• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Long-range interacting Stark many-body probes with super-Heisenberg precision

    2023-11-02 08:08:54RozhinYousefjaniXingjianHe何行健andAbolfazlBayat
    Chinese Physics B 2023年10期
    關鍵詞:行健

    Rozhin Yousefjani, Xingjian He(何行健), and Abolfazl Bayat

    Institute of Fundamental and Frontier Sciences,University of Electronic Science and Technology of China,Chengdu 610051,China

    Keywords: quantum information,quantum statistical mechanics,quantum phase transitions

    1.Introduction

    Quantum sensors can achieve unprecedented precision in measuring time,[1,2]electric,[3,4]magnetic,[5-7]and gravitational fields,[8,9]way beyond the capability of their classical counterparts.They can be manufactured in atomic scales and have found applications in a wide range of fields, from cosmology[10-12]to biology.[13-15]The precision of estimating an unknown parameterh, encoded in a quantum density matrixρ(h),is fundamentally bounded by Cram′er-Rao inequality aswhere Δhis the standard deviation that quantifies the accuracy of the estimation,Mis the number of repetitions andFis a positive quantity called Fisher information.The scaling of Fisher information with respect to sensing resources,such as the probe sizeL,is a figure of merit that can be used for comparing the precision of different sensors.Typically,Fisher information scales are algebraically with the size of the resource,namelyF∝Lβ.In the absence of quantum features,classical sensing at best results inβ=1,is known as the standard limit.Quantum sensors,however,can achieve superlinear scaling withβ >1 through exploiting quantum features such as entanglement.[16,17]Originally,enhancement in precision has been discovered for a special form of entangled states,known as GHZ states,[18]which results inβ=2 also known as Heisenberg limit.[19-27]Although there are several experimental demonstrations of GHZ-based quantum sensors,[28-32]their scalability is challenging due to the sensitivity of such delicate quantum states to decoherence.In addition,the interaction between particles in these probes is detrimental to their precision.[33-35]

    Strongly correlated many-body systems are very resourceful for realizing quantum technology tasks, such as sensing.These quantum probes,which harness the interaction between particles, are naturally scalable and expected to be more robust against decoherence.In particular,various forms of phase transitions in such systems have been used for achieving quantum-enhanced sensitivity,including first-order,[36-39]second-order,[25,40-53]Floquet,[54,55]dissipative,[56-62]time crystals,[63,64]topological,[65-68]many-body[69]and Stark localization[70]phase transitions.Other types of manybody probes profit from diverse measurement methods including adaptive,[71-80]continuous,[29,62,81,84]and sequential[85,86]measurements.Since most of the sensing proposals in many-body probes have been dedicated to short-range interactions, a key open problem is whether long-range interactions can provide more benefits for sensing tasks? Longrange interactions naturally arise in certain quantum devices,such as ion traps[87-89]and Rydberg atoms.[90,91]The nature of these interactions prevents the systematic study of their interesting physics and except for some models such as Lipshin-Meshkov-Glick(LMG),[42,92]and long-range Kitaev chain,[93]the effect of long-range interaction on sensing precision remains almost untouched.

    Gradient field sensing is of major importance in various fields, including biological imaging[94,95]and gravitometry.[96-99]In the former,the ultra-precise sensing of a weak gradient magnetic field increases imaging resolution,enabling the visualization of smaller tumors for early cancer detection.In the latter,precise gravity measurement is essential for detection of gravitational waves,[100,101]investigating the equivalence principle,[102]obtaining the fine-structure[103]and measuring Newton’s gravitational constant.[104]Recently,we have shown that Stark probes can be exploited for measuring weak gradient fields with super-Heisenberg precision,[70]in which the scaling exponentβcan be as large asβ~= 6.This sensor relies on Stark localization transition which could even happen in the presence of an infinitesimal gradient field in single- and multi-particle quantum systems.The effect of a longer range of interaction on this sensor has not yet been explored.Addressing this issue is essential since the physical platforms for experimental realization of Stark localization,including ion traps[87-89]and Rydberg atoms[90,91]are naturally governed by long-range interactions.

    In this paper,we systematically study the effects of longrange interaction on the sensing capability of Stark probes.We show that the strong super-Heisenberg scaling of the Stark probes persists even in the presence of long-range interaction and is achievable throughout the extended phase of the system until the transition point.Our results show that various range of interaction leaves distinct imprints on the scaling of the Fisher information.Making the interaction more longranged enhances the localization and, hence, decreases the value of the Fisher information andβ.The localization effect disappears as the system gets closer to a fully connected graph and thus the sensitivity enhances again.The achievable super-Heisenberg scaling remains valid even when the state preparation time is taken into account in resource analysis.Moreover,we provide a comprehensive investigation of the critical properties of long-range Stark probes and establish a concrete relationship between critical exponents of the system through an extensive finite-size scaling analysis.We show that the enhanced sensitivity can be captured by measuring spin configurations in the relevant sector of the Hilbert space.Finally,we analyze the effect of filling factor (i.e., the number of excitations per site) on the sensing power of our Stark probes.While super-Heisenberg scaling is achievable for all studied filling factors,lower filling factors provide better precision.

    This paper is organized as follows.We start by presenting the tools for assessing a quantum probe in Section 2.After introducing our long-range Stark many-body probe in Section 3,we present the numerical results of sensing with the probe in the half-filling sector in Section 4.In the subsections of Section 4,the scaling behavior of the probe,its critical properties,the resource analysis, and the optimal measurement are discussed.Section 5 contains the analysis of the filling factor and the paper is summarized in Section 6.

