會(2012年17期)2012-08-29 10:01:28
    愛“高達”,愛生活
    雙魚座女孩
    麻豆精品久久久久久蜜桃| 国产精品不卡视频一区二区| 最新在线观看一区二区三区| 夜夜爽天天搞| 亚洲av第一区精品v没综合| 国产精品自产拍在线观看55亚洲| 1024手机看黄色片| 国产探花在线观看一区二区| 日本黄色视频三级网站网址| 久久久久久久久久黄片| videossex国产| 亚洲av不卡在线观看| 欧美一级a爱片免费观看看| 老女人水多毛片| 欧美日韩亚洲国产一区二区在线观看| 黄色丝袜av网址大全| 久久久久久久久久成人| 91午夜精品亚洲一区二区三区 | 久久草成人影院| 真人做人爱边吃奶动态| 91久久精品电影网| 亚洲精品色激情综合| 99在线人妻在线中文字幕| 国产私拍福利视频在线观看| 热99在线观看视频| 国产精品精品国产色婷婷| 乱系列少妇在线播放| 又爽又黄a免费视频| 欧美绝顶高潮抽搐喷水| 深夜a级毛片| 欧美一区二区亚洲| 久久精品国产亚洲网站| 国产精品伦人一区二区| 能在线免费观看的黄片| 一边摸一边抽搐一进一小说| 禁无遮挡网站| 亚洲不卡免费看| 又黄又爽又免费观看的视频| 黄色女人牲交| 国产精华一区二区三区| 国产精品久久久久久久久免| 国产精品1区2区在线观看.| 精品人妻视频免费看| 舔av片在线| x7x7x7水蜜桃| 成人永久免费在线观看视频| 深夜a级毛片| 欧美日韩乱码在线| 美女高潮的动态| 欧美最黄视频在线播放免费| 22中文网久久字幕| 久久久久久久午夜电影| 无人区码免费观看不卡| 久久久久久久久中文| 人妻夜夜爽99麻豆av| 国产精品,欧美在线| 精品久久久久久久末码| 蜜桃久久精品国产亚洲av| 搞女人的毛片| av国产免费在线观看| 日本爱情动作片www.在线观看 | 又爽又黄a免费视频| 一级黄色大片毛片| 亚洲av免费在线观看| 性色avwww在线观看| 久久久久精品国产欧美久久久| 国产免费男女视频| 日本黄色视频三级网站网址| 亚洲天堂国产精品一区在线| 免费看av在线观看网站| 天堂影院成人在线观看| 亚洲精华国产精华液的使用体验 | 免费人成视频x8x8入口观看| 日韩 亚洲 欧美在线| 淫妇啪啪啪对白视频| 国产黄片美女视频| 身体一侧抽搐| 日韩一本色道免费dvd| 大型黄色视频在线免费观看| 亚洲欧美日韩无卡精品| 久久精品综合一区二区三区| 久久国内精品自在自线图片| 最近在线观看免费完整版| 性欧美人与动物交配| 少妇的逼水好多| 亚洲色图av天堂| 午夜福利在线在线| 精品久久久久久久久av| 91在线精品国自产拍蜜月| www.www免费av| 免费在线观看成人毛片| 亚洲天堂国产精品一区在线| 在线国产一区二区在线| 久久99热6这里只有精品| 99热这里只有精品一区| av天堂中文字幕网| 国产一区二区激情短视频| 三级毛片av免费| 韩国av一区二区三区四区| av在线观看视频网站免费| 综合色av麻豆| 中文字幕免费在线视频6| 国产黄片美女视频| 国产精品,欧美在线| 男人的好看免费观看在线视频| 精品人妻一区二区三区麻豆 | 三级男女做爰猛烈吃奶摸视频| 久久久成人免费电影| 日本一二三区视频观看| 联通29元200g的流量卡| 亚洲成人精品中文字幕电影| 久久天躁狠狠躁夜夜2o2o| 国产在视频线在精品| 亚洲成人免费电影在线观看| 91久久精品国产一区二区三区| 三级毛片av免费| 国产伦一二天堂av在线观看| 久久精品国产亚洲av香蕉五月| 嫁个100分男人电影在线观看| 国产又黄又爽又无遮挡在线| 两个人的视频大全免费| 男女边吃奶边做爰视频| 春色校园在线视频观看| 欧美bdsm另类| 小说图片视频综合网站| 精品人妻偷拍中文字幕| 人人妻,人人澡人人爽秒播| www.