• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rubidium-induced phase transitions among metallic,band-insulating,Mott-insulating phases in 1T-TaS2

    2023-11-02 08:12:30ZhengguoWang王政國(guó)WeiliangYao姚偉良YudiWang王宇迪ZimingXin信子鳴TingtingHan韓婷婷LeiChen陳磊YiOu歐儀YuZhu朱玉CongCai蔡淙YuanLi李源andYanZhang張焱
    Chinese Physics B 2023年10期
    關(guān)鍵詞:陳磊

    Zhengguo Wang(王政國(guó)), Weiliang Yao(姚偉良), Yudi Wang(王宇迪), Ziming Xin(信子鳴),Tingting Han(韓婷婷), Lei Chen(陳磊), Yi Ou(歐儀), Yu Zhu(朱玉),Cong Cai(蔡淙), Yuan Li(李源), and Yan Zhang(張焱)

    International Center for Quantum Materials,School of Physics,Peking University,Beijing 100871,China

    Keywords: angle-resolved photoemission spectroscopy,metal-insulator transition,transition metal dichalcogenides

    1.Introduction

    Interactions among different degrees of freedom compete with each other in materials,resulting in an emergence of electronic phases with distinctive electronic properties.[1-6]In order to manipulate these electron phases in functional devices or to understand their underlying physics, being able to tune the interactions in materials and realize phase transitions using non-thermal experimental methods is important and becomes one of the central issues of condensed matter physics.Pressurizing and carrier doping are two commonly used methods that drive phase transitions.Pressurizing normally modulates the itineracy of electrons,[1,2,6]while carrier doping shifts the chemical potential of materials and modulates the screening of Coulomb interactions.[1-4]

    The 1T-TaS2is a two-dimensional (2D) transition metal dichalcogenide that shows complex and intriguing phasetransition behaviors.[6-11]It is metallic at high temperature.Upon cooling, it undergoes successive phase transitions and enters an insulating phase with apR13.9°commensurate charge-density-wave (C-CDW) order.In the early studies, it was proposed that the low temperature insulating phase(LTIP)is a Mott insulator.[6-10]The electronic structure reconstructs in the C-CDW state forming a single half-filled band at the Fermi energy(EF).The effective in-plane hopping of electrons (t‖) is strongly suppressed due to the large unit cell of the CDW order, which allows the Mott-insulator transition to arise in the presence of a moderate on-site Coulomb interaction(U).Recently,the Mott scenario is seriously challenged by the observation of interlayer dimerization in 1TTaS2.[11-17]Considering the presence of a moderate inter-layer hopping(t⊥),dimerization of two nearest TaS2layers occurs.The unit cell consists of two electrons, suggesting that the low-energy band is full-filled and the LTIP is a band insulator.While the Mott insulating phase may not be found in bulk 1TTaS2at low temperature, a high temperature insulating phase(HTIP)was discovered recently in a small temperature region close to the C-CDW transition.[17]It was found that the interlayer dimerization vanishes in the HTIP, which makes the HTIP a promising candidate for realizing a Mott localization in 1T-TaS2.

    Different degrees of freedom compete with each other in 1T-TaS2,making it an ideal system to search for phase transitions that are manipulated by non-thermal experimental methods.It was found that the insulating property of this system is unstable against various perturbations.Metal-insulator transitions (MIT) can be induced by laser pulse, current pulse,strain,gating,local electric field,pressure,chemical substitution,etc.[6,15,18-24]In this work,we succeed in driving a MIT in 1T-TaS2via rubidium surface deposition.Utilizing angleresolved photoemission spectroscopy(ARPES),we found that the rubidium-induced MIT occurs in two different ways.In the LTIP at 205 K, the rubidium deposition dopes electrons into the conduction band and drives a normal MIT via bandfilling,while in the HTIP at 225 K,when doping with a small amount of rubidium, the insulating gap collapses rapidly and meanwhile the spectral weight transfers from the high binding energy toEF, manifesting a bandwidth-controlled Mott transition.Our observation of the two distinct MITs not only confirms the existence of both Mottness and interlayer dimerization in 1T-TaS2from a carrier-doping perspective, reflecting a close competition amongt‖,t⊥, andU, but also highlights the rubidium deposition as an effective method to tune the phase transitions in 1T-TaS2.The high sensitivity of 1TTaS2to temperature and rubidium deposition can be used in searching for exotic phases and also help to design functional phase-changing devices.