    2.Ultimate precision limit

    In this section, we briefly review the implications of Cram′er-Rao inequality for quantum sensing problems.In order to estimate an unknown parameterhencoded in a probe,described by density matrixρ(h), one has to perform a measurement which is described by a set of positive operatorvalued measure (POVM){Πi}.Each measurement outcome appears with the probabilitypi(h)=Tr[Πiρ(h)].For this classical probability distribution one can show that the classical Fisher information(CFI),defined as[16,105]

    which establishes a bound on the estimation uncertainty Δh,known as Cram′er-Rao bound

    whereMrepresents the number of samples.The saturation of the inequality requires an optimal estimation algorithm.For large values ofM, it is known that the optimal algorithm is the Bayesian estimator.[106,107]Note that the CFI depends on the choice of measurement.In order to have a measurement-independent quantity, as an ultimate precision limit, one can maximize the CFI with respect to all possible measurements.The corresponding quantity, known as quantum Fisher information (QFI), is thus defined asFQ(h) =max{Πi}FC(h).[108,109]Therefore,the Cram′er-Rao inequality can be written in a hierarchical form as[24,110]

    This hierarchical inequality shows that the QFI can serve as a benchmark for evaluating any sensing protocol with a given measurement setup through a comparison of its corresponding CFI with the ultimate precision limit, quantified by the QFIFQ.Saturation of the ultimate precision bound, in Eq.(3),relies on both selecting the optimal measurement basis and choosing the best estimation algorithm.While the maximization with respect to measurement in the definition of the QFI seems notoriously challenging, alternative methods can provide computational-friendly methods for calculating the QFI.In particular, it turns out that the QFI is related to a quantity called fidelity susceptibilityχ(h)asFQ=4χ(h).The fidelity susceptibility is defined as[41,48,51,111]

    withδhbeing an infinitesimal variation inh.It has been shown that for systems that go through a second-order quantum phase transition, the fidelity susceptibility and, hence,QFI show non-analytic behavior in the vicinity of the critical point.[48,111-114]This reflects the tremendous sensitivity of the system with respect to the control parameterhwhich drives the system into the phase transition.In this paper,we rely on Eq.(4) for calculating the QFI and investigating the sensing power of a Stark many-body probe with long-range interaction.

    3.Stark many-body probe

    We consider a one-dimensional spin-1/2 chain ofLsites that is affected by a gradient fieldh.While spin tunneling is restricted to nearest-neighbor sites,the interaction between particles is taken to be long-range which algebraically decays by exponentη >0.The Hamiltonian reads

    whereJis the exchange coupling,are Pauli operators acting on sitei, andhis the amplitude of the applied gradient field, which has to be estimated.By varying the powerlaw exponentη,one can smoothly interpolate between a fully connected graph(η=0)and a standard nearest-neighbor onedimensional chain (η →∞).Inherently, many interactions are long-range.Coulomb and dipole-dipole interactions are notable examples of this interaction that can be modeled in certain quantum simulators,e.g.,ion traps[87-89]and Rydberg atoms.[90,91]The Hamiltonian Eq.(5) conserves the number of excitations in thezdirection, namely [H,Sz] = 0, whereThis implies that the Hamiltonian is blockdiagonal with respect to the number of excitationsN.Hence,each block can be described by a filling factor ofn=N/L.Here, we focus on the sensing power of our probe assuming that the filling factornis fixed and the probe is prepared in the lowest energy eigenstate of the relevant sector.Note that the true ground state of the Hamiltonian lies in the sector withn=0(i.e.,N=0 excitations).Nonetheless,throughout the paper,for the sake of convenience,we call the lowest eigenstate of the Hamiltonian for any given filling factornthe ground state which should not be mistaken by the true ground state of the Hamiltonian at filling factorn=0.

    Regardless of the range of interaction, by increasing the strength of the fieldh, the probe undergoes a quantum phase transition from an extended phase to a many-body localized one.[115-119]It is known that the many-body localization(MBL) transition occurs across the entire spectrum, in contrast to the conventional quantum phase transition which occurs only at the ground state.[51]Detecting and characterizing the MBL transition across the whole spectrum usually rely on exact diagonalization which severely restricts the numerical simulations to small systems.[120]For analyzing the sensing power of a probe,one requires large system size behavior which is not accessible through exact diagonalization.Therefore,we exploit matrix product state(MPS)simulation[121]to capture the behavior of QFI in large system sizes.While this allows us to extract a precise scaling analysis, it comes with the price that we will be limited to the ground state in each filling factor and cannot analyze the sensing power of excited states.

    4.Sensing at half-filling sector(n=1/2)

    We first focus on the half-filling sector of the Hamiltonian in which we haveN=L/2 excitations.In Fig.1(a), we plotFQas a function of Stark fieldh/Jfor a probe of sizeL=30 with various choices ofη.Several interesting features can be observed.First, by increasingh/Jthe QFI shows a dramatic change in its behavior from being almost constant in the extended phase to a decreasing function in the localized regime.During this transition, the QFI peaks at somehmax(η),which asymptotically converge to the transition pointhcin the thermodynamic limit.[111,114]Second,variousηleave distinct imprints on the QFI.By moving from a fully connected probe(η=0)to a nearest-neighbor one(η →∞), the peaks of the QFI first decrease and then show a revival behavior.This is because asηdecreases (i.e., interaction becomes more long-range) each spin configuration induces a different Zeeman energy splitting at any given site.This effect is like random disorder potential, which helps the system to localize and thus reduces the QFI.The observed behavior continues until the system becomes close to a fully connected graph(forη~0.1) in which all spin configurations induce almost the same energy splitting and thus the localization effect from off-resonant energy separations gradually disappears.Third,strong long-range interaction indeed enhances the sensitivity of the probe by providing the highest value ofFQin both the extended phase(i.e.,h <hmax)and at the transition point(i.e.,h=hmax).