色视频.com| 免费观看人在逋| 成人性生交大片免费视频hd| 真实男女啪啪啪动态图| 久久久久久久久中文| 婷婷亚洲欧美| 午夜福利18| 深爱激情五月婷婷| 久久精品国产亚洲网站| 少妇的逼水好多| 在线观看av片永久免费下载| 国产精品久久久久久久电影| 伊人久久精品亚洲午夜| 亚洲午夜理论影院| 亚洲精华国产精华液的使用体验 | 少妇人妻一区二区三区视频| 美女免费视频网站| 婷婷色综合大香蕉| 一进一出好大好爽视频| 在线免费观看的www视频| 丰满人妻一区二区三区视频av| 久久久久久久久久黄片| 国产成年人精品一区二区| 国产精品人妻久久久影院| 日韩中字成人| 91av网一区二区| 国产 一区精品| 男女下面进入的视频免费午夜| 精品久久久久久久久亚洲 | 亚洲欧美激情综合另类| 亚洲一区高清亚洲精品| 免费看日本二区| 老师上课跳d突然被开到最大视频| 国产色爽女视频免费观看| 久久久精品大字幕| 日韩欧美在线乱码| 欧美精品啪啪一区二区三区| 少妇高潮的动态图| 日本成人三级电影网站| 在线观看免费视频日本深夜| 国内精品美女久久久久久| 亚洲专区中文字幕在线| 日本与韩国留学比较| www日本黄色视频网| 日韩欧美一区二区三区在线观看| 亚洲自偷自拍三级| 波多野结衣高清作品| 久久精品综合一区二区三区| 欧美一区二区国产精品久久精品| av在线天堂中文字幕| 超碰av人人做人人爽久久| 日日干狠狠操夜夜爽| 丝袜美腿在线中文| 97热精品久久久久久| 99riav亚洲国产免费| 国产淫片久久久久久久久| 狂野欧美白嫩少妇大欣赏| 一级黄片播放器| 亚洲av不卡在线观看| 日本三级黄在线观看| 亚洲av成人精品一区久久| 亚洲在线观看片| 中文字幕av在线有码专区| 免费av观看视频| 国产精品乱码一区二三区的特点| 一级黄色大片毛片| 国产高清视频在线播放一区| 日韩欧美精品v在线| 国产精品一及| 亚洲内射少妇av| 亚洲内射少妇av| 国产精品日韩av在线免费观看| 亚洲性夜色夜夜综合| 91久久精品国产一区二区成人| 天天躁日日操中文字幕| 精品人妻视频免费看| 一区福利在线观看| 免费电影在线观看免费观看| 亚洲无线在线观看| 欧美黑人巨大hd| 人妻少妇偷人精品九色| 少妇人妻精品综合一区二区 | 午夜日韩欧美国产| 成人高潮视频无遮挡免费网站| 999久久久精品免费观看国产| 成人国产一区最新在线观看| 一级a爱片免费观看的视频| 亚洲一级一片aⅴ在线观看| 哪里可以看免费的av片| 一个人免费在线观看电影| 色精品久久人妻99蜜桃| 欧美色视频一区免费| 亚洲成a人片在线一区二区| 欧美另类亚洲清纯唯美| 美女被艹到高潮喷水动态| 伦精品一区二区三区| 国产白丝娇喘喷水9色精品| 12—13女人毛片做爰片一| 美女免费视频网站| 高清日韩中文字幕在线| 中文字幕熟女人妻在线| 我要搜黄色片| 国内精品宾馆在线| 成人亚洲精品av一区二区| 又爽又黄a免费视频| 国产在线男女| 黄色日韩在线| 1000部很黄的大片| 日韩中字成人| 天堂√8在线中文| 国产伦人伦偷精品视频| 日本一二三区视频观看| 亚洲精品456在线播放app | 欧美bdsm另类| 久久久久久久午夜电影| 午夜福利在线观看吧| 午夜激情福利司机影院| 日韩欧美国产在线观看| 久久久久免费精品人妻一区二区| 