    2.Materials and methods

    High quality single crystals of 1T-TaS2were synthesized using chemical vapor transport method.After mixing the appropriate ratio of Ta powder and S pieces(2%excess)well,the compound was sealed in a quartz tube with ICl3as the transport agent.The quartz tube was put in a two-zone furnace with thermal gradient between 750°C-850°C for 2 weeks,and then quenched in water.ARPES measurements were performed at Peking University using a DA30L analyzer and a helium discharging lamp.The photon energy was 21.2 eV.The overall energy resolution was~12 meV and the angular resolution was~0.3°.The crystals were cleavedin-situand measured in vacuum with a base pressure better than 6×10-11mbar.To measure the metallic phase of 1T-TaS2,the sample was cooled down directly from room temperature to 240 K.To measure the LTIP and HTIP,the sample was first cooled down to 80 K rapidly (~20 K per minute), and then heated up slowly (~2 K per minute) to 205 K and 225 K respectively.[17]The rubidium deposition was conductedinsituusing a rubidium dispenser.The deposition process repeated several times with a 5.6 A working current.The doping level of each doping step was represented using the total deposition time.For each doping level,the data collection duration was set to be around 10-20 min to avoid the desorption of rubidium adatoms from the sample surface at high temperature.

    3.Results and discussion

    While 1T-TaS2has been well studied at both the room temperature and the liquid-helium temperature, we focus on an intermediate temperature region near the C-CDW transition where three different phases have been identified.[17]Figure 1 shows the low-energy band structure of 1T-TaS2taken at 205 K, 225 K and 240 K.At 205 K, the system is in the LTIP.The low energy electronic structure is characterized by a flat band,whose band dispersion is relatively flat along the inplane (t‖) direction.However, according to previous photonenergy dependent ARPES studies,[13,17,23,25]the out-of-plane(kz) band dispersion of the flat band is moderate.ARPES is surface sensitive, and thus sees the surface projection of the bulk electronic structure.Band dispersions from differentkzproject into one cut,resulting in a significantkz-broadening of the APRES spectra[Fig.1(a)].When the sample temperature is increased to 225 K, the system undergoes an insulator-toinsulator transition(~217 K)and enters the HTIP.[17]Thekzdispersion of the flat band is strongly suppressed as characterized by the vanishing of thekz-broadening effect [Fig.1(b)].Such a band reconstruction indicates a suppression oft⊥and was used as an evidence to support the presence of Mott localization in the HTIP.[17]When the sample temperature is increased to 240 K above the C-CDW transition(~233 K),the insulating gap is closed and the system is in the metallic phase[Fig.1(c)].

    Fig.1.Characterization of the different electronic phases of 1T-TaS2.(a)Raw(left panel)and second derivative(right panel)images of the energymomentum cut taken along the Brillouin center(Γ)-Brillouin boundary(M)direction at 205 K and the corresponding schematic illustration of the density of states (DOS) of the flat band.(b) and (c) are similar to (a) but taken at 225 K and 240 K, respectively.Inset panel illustrates the Fermi surface of 1T-TaS2 (blue line)and the location of the energy-momentum cut(red line).

    Figure 2 shows how different phases respond to the rubidium deposition.Note that,the influence of alkali-metal deposition has been studied previously in 1T-TaS2.[26-29]It was reported that the alkali-metal intercalation plays a dominating role and drives various CDW transitions.Here,the total rubidium coverage is estimated to be below 0.1 monolayer (ML),which is much lower in comparison to the large amount of alkali-metal used in previous studies.[26-29]Furthermore, the alkali-metal intercalation in 1T-TaS2leads to an opening of a huge gap(~500 meV)atEF.[27]Such signature of intercalation is not observed in the entire doping range in our experiments.Therefore, the alkali-metal intercalation is less relevant here.Instead, the alkali-metal adatoms could be viewed as carrier donors that donate electrons to the sample surface.In Figs.2(a)-2(c),we observe a clear rubidium-induced doping effect in the metallic state as characterized by a shifting of Fermi crossings(kFs).The Fermi surface of 1T-TaS2consists of six ellipse-like electron pockets at theMpoints.If we assume that the ellipse-like electron pockets expand uniformly with rubidium doping and calculate the Fermi surface volume according to the measuredkFs along theΓ-Mdirection,we estimate that the total doping level is~0.08 electrons per unit cell for a~90 s deposition time, which corresponds to a~0.08 ML total coverage of rubidium(see supplementary material for details).