    To explore the behavior of the QFI in the thermodynamic limit,namely forL →∞,one can study the QFI for various system sizes.In Figs.1(b)-1(d),we plot the ground state QFI as a function of Stark fieldh/Jfor various system sizesLand selectedη=0,1,and 5,respectively.Regardless of the range of the interaction,by enlarging the probe size,the peak of the QFI increases andhmaxgradually approaches zero, signaling the divergence ofFQin the thermodynamic limit for a vanishing transition pointhc→0.While the finite-size effect can be seen in the extended phase,in the localized regime one deals with a size-independent algebraic decay of the QFI which can be perfectly described byFQ∝|h-hmax|-α(η)(dashed lines).From Figs.1(b)-1(d),one can see that the exponentαtakes the valuesα(η=0)=4.00,α(η=1)=4.94,andα(η=5)=3.97,respectively.

    Fig.1.(a)The QFI versus Stark field h/J when our probe of size L=30 is prepared in the ground state of H(h)with n=1/2 and different powerlaw exponents η.(b)-(d)FQ as a function of h/J for probes of different sizes L initialized in the ground state of H(h) for η =0, 1, and 5, respectively.The dashed lines in all panels are the best fit of FQ, namely FQ∝|h-hmax|-α, representing the size-independent algebraic behavior of the QFI in the localized phase.

    4.1.Super-Heisenberg sensitivity

    Fig.2.Upper panels: the maximum of QFI(markers)versus probe size L for some values of η in(a)transition point(h=hmax)and(b)extended regime (h/J=10-4).The lines are the best fitting function of the form FQ ∝Lβ(h,η).Lower panels: the scaling exponent β(h,η)versus η obtained(c)at the transition point and(d)in the extended phase.

    To characterize the scaling of the QFI with the probe size, in Figs.2(a) and 2(b), we plotFQversusLfor some values ofηboth at the transition point, i.e.,h=hmax, and in the extended phase, i.e.,h/J= 10-4, respectively.In both panels, the markers represent the QFI obtained by numerical simulation and the lines are the best fitting function of the formFQ(h,η)∝Lβ(h,η).The best obtained exponentβ(h,η)has been plotted as a function ofηin Figs.2(c)and 2(d),forh=hmaxandh/J=10-4, respectively.Some interesting observations can be highlighted.First,regardless of the interaction rangeη, one can obtain super-Heisenberg sensitivity for our probe (i.e.,β >2) both at the transition point and in the extended regime.Second, as discussed before, by decreasingη(i.e., making interaction more long-range)the effective Zeeman energy splitting enhances the localization and thus reduces the QFI as well as the exponentβ.Asηfurther decreases,the probe becomes effectively fully connected,implying that all spin configurations induce equal energy splitting that does not contribute to the localization anymore.Therefore,βchanges its behavior and starts rising asηdecreases towards zero.

    4.2.Finite-size scaling analysis

    The observed trend of the QFI in Figs.1(b)-1(d)(shown with dashed lines)strongly implies the algebraic divergence of the QFI in the thermodynamic limit asFQ∝|h-hmax|-α.For the sake of the abbreviation, we drop the dependency of the parameters onηandh.This behavior which is attributed to all second-order phase transitions in the thermodynamic limit is accompanied by the emergence of a diverging length scale asξ~|h-hc|-ν,withνknown as the critical exponent.To extract the parametersαandνin finite-size systems one needs to establish finite-size scaling analysis.In this technical method,the QFI is rescaled as

    whereg(·) is an arbitrary function.Plotting the rescaled QFI, namelyL-α/νFQ, versusL1/ν(h-hc) collapses all the curves of different probe sizes and the best data collapse can be obtained for accurate selection of critical properties, i.e.,(hc,α,ν).Figures 3(a) and 3(b) illustrate the best-achieved data collapse for probes of sizeL= 20,...,30 for selectedη=0 andη=1,respectively.The critical properties for both panels, obtained using Python package PYFSSA,[122,123]are(hc,α,ν)=(1.04×10-5,4.00,1.01)and(hc,α,ν)=(0.70×10-5,4.94,1.39).For the sake of completeness,in Table 1 we report the exponentsαandνfor different values ofη.

    Fig.3.Finite-size scaling analysis of the QFI following the ansatz Eq.(6)in (a) a fully connected probe η =0 and (b) a probe with η =1.The optimal data collapses are obtained for the attached critical properties(hc,α,ν)in each panel.

    Table 1.Extracted critical exponents including α, ν, their ratio α/ν, and the exponent β for various values of η.Here, reported α and ν that control the speed of algebraic divergence of the QFI FQ ∝|h-hmax|-α and the length scale ξ ~|h-hc|-ν in the thermodynamic limit,respectively,are obtained through finite-size scaling analysis.As it is evident from the values in the table,α/ν and β are very close to each other,which guarantees the validation of Eq.(8)for all ranges of interaction.Small deviations between α/ν and β are due to finite-size effects.

    Since in the finite-size systems, the peaks of the QFI athmaxare cutoff by the system size,one hasFQ∝Lβ.The two expected behaviors of the QFI,namelyFQ∝|h-hc|-αin the thermodynamic limit andFQ(hmax)∝Lβfor finite systems at the transition point,suggest a unified ansatz for the QFI as

    whereAis a constant.One can indeed retrieve the two behaviors from the above ansatz by either choosingL →∞orh=hmax.Note that, the two ansatzes of Eqs.(6) and (7) describe the same quantity and thus have to match with each other.A simple factorization ofL-βfrom the denominator of Eq.(7) shows that the two ansatzes are the same provided that the exponents satisfy

    The validity of the above equation for all the consideredηis evidenced in the presented data in Table 1, in whichα/νobtained from finite-size scaling analysis of Eq.(6), matches closely withβ,obtained from scaling analysis in Fig.2(a).