中文亚洲av片在线观看爽| 国产一区二区三区av在线 | 啦啦啦啦在线视频资源| 日韩欧美国产在线观看| 18+在线观看网站| 成人国产一区最新在线观看| 久久久精品欧美日韩精品| 美女高潮的动态| 婷婷亚洲欧美| 色综合亚洲欧美另类图片| 禁无遮挡网站| 美女被艹到高潮喷水动态| 欧美又色又爽又黄视频| 欧美一区二区亚洲| 色av中文字幕| 又紧又爽又黄一区二区| 亚洲精品色激情综合| 午夜爱爱视频在线播放| 韩国av一区二区三区四区| 18禁黄网站禁片免费观看直播| 一夜夜www| 国产亚洲欧美98| netflix在线观看网站| 嫩草影视91久久| 亚洲精品国产成人久久av| 1024手机看黄色片| 啦啦啦观看免费观看视频高清| 日本黄大片高清| 亚州av有码| 99riav亚洲国产免费| 日韩大尺度精品在线看网址| 日韩在线高清观看一区二区三区 | 久久精品国产亚洲av涩爱 | 在线观看66精品国产| 日韩人妻高清精品专区| 一进一出好大好爽视频| 嫩草影院新地址| 国产成人av教育| 日韩欧美国产在线观看| 成人高潮视频无遮挡免费网站| 日韩人妻高清精品专区| 88av欧美| 亚洲精华国产精华精| 女人被狂操c到高潮| 国内精品久久久久精免费| 欧美不卡视频在线免费观看| 午夜福利在线在线| 深夜精品福利| 91在线精品国自产拍蜜月| 中文字幕精品亚洲无线码一区| 99热这里只有是精品50| 欧美激情久久久久久爽电影| 日本五十路高清| 哪里可以看免费的av片| 亚洲精品久久国产高清桃花| 一级av片app| 少妇的逼水好多| 我的老师免费观看完整版| 一进一出好大好爽视频| 丝袜美腿在线中文| 两人在一起打扑克的视频| 成人一区二区视频在线观看| 夜夜看夜夜爽夜夜摸| 久久亚洲精品不卡| 天美传媒精品一区二区| 久久久久九九精品影院| 国产探花在线观看一区二区| 日日啪夜夜撸| 亚洲性夜色夜夜综合| 日韩 亚洲 欧美在线| 欧美一级a爱片免费观看看| 国产老妇女一区| 日韩精品有码人妻一区| 一个人免费在线观看电影| 亚洲成a人片在线一区二区| 色综合婷婷激情| 国产精品一区二区性色av| 国产精品,欧美在线| 国产精品久久视频播放| 精品99又大又爽又粗少妇毛片 | 色哟哟·www| 午夜精品在线福利| 真实男女啪啪啪动态图| .国产精品久久| 男人舔女人下体高潮全视频| 制服丝袜大香蕉在线| 国内精品久久久久久久电影| 国产精品电影一区二区三区| 悠悠久久av| 天堂动漫精品| 给我免费播放毛片高清在线观看| 午夜久久久久精精品| 婷婷精品国产亚洲av| 国内揄拍国产精品人妻在线| 91久久精品国产一区二区成人| 91精品国产九色| 欧美精品啪啪一区二区三区| 精品人妻视频免费看| 国内毛片毛片毛片毛片毛片| 亚洲成a人片在线一区二区| 麻豆一二三区av精品| 动漫黄色视频在线观看| 国产一区二区三区在线臀色熟女| 欧美另类亚洲清纯唯美| 亚洲成人久久性| 两个人视频免费观看高清| 亚洲av成人精品一区久久| 国产午夜精品久久久久久一区二区三区 | 赤兔流量卡办理| 一a级毛片在线观看| 欧美色视频一区免费| 免费看光身美女| 十八禁网站免费在线| 一进一出抽搐动态| 一个人看视频在线观看www免费| 午夜a级毛片| 亚洲av免费高清在线观看| 亚洲午夜理论影院| 热99在线观看视频| 国产欧美日韩一区二区精品| 色5月婷婷丁香| 色综合亚洲欧美另类图片| 乱系列少妇在线播放| 亚洲欧美日韩高清在线视频| 999久久久精品免费观看国产| 国产男人的电影天堂91| 别揉我奶头~嗯~啊~动态视频| 