    For a normal band insulator, the doped electrons would fill into the bottom of the conduction band.As a result, the Fermi level would shift rapidly from the gap center to the conduction band bottom.This is what we observed in the LTIP[Figs.2(d)-2(f)].With the rubidium deposition,the flat bands shift to higher binding energy, indicating a chemical potential shift, and the conduction band bottom emerges atEF.In contrast to the rigid-band shift behavior observed in the LTIP,the HTIP responds to the rubidium deposition in a completely different way.It is manifested in a rapid collapsing of the insulating gap[Figs.2(g)-2(i)].When doping with a small amount of rubidium,the flat band fades away and a new band emerges atEF.Note that, aside from the flat band, all other bands are almost doping independent,which suggests that the CDW gap is little affected by rubidium in this dilute doping range.

    To characterize the rubidium-induced gap collapsing observed in the HTIP, Fig.3 plots the detailed doping dependence of the energy distribution curves(EDCs)taken at thekFs of the flat band.The backgrounds in Fig.3(a)originate from the tail of a broad peak at high binding energy(~-0.35 eV)[Fig.2(e)].We then fit the background using a tail of a Gaussian function.After subtracting the backgrounds, we fit the spectra using two Gaussian peaks[Figs.3(a)and 3(b)].Such a two-peak fitting may not be the best fitting of the spectral line shape, but it provides a relatively accurate estimation of the peak positions and peak areas.Figures 3(c)and 3(d)show the fitting results.While the fitted peak positions are almost doping independent,the spectral weight transfer between the two peaks in a nearly one-to-one ratio.The fitting results clearly indicate that the insulating gap collapsing is manifested not in a band shift but in a spectral weight transfer between two separate bands.

    Fig.3.Characterization of the rubidium-induced MIT in the high temperature insulating phase(HTIP).(a)Doping dependence of the energy distribution curves(EDCs)intergraded at the kF of the flat band in the momentum region[-0.4,-0.3] °A-1.Dotted lines represent the backgrounds that are contributed from the bands at higher binding energy.Blue and red areas highlight the evolution of the spectral weight of the high energy band(HEB)and the low energy band(LEB),respectively.(b)Doping dependence of the background-subtracted EDCs.Blue and red Gaussian peaks represent the fitting results of the HEB and LEB,respectively.The fitted curve is illustrated using the red shaded line.(c)Peak positions and(d)normalized peak areas of LEB and HEB as a function of the deposition time.The error bars are estimated considering the fitting errors and experimental resolution.

    The two insulating phases respond to the rubidium deposition differently, indicating that the two insulating phases have different origins.For the LTIP, the system is well described as a band insulator.The insulating gap originates from a spontaneous symmetry breaking, the interlayer dimerization.[11-14]The insulating gap is stable against the rubidium deposition,suggesting that the interlayer dimerization is insensitive to carrier doping in this doping range.For the HTIP,the insulating gap is expected to originate from a Mott localization and the flat band could be attributed to the lower Hubbard band.To drive a Mott transition, there are normally two different ways, the filling-controlled Mott transition and the bandwidth-controlled Mott transition.[1-6]Here, the doping level is lower than 0.1 electrons per unit cell.In the fillingcontrolled scenario, such a low carrier doping cannot explain the complete vanishing of the lower Hubbard band.Moreover,it is expected that the Fermi level should shift to the band bottom of the upper Hubbard band where the filled electrons pile up.This also contradicts to our observation that the band positions are little affected by the rubidium deposition.Therefore, the MIT observed in the HTIP cannot be attributed to a filling-controlled Mott transition but is better described as a bandwidth-controlled Mott transition.

    In the bandwidth-controlled scenario, when the ratio betweenUandtdecreases to a certain level, the Mott insulating gap collapses and the spectral weight transfers from the lower Hubbard band to the in-gap metallic band that emerges atEF.This scenario not only explains the one-to-one spectral weight transfer observed here,but also explains the persistence of the band position of the flat band.Therefore, our observation suggests that the rubidium deposition drives a bandwidthcontrolled Mott transition in the HTIP.One scenario is that,in 1T-TaS2,Uis the Coulomb repulsion of two electrons in one star-of-David structure with 13 Ta atoms andtdescribes the hopping of electrons from one star-of-David structure to the other.Therefore, bothUandtare determined by the lattice deformation of the CDW order.[6]Theoretically, it has been proposed that the carrier doping could modulate the energy differences between different CDW phases and trigger a doping-induced CDW transition.[30]Such a CDW transition could reduce the lattice deformation of the star-of-David structure,which simultaneously reduces theU/tratio,resulting in a bandwidth-controlled Mott transition.Another scenario is that the alkali-metal adatoms could reduce the repulsive Coulomb interactions locally in one star-of-David structure due to the Coulomb attraction of the alkali-metal cation.[31]Such suppression ofUcould also drive a bandwidth-controlled Mott transition.To verify these possibilities, further experiments,such as high-resolution elastic and inelastic diffraction experiments,are required.