    4.3.Resource analysis

    Up to now, we have shown that quantum criticality can indeed offer significant advantages for quantum sensing.Nevertheless, this advantage is usually hindered by the time required to prepare the ground state close to the critical points.Initializing a probe in its ground state via, for instance, adiabatic evolution,[43]demands a time that scales with the probe size ast∝Lz,[53]in which the exponentzis known as dynamical exponent and determines the rate of the energy gap closing,namely ΔE∝L-z, for a system approaching to its criticality.Taking initialization time into consideration offers the normalized QFI, i.e.,FQ/tas a new figure of merit.[42,53,86]SinceFQ(hmax)∝Lβone can easily show that the normalized QFI scales as

    In order to estimate the dynamical exponentz,one has to numerically compute the energy gap ΔEversus the system sizeL.In Fig.4(a),we plot energy gap ΔEobtained through exact diagonalization as a function ofLfor a fully connected probe(η=0)in the extended phase(i.e., 0.0001 ≤h≤0.1),at the transition point(i.e.,h=hmax)and in the localized phase(i.e.,h/J=1).An algebraic decay as a function ofLfor energy gap is observed in the extended phase withz=0.91,at the transition point withz=1.04,and in the localized phase withz=0.In Fig.4(b), we plot the dynamical exponentzas a function ofηfor a probe in the extended phase (h/J=10-4) and at the transition point(h=hmax).As the results show,the exponentzqualitatively behaves similarly to the exponentβas the interaction rangeηvaries.It is worth emphasizing that even by considering time into the resource analysis, the exponentβ-zremains larger than 2 in all interaction ranges.This super-Heisenberg scaling can indeed provide a significant advantage for weak-field sensing.

    4.4.Optimal measurement

    Recovering the precision enhancement offered by the QFI, generally, demand performing complex measurements that may dependent on the unknown parameter.This makes it crucial to provide a suboptimal yet local and experimentally achievable set of measurements that capture the precision enhancement.Remarkably,in our probe measuring spin configurations described by observable ∑Li=1σziin the sectorSz=0 closely saturates the Cram′er-Rao inequality Eq.(3).To show this,in Fig.5 we plot both CFI(markers)and QFI(lines)captured by Eqs.(1) and (4), respectively.The curves show the sensitivity of the probe as a function of the Stark fieldhfor a system of sizeL=20 which is prepared in the ground state ofH(h)withη ∈{0,0.1,1,2}.Clearly,regardless of the interaction range, the CFI and QFI closely match showing that spin configuration is indeed an optimal measurement.The maximum of CFI happens exactly at the transition point, namelyhmax,and this quantity resembles the behavior of QFI with respect toη.

    Fig.5.The QFI(filled lines)and the CFI(markers)versus Stark filed h/J for a probe of size L=20 prepared in the ground state of Hamiltonian Eq.(5)with different η.

    5.Filling factor analysis

    Having described the many-body Stark probe in a halffilling sector of the Hilbert space, we now focus on the effect of the filling factornon the performance of our sensor.In Figs.6(a) and 6(b), we plot the QFI at the transition pointh=hmaxas a function ofηfor filling factorsn=1/4 andn= 1/8, respectively.Clearly, analogs to the scenario ofn=1/2 (see Fig.1(a)) asηdecreases (the interaction becomes more long-range)the QFI goes down and then revives as the effective localization impact disappears.Interestingly,for larger filling factors(e.g.,n=1/2 and somehown=1/4),a fully connected probe withη= 0 outperforms the other choices ofη.As the filling factor reduces, the best performance belongs to the nearest-neighbor probe withη →∞.In addition,our results evidence that decreasingncan remarkably boost the achievable QFI.This can be observed in Fig.6(c)which representsFQ(hmax)in a probe of sizeL=32 prepared in various sectors ofn=1/2,1/4 and 1/8.These results are in line with our previous results in which the highest advance was obtained for a Stark probe with single excitation.[70]

    To characterize the impact of the filling factor on the scaling of the QFI with respect toL,similar to the scenario of then=1/2,we fit the obtained QFI for different probe sizeLwith functionFQ∝Lβ(h,η).The best fits result in reportedβas a function ofηin Figs.7(a)and 7(b)forn=1/4 andn=1/8,respectively.In each panel, we report the obtainedβat the transition point (h=hmax) as well as in the extended phase(h/J=10-4).As the Figs.7(a) and 7(b) show, the exponentβshows qualitatively similar behavior to the half-filling case as the interaction becomes more long-ranged.Importantly,for all interaction ranges the exponentβshows super-Heisenberg scaling, and the best performance is always obtained for a nearest-neighbor probe.By decreasing the filling factorn,the performance of the probe in the extended phase gets closer to the one at the transition point.This is in full agreement with our previous results obtained for the Stark probe with single particle[70]in which for the nearest-neighbor probe both cases yield the sameβ.

    Fig.7.The scaling of the QFI, namely FQ(h,η)∝Lβ(h,η), as a function of η for (a) n=1/4 and (b) n=1/8.In both panels the extracted β is reported for the transition point h=hmax and the extended phase h/J=10-4.