欧美最黄视频在线播放免费| 国产高潮美女av| 精品久久久久久久久av| 午夜爱爱视频在线播放| a级一级毛片免费在线观看| 此物有八面人人有两片| 18禁在线播放成人免费| 免费看日本二区| 国产伦在线观看视频一区| 国产午夜精品久久久久久一区二区三区 | 日本在线视频免费播放| 国产精品亚洲一级av第二区| 丰满的人妻完整版| 男人和女人高潮做爰伦理| 国产伦精品一区二区三区四那| 两个人的视频大全免费| 色综合站精品国产| 久久精品国产99精品国产亚洲性色| 伊人久久精品亚洲午夜| 热99在线观看视频| 春色校园在线视频观看| 欧美日本视频| 九九久久精品国产亚洲av麻豆| 精品一区二区三区视频在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一及| 91久久精品国产一区二区成人| 中文字幕人妻熟人妻熟丝袜美| 2021天堂中文幕一二区在线观| 99久久无色码亚洲精品果冻| 中文在线观看免费www的网站| 悠悠久久av| 天美传媒精品一区二区| 高清在线国产一区| 精品一区二区三区人妻视频| 亚洲性夜色夜夜综合| 精品99又大又爽又粗少妇毛片 | 少妇裸体淫交视频免费看高清| 精品久久久久久成人av| 日本黄色视频三级网站网址| 久久久久久久午夜电影| 蜜桃亚洲精品一区二区三区| 国产老妇女一区| 成年女人永久免费观看视频| 久久草成人影院| 99视频精品全部免费 在线| 色哟哟·www| 如何舔出高潮| 国产一级毛片七仙女欲春2| 舔av片在线| 99久久成人亚洲精品观看| 成人毛片a级毛片在线播放| 精品免费久久久久久久清纯| 最近最新中文字幕大全电影3| 欧美+亚洲+日韩+国产| 欧美在线一区亚洲| 欧美最黄视频在线播放免费| 亚洲国产精品sss在线观看| 日韩高清综合在线| 免费av观看视频| 久久99热这里只有精品18| 午夜爱爱视频在线播放| 又黄又爽又免费观看的视频| 亚洲国产欧洲综合997久久,| 亚洲一区高清亚洲精品| 亚洲成人免费电影在线观看| 中文字幕熟女人妻在线| 国产大屁股一区二区在线视频| 一进一出抽搐gif免费好疼| 制服丝袜大香蕉在线| 欧美国产日韩亚洲一区| 亚洲专区中文字幕在线| 日韩av在线大香蕉| 免费人成在线观看视频色| 日本五十路高清| 黄色视频,在线免费观看| 中文字幕免费在线视频6| 国产免费一级a男人的天堂| 欧美又色又爽又黄视频| 女人十人毛片免费观看3o分钟| 99热这里只有是精品50| 久久人人精品亚洲av| 久久久久九九精品影院| 日韩在线高清观看一区二区三区 | 国产成人福利小说| 性欧美人与动物交配| 久久香蕉精品热| 免费观看人在逋| 中国美白少妇内射xxxbb| 深夜精品福利| 又爽又黄无遮挡网站| 夜夜看夜夜爽夜夜摸| 日韩av在线大香蕉| 日韩一区二区视频免费看| 欧美日韩精品成人综合77777| 久久九九热精品免费| 亚洲,欧美,日韩| 亚洲av免费在线观看| 成人鲁丝片一二三区免费| 亚洲中文字幕日韩| 欧美性猛交╳xxx乱大交人| 天堂影院成人在线观看| 22中文网久久字幕| 日韩av在线大香蕉| 免费一级毛片在线播放高清视频| 五月伊人婷婷丁香| 最近在线观看免费完整版| 老司机深夜福利视频在线观看| 亚洲av美国av| 久久精品国产99精品国产亚洲性色| 夜夜看夜夜爽夜夜摸| 少妇裸体淫交视频免费看高清| 级片在线观看| 午夜福利18| 日韩亚洲欧美综合| 色综合色国产| 丰满乱子伦码专区| 国产综合懂色| 搡老岳熟女国产| 国产美女午夜福利| 女同久久另类99精品国产91| 