    The phase diagram of 1T-TaS2is summarized in Fig.4.

    Fig.4.Schematic depiction of the phase diagram of 1T-TaS2.Different phases are illustrated using different colors.Black arrows show the phase transitions driven by the modulation of interactions in different degrees of freedom.

    4.Conclusion and perspectives

    In summary,we show that the rubidium deposition drives two distinctive MITs at 205 K and 225 K in 1T-TaS2(Fig.4).Our results not only confirm that the LTIP is a normal band insulator,but also point out the existence of a Mott insulating phase at high temperature.This is consistent with the suppression oft⊥in the HTIP[17]and also the observation of Mottness in monolayer 1T-TaS2and 1T-TaSe2,[32-34]suggesting that the insulating property of 1T-TaS2originates from both the Mott localization and interlayer dimerization.By reducing thet⊥via temperature or reducing the layer thickness, a band-insulator-to-Mott-insulator transition occurs.Along the doping axis, the band gap or interlayer dimerization of the LTIP is robust against rubidium doping.The metallic state is achieved below 217 K by doping a band insulator.On contrary, the interlayer dimerization is absent above 217 K.A small amount of rubidium deposition leads to a collapse of the Mott gap.A metallic state is achieved at 225 K whose band structure resembles the metallic state above the C-CDW transition.Our results thus show that the metallic, band insulating and Mott insulating phases intersect in a small temperature and doping region in the phase diagram of 1T-TaS2(Fig.4).In this region,t‖,t⊥, andUmaintain a delicate balance in 1T-TaS2,making the electronic properties of 1T-TaS2very sensitive to various perturbations.Such a high sensitivity of 1T-TaS2to both temperature and rubidium deposition could be potentially used in constructing 2D functional phasechanging devices.[19-22,35-37]

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11888101, 91421107, and 11574004) and the National Key Research and Development Program of China (Grant Nos.2018YFA0305602 and 2016YFA0301003).