    6.Conclusion

    Stark localization transition in many-body systems, as a result of applying a gradient field in the lattice,has been harnessed to generate an ultra-precise sensor for measuring weak gradient fields.In this paper, we address the effect of longrange interactions on the capability of these probes.Our study shows that strong super-Heisenberg precision of the Stark probe can be obtained in all ranges of interaction in the extended phase until the transition point.However,as the interaction becomes more long-range two different behaviors can be observed.Initially,by making the system more long-ranged the sensing power, quantified by QFI and its exponentβ, decreases.Then, aroundη~0.1, where the system becomes effectively a fully connected graph, the sensitivity enhances again which can be seen in the rise of both QFI andβ.These different trends can be explained through long-range interaction induced localization.In long-range interacting systems,keeping the filling factor fixed,every given spin configuration induces a different Zeeman energy splitting at each site.This energy splitting behaves like an effective random disorder that enhances localization and decreases the sensing power.When the interaction becomes almost fully connected, the energy splitting of all spin configurations becomes equal and effective localization disappears,which boosts the sensitivity of the probe.Interestingly, even by incorporating state preparation time in our resource analysis, the super-Heisenberg scaling still remains valid.In the localized phase,the system becomes size-independent and QFI follows a universal function.Several critical exponents governing the localization transition as well as their relationship have been extracted through extensive finite-size scaling analysis.Finally, we have shown that the sensitivity decreases by increasing the filling factor.

    Acknowledgments

    Project supported by the National Key R&D Program of China (Grant No.2018YFA0306703), the National Science Foundation of China (Grant Nos.12050410253, 92065115,and 12274059), and the Ministry of Science and Technology of China (Grant No.QNJ2021167001L).Rozhin Yousefjani thanks the National Science Foundation of China for the International Young Scientists Fund(Grant No.12250410242).