极品教师在线免费播放| 日本一本二区三区精品| 18禁黄网站禁片免费观看直播| 国产成人aa在线观看| 免费无遮挡裸体视频| 亚洲性夜色夜夜综合| 亚洲在线自拍视频| eeuss影院久久| 午夜激情福利司机影院| 久久香蕉精品热| 搡老妇女老女人老熟妇| 可以在线观看毛片的网站| 日日撸夜夜添| 欧美成人免费av一区二区三区| 神马国产精品三级电影在线观看| 国产亚洲精品久久久com| 老熟妇乱子伦视频在线观看| 国产精品自产拍在线观看55亚洲| 人妻丰满熟妇av一区二区三区| 草草在线视频免费看| 精品人妻一区二区三区麻豆 | 黄色配什么色好看| 久久6这里有精品| 免费av观看视频| 欧美性猛交╳xxx乱大交人| 中文资源天堂在线| 综合色av麻豆| 午夜日韩欧美国产| 听说在线观看完整版免费高清| 国产亚洲精品综合一区在线观看| 美女高潮喷水抽搐中文字幕| 又黄又爽又刺激的免费视频.| 在线免费观看的www视频| 亚洲在线自拍视频| 日日撸夜夜添| 午夜久久久久精精品| 热99在线观看视频| 精品久久久久久成人av| avwww免费| 久久精品国产鲁丝片午夜精品 | 麻豆成人午夜福利视频| 人妻夜夜爽99麻豆av| 国产美女午夜福利| 国产精品福利在线免费观看| 欧美中文日本在线观看视频| 久久精品国产自在天天线| 九九爱精品视频在线观看| 亚洲av.av天堂| 亚洲欧美日韩高清在线视频| 精品久久久久久久久av| 成人欧美大片| 国产精品爽爽va在线观看网站| 免费av观看视频| 欧美日韩中文字幕国产精品一区二区三区| 日韩欧美国产在线观看| 国产蜜桃级精品一区二区三区| 国产精品久久电影中文字幕| 午夜a级毛片| 校园春色视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕免费在线视频6| 久久精品夜夜夜夜夜久久蜜豆| 蜜桃久久精品国产亚洲av| 黄片wwwwww| 女的被弄到高潮叫床怎么办 | 一本一本综合久久| 免费观看在线日韩| 在现免费观看毛片| 人妻夜夜爽99麻豆av| 久久国内精品自在自线图片| 国产免费一级a男人的天堂| 国产成人影院久久av| 三级男女做爰猛烈吃奶摸视频| 99久久精品国产国产毛片| 不卡一级毛片| 麻豆成人午夜福利视频| 波多野结衣高清无吗| 夜夜夜夜夜久久久久| 搡老岳熟女国产| 欧美高清性xxxxhd video| 国产伦精品一区二区三区视频9| 女的被弄到高潮叫床怎么办 | 久久国内精品自在自线图片| 国产视频一区二区在线看| 国模一区二区三区四区视频| 国产乱人伦免费视频| 91在线精品国自产拍蜜月| 不卡视频在线观看欧美| 搡老妇女老女人老熟妇| 特级一级黄色大片| 国产伦人伦偷精品视频| 欧美+日韩+精品| 国产伦人伦偷精品视频| 老司机深夜福利视频在线观看| 在线观看美女被高潮喷水网站| 国产成人一区二区在线| 免费观看人在逋| 国产精品99久久久久久久久| 国产伦人伦偷精品视频| 天天一区二区日本电影三级| 精品免费久久久久久久清纯| 欧美绝顶高潮抽搐喷水| 69人妻影院| 少妇熟女aⅴ在线视频| 国产高清有码在线观看视频| 日韩精品中文字幕看吧| 久久亚洲真实| 一级黄色大片毛片| 老熟妇仑乱视频hdxx| 午夜精品久久久久久毛片777| 成人av一区二区三区在线看| 男人和女人高潮做爰伦理| 1000部很黄的大片| 久久久久久久精品吃奶| 欧美区成人在线视频| 1024手机看黄色片| 精品不卡国产一区二区三区| a在线观看视频网站| 动漫黄色视频在线观看| 国产淫片久久久久久久久| 成人毛片a级毛片在线播放|