    猜你喜歡
    陳磊
    容易到摳腳的相對(duì)論
    容易到摳腳的相對(duì)論
    容易到摳腳的相對(duì)論
    容易到摳腳的相對(duì)論
    容易到摳腳的相對(duì)論
    孔子都做了些什么
    作者更正啟示
    陳磊
    楚漢之爭(zhēng)(七)
    楚 漢 之 爭(zhēng)(八)
    色播在线永久视频| 精品国产一区二区三区四区第35| 国产午夜精品久久久久久| 国产精品 国内视频| 18禁黄网站禁片午夜丰满| 精品久久久久久成人av| 亚洲欧美精品综合一区二区三区| 亚洲精品久久成人aⅴ小说| 久久人妻熟女aⅴ| 69精品国产乱码久久久| 50天的宝宝边吃奶边哭怎么回事| 成人av一区二区三区在线看| 日本精品一区二区三区蜜桃| 欧美色视频一区免费| 亚洲第一电影网av| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 久久精品国产亚洲av高清一级| bbb黄色大片| 国产日韩一区二区三区精品不卡| 曰老女人黄片| 亚洲片人在线观看| 制服丝袜大香蕉在线| 久9热在线精品视频| 亚洲国产精品合色在线| 亚洲第一av免费看| 久久亚洲真实| 制服人妻中文乱码| 日本黄色视频三级网站网址| 免费在线观看完整版高清| 国产伦人伦偷精品视频| 中文字幕色久视频| 亚洲专区字幕在线| 亚洲成人精品中文字幕电影| 日本a在线网址| 非洲黑人性xxxx精品又粗又长| xxx96com| 日韩免费av在线播放| 深夜精品福利| 人人妻人人澡人人看| 久久 成人 亚洲| 悠悠久久av| 国产欧美日韩精品亚洲av| 丝袜人妻中文字幕| 欧洲精品卡2卡3卡4卡5卡区| 国产精品1区2区在线观看.| 97人妻精品一区二区三区麻豆 | 中文字幕另类日韩欧美亚洲嫩草| 大码成人一级视频| 欧美精品啪啪一区二区三区| 久热这里只有精品99| 久久中文字幕人妻熟女| 成年女人毛片免费观看观看9| 一本综合久久免费| 巨乳人妻的诱惑在线观看| 免费观看人在逋| 国产精品亚洲av一区麻豆| 一本大道久久a久久精品| 久久久国产欧美日韩av| 免费搜索国产男女视频| 高清在线国产一区| 国产成人欧美| 丝袜美腿诱惑在线| 成人国语在线视频| 777久久人妻少妇嫩草av网站| 精品一品国产午夜福利视频| 18禁裸乳无遮挡免费网站照片 | 国产精品永久免费网站| 一二三四在线观看免费中文在| 久久婷婷人人爽人人干人人爱 | 国产精品综合久久久久久久免费 | 九色国产91popny在线| 午夜两性在线视频| 欧美激情极品国产一区二区三区| 99香蕉大伊视频| 窝窝影院91人妻| 大型黄色视频在线免费观看| 性色av乱码一区二区三区2| 少妇的丰满在线观看| www日本在线高清视频| 日本欧美视频一区| 嫁个100分男人电影在线观看| 久久热在线av| 欧美日韩黄片免| 久久精品影院6| 亚洲人成电影免费在线| 麻豆一二三区av精品| 97碰自拍视频| 欧美成人性av电影在线观看| 老司机深夜福利视频在线观看| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 啦啦啦韩国在线观看视频| 日韩免费av在线播放| 午夜福利免费观看在线| 性欧美人与动物交配| 欧美精品啪啪一区二区三区| 国产高清激情床上av| 丝袜人妻中文字幕| 免费在线观看日本一区| 国产亚洲精品第一综合不卡| 免费搜索国产男女视频| 脱女人内裤的视频| 欧美av亚洲av综合av国产av| 一边摸一边抽搐一进一小说| 久久影院123| 国产一区二区三区视频了| 国产一区二区三区综合在线观看| 欧美黄色淫秽网站| 精品不卡国产一区二区三区| 国产黄a三级三级三级人| 国产极品粉嫩免费观看在线| 欧美绝顶高潮抽搐喷水| 亚洲国产看品久久| 波多野结衣一区麻豆| 久久国产亚洲av麻豆专区| 亚洲av成人不卡在线观看播放网| 男女下面插进去视频免费观看| 色尼玛亚洲综合影院| 午夜两性在线视频| 久久人妻福利社区极品人妻图片| 校园春色视频在线观看| 国产一区二区三区视频了| 亚洲无线在线观看| 亚洲国产中文字幕在线视频| 国产一区二区三区视频了| 久久精品人人爽人人爽视色| 狂野欧美激情性xxxx| 老司机在亚洲福利影院| 美女高潮到喷水免费观看| 性少妇av在线| 国产精品免费视频内射| 