    猜你喜歡
    行健
    陳雨瑄 顧行健
    From“TheUglyDuckling”to“TheWildSwan”
    淺析獨立學院應用型人才培養(yǎng)模式下的新聞采寫課程改革——以行健文理學院為例
    新聞傳播(2016年17期)2016-07-19 10:12:05
    莘莘學子來遠方 行健不息須自強
    空中之家(2016年1期)2016-05-17 04:47:52
    “騎行教育”讓網(wǎng)癮胖墩變身陽光少年
    萬里騎行戒網(wǎng)癮
    Les fleurs de Papa se fanent
    法語學習(2015年1期)2015-04-17 06:13:06
    老習慣
    故事會(2012年17期)2012-08-29 10:01:28
    愛“高達”,愛生活
    雙魚座女孩
    中文字幕人妻丝袜一区二区| 欧美不卡视频在线免费观看 | 视频在线观看一区二区三区| 搡老妇女老女人老熟妇| 国产高清激情床上av| 美女免费视频网站| 午夜影院日韩av| 午夜福利18| 久久国产乱子伦精品免费另类| 精品电影一区二区在线| 一级a爱视频在线免费观看| 天天一区二区日本电影三级| 国产精品国产高清国产av| 无限看片的www在线观看| 熟妇人妻久久中文字幕3abv| 欧美不卡视频在线免费观看 | 少妇 在线观看| 又紧又爽又黄一区二区| 亚洲中文字幕一区二区三区有码在线看 | 国产伦一二天堂av在线观看| 国产亚洲精品一区二区www| 欧美性长视频在线观看| 免费观看精品视频网站| 一级毛片女人18水好多| 成人欧美大片| 一本综合久久免费| 一级a爱视频在线免费观看| 免费在线观看影片大全网站| 97碰自拍视频| 国产一区在线观看成人免费| 国产高清激情床上av| 天堂√8在线中文| 欧美午夜高清在线| 香蕉av资源在线| 国产成年人精品一区二区| 国产精品二区激情视频| 国产一区二区三区在线臀色熟女| 一夜夜www| 成人午夜高清在线视频 | www日本在线高清视频| 久久久久国产精品人妻aⅴ院| 欧美激情久久久久久爽电影| 国产黄片美女视频| 亚洲中文字幕一区二区三区有码在线看 | 欧美成人性av电影在线观看| 亚洲欧美一区二区三区黑人| 日韩av在线大香蕉| a在线观看视频网站| 欧美日韩福利视频一区二区| 女人被狂操c到高潮| 校园春色视频在线观看| 一本精品99久久精品77| 怎么达到女性高潮| 亚洲国产欧美网| 亚洲va日本ⅴa欧美va伊人久久| 免费无遮挡裸体视频| 国产亚洲av高清不卡| 久久久久久九九精品二区国产 | 2021天堂中文幕一二区在线观 | 中出人妻视频一区二区| 法律面前人人平等表现在哪些方面| 观看免费一级毛片| 亚洲av成人一区二区三| 又黄又爽又免费观看的视频| 一边摸一边做爽爽视频免费| 女同久久另类99精品国产91| 午夜视频精品福利| 亚洲自拍偷在线| 宅男免费午夜| av有码第一页| 国产黄色小视频在线观看| 精品欧美国产一区二区三| 非洲黑人性xxxx精品又粗又长| 91麻豆av在线| 观看免费一级毛片| 精品久久久久久久人妻蜜臀av| 亚洲一区二区三区不卡视频| 亚洲国产精品合色在线| 久热爱精品视频在线9| 欧美亚洲日本最大视频资源| 欧美日本亚洲视频在线播放| 波多野结衣av一区二区av| 18禁黄网站禁片免费观看直播| 日本 av在线| 长腿黑丝高跟| 精品国产乱码久久久久久男人| 视频在线观看一区二区三区| 久久午夜亚洲精品久久| 99热6这里只有精品| 亚洲成a人片在线一区二区| 久久草成人影院| 天堂影院成人在线观看| 啦啦啦韩国在线观看视频| 一区二区三区国产精品乱码| 欧美精品啪啪一区二区三区| 亚洲熟女毛片儿| 久久久久久九九精品二区国产 | 亚洲全国av大片| 亚洲国产精品999在线| 亚洲国产精品999在线| 色综合亚洲欧美另类图片| 啦啦啦 在线观看视频| 午夜亚洲福利在线播放| 欧美成人一区二区免费高清观看 | 久久久久亚洲av毛片大全| 精品国产一区二区三区四区第35| 亚洲成人国产一区在线观看| 亚洲av成人av| 免费看美女性在线毛片视频| 18美女黄网站色大片免费观看| 成年人黄色毛片网站| 久久这里只有精品19| 99热这里只有精品一区 | 国产成人系列免费观看| 欧美黄色片欧美黄色片| 欧美激情高清一区二区三区| 男人的好看免费观看在线视频 | 久久久久久亚洲精品国产蜜桃av| 色尼玛亚洲综合影院| 高潮久久久久久久久久久不卡| 99国产精品一区二区蜜桃av| 俄罗斯特黄特色一大片| 久久久久久久精品吃奶| av福利片在线| 亚洲avbb在线观看| 一区二区三区国产精品乱码| 黑人巨大精品欧美一区二区mp4| 精品国产超薄肉色丝袜足j| 99久久久亚洲精品蜜臀av| 日韩成人在线观看一区二区三区| 免费高清视频大片| 欧美日韩乱码在线| 久久九九热精品免费| 成年免费大片在线观看| 欧美久久黑人一区二区| 精品国产国语对白av| 亚洲专区国产一区二区| 男人舔奶头视频| 国产欧美日韩一区二区三| 亚洲av电影在线进入| 一边摸一边抽搐一进一小说| 精品无人区乱码1区二区| 老司机福利观看| 丁香六月欧美| 少妇熟女aⅴ在线视频| 熟女电影av网| 精品久久久久久,| 日本精品一区二区三区蜜桃| 一夜夜www| 久久午夜亚洲精品久久| 婷婷丁香在线五月| 久久热在线av| 又黄又爽又免费观看的视频| 日本免费一区二区三区高清不卡| 村上凉子中文字幕在线| 国产精品,欧美在线| 叶爱在线成人免费视频播放| 嫁个100分男人电影在线观看| 国产精品亚洲av一区麻豆| 久久人妻av系列| 老司机深夜福利视频在线观看| 老司机靠b影院| av欧美777| 成人免费观看视频高清| 亚洲五月天丁香| 最新在线观看一区二区三区| 淫妇啪啪啪对白视频| 熟妇人妻久久中文字幕3abv| 亚洲电影在线观看av| 日韩精品免费视频一区二区三区| 亚洲中文av在线| 精品久久久久久久末码| 亚洲一区高清亚洲精品| 国产aⅴ精品一区二区三区波| 美国免费a级毛片| 12—13女人毛片做爰片一| 久久精品国产亚洲av香蕉五月| 成在线人永久免费视频| 久久精品成人免费网站| 非洲黑人性xxxx精品又粗又长| 欧美久久黑人一区二区| www日本在线高清视频| 99久久久亚洲精品蜜臀av| 