天堂动漫精品| 国产成人欧美在线观看| 一级黄色大片毛片| 在线天堂中文资源库| 日本一区二区免费在线视频| 夜夜躁狠狠躁天天躁| 一级a爱视频在线免费观看| 纯流量卡能插随身wifi吗| 50天的宝宝边吃奶边哭怎么回事| 757午夜福利合集在线观看| 嫩草影视91久久| 国产一区二区三区在线臀色熟女| 国产精品美女特级片免费视频播放器 | 成在线人永久免费视频| 极品人妻少妇av视频| 搡老熟女国产l中国老女人| 亚洲伊人色综图| 午夜亚洲福利在线播放| 久久久久久亚洲精品国产蜜桃av| 熟妇人妻久久中文字幕3abv| av中文乱码字幕在线| 国产熟女午夜一区二区三区| x7x7x7水蜜桃| 啦啦啦观看免费观看视频高清 | 欧美在线一区亚洲| 国产精品九九99| 午夜福利18| 久久久久久大精品| 非洲黑人性xxxx精品又粗又长| 国产成人精品久久二区二区免费| 99久久久亚洲精品蜜臀av| 亚洲,欧美精品.| 免费人成视频x8x8入口观看| 欧美日韩一级在线毛片| 免费在线观看日本一区| 亚洲全国av大片| 天天添夜夜摸| 在线av久久热| 久久久久国产精品人妻aⅴ院| 亚洲片人在线观看| or卡值多少钱| 香蕉国产在线看| 看免费av毛片| 天天躁夜夜躁狠狠躁躁| 亚洲国产看品久久| 亚洲精品国产精品久久久不卡| 成人手机av| 亚洲第一电影网av| 国产成+人综合+亚洲专区| 婷婷精品国产亚洲av在线| 久久精品人人爽人人爽视色| av福利片在线| 精品国产乱子伦一区二区三区| 国产午夜福利久久久久久| 色综合亚洲欧美另类图片| 久久久久久久精品吃奶| 欧美一级毛片孕妇| av电影中文网址| 国产精品久久久久久亚洲av鲁大| 女生性感内裤真人,穿戴方法视频| 久9热在线精品视频| 久久青草综合色| 午夜福利高清视频| 国产一区二区在线av高清观看| 国产精品美女特级片免费视频播放器 | 人人妻人人澡欧美一区二区 | 好男人电影高清在线观看| 国产成人精品无人区| 亚洲欧美日韩高清在线视频| av在线播放免费不卡| 一区在线观看完整版| 欧美国产精品va在线观看不卡| 岛国视频午夜一区免费看| 在线av久久热| 国产一级毛片七仙女欲春2 | 亚洲无线在线观看| 美女 人体艺术 gogo| 久久久久久久久中文| 国产蜜桃级精品一区二区三区| 国产国语露脸激情在线看| 国产精品一区二区精品视频观看| 久久人妻福利社区极品人妻图片| 国产成人免费无遮挡视频| 国产不卡一卡二| 精品熟女少妇八av免费久了| 日韩中文字幕欧美一区二区| 欧美在线一区亚洲| 美国免费a级毛片| 精品乱码久久久久久99久播| 国产精品久久电影中文字幕| 亚洲 国产 在线| 久久精品91无色码中文字幕| 亚洲va日本ⅴa欧美va伊人久久| 男女床上黄色一级片免费看| www.熟女人妻精品国产| 国产精品久久久av美女十八| 久久久精品国产亚洲av高清涩受| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| 精品卡一卡二卡四卡免费| 久久天堂一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 女人被躁到高潮嗷嗷叫费观| 一区二区三区精品91| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜一区二区| 日韩欧美在线二视频| 男人舔女人的私密视频| 国产精华一区二区三区| 久久精品亚洲熟妇少妇任你| 日韩视频一区二区在线观看| 成人18禁高潮啪啪吃奶动态图| 午夜影院日韩av| 午夜精品在线福利| 亚洲欧美日韩另类电影网站| 亚洲国产精品成人综合色| 波多野结衣巨乳人妻| 少妇被粗大的猛进出69影院| 女人被狂操c到高潮| 12—13女人毛片做爰片一| 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 精品乱码久久久久久99久播| 高清在线国产一区| 精品一品国产午夜福利视频| 精品午夜福利视频在线观看一区| 日韩欧美国产一区二区入口| 可以在线观看的亚洲视频| 又紧又爽又黄一区二区| 久久亚洲真实| 亚洲国产精品合色在线| 免费女性裸体啪啪无遮挡网站| 高潮久久久久久久久久久不卡| 中文字幕人成人乱码亚洲影| 成人国语在线视频| 女人高潮潮喷娇喘18禁视频| 国产国语露脸激情在线看| 中文亚洲av片在线观看爽| 免费女性裸体啪啪无遮挡网站| 久久 成人 亚洲| 黄片小视频在线播放| 女人精品久久久久毛片| 亚洲精品在线观看二区| 午夜老司机福利片| 亚洲电影在线观看av| 欧美在线一区亚洲| 国产成+人综合+亚洲专区| 国产精品九九99| 国产日韩一区二区三区精品不卡| 免费av毛片视频| 女人被狂操c到高潮| 999久久久国产精品视频| 亚洲精品久久国产高清桃花| 免费无遮挡裸体视频| 精品国产乱码久久久久久男人| 九色国产91popny在线| av欧美777| 97超级碰碰碰精品色视频在线观看| 精品一区二区三区视频在线观看免费| av网站免费在线观看视频| 91九色精品人成在线观看| 黄色视频不卡| 中文字幕久久专区| 免费高清视频大片| 黑人欧美特级aaaaaa片| 欧美黄色片欧美黄色片| 久久国产精品人妻蜜桃| 午夜免费观看网址| 国产精品永久免费网站| 男女做爰动态图高潮gif福利片 | 日韩欧美国产一区二区入口| 精品欧美国产一区二区三| 国产精品99久久99久久久不卡| 欧美日韩乱码在线| 一本综合久久免费| 精品国产乱码久久久久久男人| 91老司机精品| 国产精品免费一区二区三区在线| 色综合欧美亚洲国产小说| 涩涩av久久男人的天堂| 两人在一起打扑克的视频| 纯流量卡能插随身wifi吗| 久久九九热精品免费| 国产精品一区二区精品视频观看| 亚洲国产欧美一区二区综合| 免费无遮挡裸体视频| 18禁美女被吸乳视频| 亚洲国产欧美网| 在线天堂中文资源库| 黑人欧美特级aaaaaa片| 男女床上黄色一级片免费看| 久久久久久久久免费视频了| 久久精品国产清高在天天线| 国产av一区在线观看免费| 久久国产精品男人的天堂亚洲| 99香蕉大伊视频| 999久久久精品免费观看国产| 99riav亚洲国产免费| 成年版毛片免费区| 亚洲黑人精品在线| 老熟妇乱子伦视频在线观看| 制服丝袜大香蕉在线| 搡老熟女国产l中国老女人| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 久久久久久国产a免费观看| 淫妇啪啪啪对白视频| 国产一卡二卡三卡精品| 黑人欧美特级aaaaaa片| 国产精品一区二区三区四区久久 | 亚洲午夜理论影院| 大陆偷拍与自拍| 精品高清国产在线一区| videosex国产| 搡老熟女国产l中国老女人| 免费高清在线观看日韩| 香蕉久久夜色| 亚洲欧美一区二区三区黑人| 欧美 亚洲 国产 日韩一| 少妇裸体淫交视频免费看高清 | 亚洲一区高清亚洲精品| 97人妻精品一区二区三区麻豆 | 黄片播放在线免费| 亚洲久久久国产精品| 亚洲情色 制服丝袜| 亚洲激情在线av| 正在播放国产对白刺激| 88av欧美| 一级毛片精品| 淫秽高清视频在线观看| 在线观看舔阴道视频| 午夜福利免费观看在线| 亚洲av成人一区二区三| 午夜亚洲福利在线播放| 激情在线观看视频在线高清| 老鸭窝网址在线观看| 欧美不卡视频在线免费观看 | 久久人妻熟女aⅴ| 亚洲自偷自拍图片 自拍| 91av网站免费观看| 又黄又爽又免费观看的视频| 色精品久久人妻99蜜桃| 日本黄色视频三级网站网址| 午夜精品久久久久久毛片777| 一区二区三区高清视频在线| 精品一区二区三区四区五区乱码| 欧美日本亚洲视频在线播放| 成人三级做爰电影| 男女做爰动态图高潮gif福利片 | 日韩欧美一区视频在线观看| 最新美女视频免费是黄的| 国产一卡二卡三卡精品| 看免费av毛片| 免费高清在线观看日韩| 久久精品亚洲熟妇少妇任你| a级毛片在线看网站| 97人妻天天添夜夜摸| 最近最新免费中文字幕在线| 亚洲人成网站在线播放欧美日韩| 久久九九热精品免费| 丝袜在线中文字幕| 非洲黑人性xxxx精品又粗又长| 人人妻,人人澡人人爽秒播| 女人精品久久久久毛片| 午夜福利欧美成人| 亚洲天堂国产精品一区在线| 天堂√8在线中文| 国产精品野战在线观看| 叶爱在线成人免费视频播放| 在线十欧美十亚洲十日本专区| 国产高清有码在线观看视频 | 国产高清videossex| 国产91精品成人一区二区三区| 制服人妻中文乱码| 国产一区二区三区综合在线观看| 国产亚洲精品综合一区在线观看 | 视频区欧美日本亚洲| netflix在线观看网站| 免费观看人在逋| 色老头精品视频在线观看| 电影成人av| 又紧又爽又黄一区二区| 欧美人与性动交α欧美精品济南到| 午夜精品国产一区二区电影| 