亚洲片人在线观看| 哪里可以看免费的av片| 男女视频在线观看网站免费 | 性欧美人与动物交配| 精品国内亚洲2022精品成人| 白带黄色成豆腐渣| 午夜视频精品福利| 免费av毛片视频| 久久久久久久精品吃奶| 精品熟女少妇八av免费久了| 亚洲成国产人片在线观看| 窝窝影院91人妻| 日本成人三级电影网站| 最好的美女福利视频网| 在线免费观看的www视频| 久久久久久久精品吃奶| 桃色一区二区三区在线观看| 国产精品永久免费网站| 老司机深夜福利视频在线观看| 久久欧美精品欧美久久欧美| 亚洲男人天堂网一区| 久久精品91无色码中文字幕| 国产成人欧美在线观看| 看片在线看免费视频| 一区二区三区激情视频| 成人三级黄色视频| 国产三级黄色录像| 这个男人来自地球电影免费观看| 欧美中文日本在线观看视频| 国产激情偷乱视频一区二区| 日韩中文字幕欧美一区二区| 草草在线视频免费看| 51午夜福利影视在线观看| 桃色一区二区三区在线观看| 丁香六月欧美| 不卡一级毛片| 丰满的人妻完整版| 欧美成人性av电影在线观看| aaaaa片日本免费| 丁香六月欧美| 欧美成人午夜精品| 免费av毛片视频| 最近最新免费中文字幕在线| 中出人妻视频一区二区| 亚洲av成人一区二区三| 日韩免费av在线播放| 亚洲精品美女久久久久99蜜臀| 亚洲国产精品成人综合色| www国产在线视频色| 老司机深夜福利视频在线观看| 亚洲精品在线观看二区| 日韩三级视频一区二区三区| 国内精品久久久久久久电影| 黄色毛片三级朝国网站| 久9热在线精品视频| 人妻久久中文字幕网| 欧美激情久久久久久爽电影| 国产又爽黄色视频| 日本免费a在线| 国产成人欧美在线观看| 香蕉久久夜色| 女人高潮潮喷娇喘18禁视频| 国产午夜精品久久久久久| 欧美人与性动交α欧美精品济南到| 久久人妻av系列| 国产亚洲av高清不卡| 精品乱码久久久久久99久播| 最近最新免费中文字幕在线| 久久伊人香网站| 不卡av一区二区三区| 午夜福利18| 午夜亚洲福利在线播放| 亚洲第一欧美日韩一区二区三区| 成人永久免费在线观看视频| 2021天堂中文幕一二区在线观 | 成人精品一区二区免费| 老熟妇仑乱视频hdxx| 岛国视频午夜一区免费看| 一本久久中文字幕| xxx96com| 夜夜看夜夜爽夜夜摸| 欧美黑人欧美精品刺激| 1024视频免费在线观看| 可以免费在线观看a视频的电影网站| 亚洲专区字幕在线| 亚洲第一av免费看| 91av网站免费观看| 国产成人欧美在线观看| 老司机深夜福利视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 极品教师在线免费播放| 久久精品国产99精品国产亚洲性色| 中文字幕精品免费在线观看视频| 日本五十路高清| 欧美日韩亚洲综合一区二区三区_| 欧美黄色淫秽网站| 老司机深夜福利视频在线观看| 97人妻精品一区二区三区麻豆 | 久久久久久亚洲精品国产蜜桃av| av电影中文网址| 精品久久久久久,| 亚洲七黄色美女视频| 校园春色视频在线观看| 少妇 在线观看| 香蕉av资源在线| 制服诱惑二区| 一级毛片女人18水好多| 少妇粗大呻吟视频| 女性生殖器流出的白浆| 亚洲人成伊人成综合网2020| 国产精品亚洲美女久久久| 成人三级黄色视频| 亚洲黑人精品在线| 黄色丝袜av网址大全| 一边摸一边做爽爽视频免费| 午夜a级毛片| av超薄肉色丝袜交足视频| 亚洲天堂国产精品一区在线| av免费在线观看网站| 免费电影在线观看免费观看| 欧美成狂野欧美在线观看| 国产激情欧美一区二区| 午夜福利18| av视频在线观看入口| 人妻久久中文字幕网| 精品少妇一区二区三区视频日本电影| 国产精品免费一区二区三区在线| 国产色视频综合| 99久久99久久久精品蜜桃| 美女大奶头视频| 久久久久国内视频| 久久久久久久久免费视频了| 久久婷婷成人综合色麻豆| 久久人妻福利社区极品人妻图片| 国产v大片淫在线免费观看| 岛国在线观看网站| 色综合亚洲欧美另类图片| 午夜精品在线福利| 国产aⅴ精品一区二区三区波| 久久久久久人人人人人| 欧美日韩亚洲综合一区二区三区_| 精品欧美一区二区三区在线| 亚洲五月色婷婷综合| 哪里可以看免费的av片| av片东京热男人的天堂| 亚洲一区中文字幕在线| 他把我摸到了高潮在线观看| 真人一进一出gif抽搐免费| 黑人操中国人逼视频| 国产一区在线观看成人免费| 99riav亚洲国产免费| 亚洲人成网站高清观看| 日本免费一区二区三区高清不卡| 91av网站免费观看| 午夜久久久久精精品| 欧美一区二区精品小视频在线| 少妇裸体淫交视频免费看高清 | 91国产中文字幕| 精品国内亚洲2022精品成人| 色在线成人网| 中亚洲国语对白在线视频| 久久青草综合色| 村上凉子中文字幕在线| 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 亚洲精品在线观看二区| 免费搜索国产男女视频| 日本一本二区三区精品| 嫩草影视91久久| 亚洲aⅴ乱码一区二区在线播放 | 夜夜躁狠狠躁天天躁| 午夜福利高清视频| 搡老妇女老女人老熟妇| 日本一本二区三区精品| 日本五十路高清| 久久精品91无色码中文字幕| 亚洲 欧美一区二区三区| 亚洲国产精品sss在线观看| 18禁裸乳无遮挡免费网站照片 | 日本五十路高清| 午夜福利在线观看吧| 免费观看精品视频网站| 波多野结衣av一区二区av| 精品久久久久久久末码| 色综合婷婷激情| 男女做爰动态图高潮gif福利片| 一级作爱视频免费观看| 天天一区二区日本电影三级| 亚洲男人天堂网一区| www国产在线视频色| 亚洲电影在线观看av| 久久亚洲真实| 一级毛片女人18水好多| 日韩成人在线观看一区二区三区| 日本 欧美在线| 精品久久久久久久人妻蜜臀av| av在线播放免费不卡| 亚洲成av人片免费观看| 色婷婷久久久亚洲欧美| 美女高潮喷水抽搐中文字幕| 最新在线观看一区二区三区| 国产亚洲精品久久久久久毛片| 亚洲av日韩精品久久久久久密| 法律面前人人平等表现在哪些方面| 久久久久久人人人人人| 亚洲精品中文字幕一二三四区| 亚洲在线自拍视频| 成人三级黄色视频| 真人一进一出gif抽搐免费| 国产精品亚洲美女久久久| 精品国产美女av久久久久小说| 一级作爱视频免费观看| 欧美性长视频在线观看| 亚洲av成人av| 久久久久国产一级毛片高清牌| 老司机靠b影院| 日本a在线网址| 欧美久久黑人一区二区| 亚洲熟女毛片儿| 精品人妻1区二区| 久久狼人影院| 美女高潮到喷水免费观看| 国产精品av久久久久免费| 长腿黑丝高跟| 91av网站免费观看| 久久精品成人免费网站| 黄片大片在线免费观看| 亚洲午夜理论影院| 国产精品香港三级国产av潘金莲| 麻豆成人午夜福利视频| 成人国产综合亚洲| 一个人免费在线观看的高清视频| 午夜成年电影在线免费观看| 婷婷精品国产亚洲av在线| 十八禁人妻一区二区| 国产精品亚洲美女久久久| 亚洲精品美女久久av网站| 国产片内射在线| 亚洲自拍偷在线| 麻豆av在线久日| 一本综合久久免费| 男女床上黄色一级片免费看| www国产在线视频色| 自线自在国产av| 色精品久久人妻99蜜桃| 国产亚洲精品av在线| 国产一卡二卡三卡精品| 久久久久国产一级毛片高清牌| 每晚都被弄得嗷嗷叫到高潮| 一边摸一边抽搐一进一小说| 少妇熟女aⅴ在线视频| 亚洲精品粉嫩美女一区| 黄色丝袜av网址大全| 男女午夜视频在线观看| 精品欧美国产一区二区三| 曰老女人黄片| 欧美性猛交╳xxx乱大交人| 久久青草综合色| 在线永久观看黄色视频| 在线观看66精品国产| 亚洲av成人av| 亚洲一区高清亚洲精品| 亚洲电影在线观看av| 搡老妇女老女人老熟妇| 一级毛片精品| 国产精品久久久久久精品电影 | 国产精品国产高清国产av| 欧美黑人欧美精品刺激| 母亲3免费完整高清在线观看| 亚洲av中文字字幕乱码综合 | www.熟女人妻精品国产| 美女大奶头视频| 午夜激情福利司机影院| 丝袜在线中文字幕| 色精品久久人妻99蜜桃| 99国产精品一区二区三区| 露出奶头的视频| 一级毛片精品| 男女床上黄色一级片免费看| 国产精品 欧美亚洲| 日韩成人在线观看一区二区三区| bbb黄色大片| 在线观看www视频免费| 免费搜索国产男女视频| 久久久久免费精品人妻一区二区 | 三级毛片av免费| 久久香蕉精品热| 色播亚洲综合网| 不卡av一区二区三区| 91成年电影在线观看| 50天的宝宝边吃奶边哭怎么回事| 久久精品国产亚洲av香蕉五月| 老司机午夜福利在线观看视频| 好男人电影高清在线观看| 欧美色视频一区免费| 久久香蕉精品热| a级毛片在线看网站| 日韩国内少妇激情av| 欧美性猛交╳xxx乱大交人| 国产激情偷乱视频一区二区| 亚洲久久久国产精品| 国产片内射在线| 国产蜜桃级精品一区二区三区| 成人三级做爰电影| 2021天堂中文幕一二区在线观 | 欧美+亚洲+日韩+国产| 欧美日韩福利视频一区二区| 亚洲中文字幕日韩| 欧美成人一区二区免费高清观看 | 女警被强在线播放| 亚洲一区二区三区色噜噜| 亚洲精品久久国产高清桃花| 曰老女人黄片| 满18在线观看网站| 亚洲一区二区三区不卡视频| 亚洲狠狠婷婷综合久久图片| 免费一级毛片在线播放高清视频| 在线免费观看的www视频| 中文在线观看免费www的网站 | 一进一出好大好爽视频| 久久精品国产99精品国产亚洲性色| 精品人妻1区二区| x7x7x7水蜜桃| 伊人久久大香线蕉亚洲五| 久久久国产成人免费| 国产成人欧美| 国产成人影院久久av| 少妇 在线观看| 中国美女看黄片| 精品少妇一区二区三区视频日本电影| 国产精品久久久久久人妻精品电影| 国产精品国产高清国产av| 狠狠狠狠99中文字幕| 99久久99久久久精品蜜桃| 免费高清在线观看日韩| 精品久久久久久久人妻蜜臀av| 亚洲中文av在线| 久久国产亚洲av麻豆专区| 露出奶头的视频| 亚洲午夜理论影院| 亚洲九九香蕉| 中文字幕久久专区| 久久婷婷人人爽人人干人人爱| 色尼玛亚洲综合影院| 色综合亚洲欧美另类图片| 国产精品 欧美亚洲| 黄色女人牲交| 久久人妻av系列| 99热只有精品国产| 欧美一级a爱片免费观看看 | 国产精品日韩av在线免费观看| 精品一区二区三区av网在线观看| 中文字幕人妻丝袜一区二区| 淫妇啪啪啪对白视频| 亚洲av美国av| 精品国产乱子伦一区二区三区| 波多野结衣高清作品| 男女那种视频在线观看| 久久久久久久久久黄片| 黄片播放在线免费| 长腿黑丝高跟| 真人做人爱边吃奶动态| 国产精品精品国产色婷婷| 国产精品野战在线观看| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| or卡值多少钱| 欧美乱码精品一区二区三区| 国产黄色小视频在线观看| 岛国在线观看网站| 亚洲黑人精品在线| 国产精品一区二区精品视频观看| 黄频高清免费视频| 日本熟妇午夜| 人成视频在线观看免费观看| www日本在线高清视频| 两个人视频免费观看高清| 色老头精品视频在线观看| 亚洲黑人精品在线| 婷婷亚洲欧美| 中亚洲国语对白在线视频| 在线观看免费视频日本深夜| 国产成人影院久久av| 亚洲精品在线美女| 午夜精品久久久久久毛片777| 日韩免费av在线播放| 日韩一卡2卡3卡4卡2021年| 丁香欧美五月| 精品久久久久久成人av| 一进一出好大好爽视频| 黄片播放在线免费| 国产三级黄色录像| 国产亚洲精品一区二区www| 精品免费久久久久久久清纯| 成人国产综合亚洲| 99riav亚洲国产免费| 国产高清视频在线播放一区| 女警被强在线播放| 国产三级在线视频| 欧美成人免费av一区二区三区| 午夜福利一区二区在线看| 日本一本二区三区精品| 变态另类丝袜制服| 99久久99久久久精品蜜桃| 最近最新中文字幕大全免费视频| 国产精品免费视频内射| 成年人黄色毛片网站| 久久久久久人人人人人| 97超级碰碰碰精品色视频在线观看| 巨乳人妻的诱惑在线观看| 欧美中文综合在线视频| 宅男免费午夜| 窝窝影院91人妻| 国内毛片毛片毛片毛片毛片| 日韩精品中文字幕看吧| 视频在线观看一区二区三区| 身体一侧抽搐| 美女 人体艺术 gogo| 亚洲国产毛片av蜜桃av| 天堂影院成人在线观看| 哪里可以看免费的av片| 中文资源天堂在线| 免费搜索国产男女视频| 成人特级黄色片久久久久久久| 国产麻豆成人av免费视频| 免费看a级黄色片| 国产v大片淫在线免费观看| 午夜福利一区二区在线看| 怎么达到女性高潮| 听说在线观看完整版免费高清| 成人国产综合亚洲| 国产亚洲av嫩草精品影院|