97超级碰碰碰精品色视频在线观看| 亚洲欧美日韩无卡精品| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产亚洲av香蕉五月| 国产片内射在线| 岛国视频午夜一区免费看| 99精品在免费线老司机午夜| 亚洲九九香蕉| 激情在线观看视频在线高清| 青草久久国产| 亚洲专区中文字幕在线| 亚洲免费av在线视频| 搡老岳熟女国产| √禁漫天堂资源中文www| 视频区欧美日本亚洲| 欧美人与性动交α欧美精品济南到| 色综合婷婷激情| 日韩免费av在线播放| 国产精品美女特级片免费视频播放器 | 中文字幕人成人乱码亚洲影| av网站免费在线观看视频| 美女国产高潮福利片在线看| 亚洲最大成人中文| 久久欧美精品欧美久久欧美| 亚洲黑人精品在线| 一进一出好大好爽视频| 国产一区二区三区在线臀色熟女| 可以在线观看的亚洲视频| 手机成人av网站| 亚洲成人国产一区在线观看| 亚洲九九香蕉| 亚洲国产中文字幕在线视频| 亚洲 国产 在线| 人成视频在线观看免费观看| 日韩大尺度精品在线看网址 | 天天一区二区日本电影三级 | 国产国语露脸激情在线看| 国产精品久久电影中文字幕| 亚洲欧美激情在线| 成年人黄色毛片网站| 欧美一区二区精品小视频在线| 久久久精品国产亚洲av高清涩受| 国产在线观看jvid| 日韩欧美在线二视频| 两个人免费观看高清视频| 国产人伦9x9x在线观看| 变态另类丝袜制服| 欧美日本视频| 黄色视频,在线免费观看| 欧美绝顶高潮抽搐喷水| 久久亚洲真实| 不卡一级毛片| 国产精品秋霞免费鲁丝片| 91成人精品电影| 色综合欧美亚洲国产小说| av视频免费观看在线观看| 久久影院123| 国产一区二区三区综合在线观看| 黑人操中国人逼视频| 黄频高清免费视频| 侵犯人妻中文字幕一二三四区| 给我免费播放毛片高清在线观看| 老熟妇仑乱视频hdxx| 亚洲免费av在线视频| 日韩精品免费视频一区二区三区| 最新美女视频免费是黄的| 国产欧美日韩精品亚洲av| 看黄色毛片网站| 欧美成人性av电影在线观看| 黑人巨大精品欧美一区二区mp4| 后天国语完整版免费观看| 国产精品综合久久久久久久免费 | 久久国产精品影院| 国产欧美日韩一区二区精品| 人人妻人人澡欧美一区二区 | 国产一卡二卡三卡精品| 一级毛片女人18水好多| 叶爱在线成人免费视频播放| 色老头精品视频在线观看| 18禁裸乳无遮挡免费网站照片 | 中文字幕人成人乱码亚洲影| 国产成人av激情在线播放| 91成年电影在线观看| 亚洲最大成人中文| 一级,二级,三级黄色视频| 久久久久久免费高清国产稀缺| 美女 人体艺术 gogo| 美女免费视频网站| 久久影院123| 国产精品爽爽va在线观看网站 | 欧美亚洲日本最大视频资源| 亚洲欧美激情综合另类| 亚洲片人在线观看| 一级毛片女人18水好多| 亚洲精品中文字幕一二三四区| 国产视频一区二区在线看| 香蕉丝袜av| 亚洲男人的天堂狠狠| 日本撒尿小便嘘嘘汇集6| 欧美人与性动交α欧美精品济南到| 丁香六月欧美| 欧美一区二区精品小视频在线| 老司机午夜十八禁免费视频| 日韩精品免费视频一区二区三区| 国产99久久九九免费精品| 免费观看人在逋| 黑人巨大精品欧美一区二区mp4| 无人区码免费观看不卡| 国产又色又爽无遮挡免费看| 午夜免费鲁丝| 美女高潮到喷水免费观看| 少妇熟女aⅴ在线视频| www.www免费av| 国产欧美日韩一区二区三区在线| 熟女少妇亚洲综合色aaa.| 国产精品二区激情视频| 美国免费a级毛片| 1024视频免费在线观看| 大型黄色视频在线免费观看| www国产在线视频色| 亚洲视频免费观看视频| 麻豆一二三区av精品| 大型av网站在线播放| 亚洲精品国产区一区二| www国产在线视频色| 亚洲久久久国产精品| 亚洲专区字幕在线| 国产精华一区二区三区| 最好的美女福利视频网| 高清在线国产一区| 女性生殖器流出的白浆| 女性被躁到高潮视频| 满18在线观看网站| 不卡一级毛片| 亚洲av电影不卡..在线观看| 久久久水蜜桃国产精品网| 国产精品国产高清国产av| 一区在线观看完整版| 搡老岳熟女国产| 午夜免费鲁丝| 免费人成视频x8x8入口观看| 一区二区三区高清视频在线| 人妻久久中文字幕网| 久久香蕉国产精品| 久久久久国产精品人妻aⅴ院| 欧美日韩福利视频一区二区| 国产精品香港三级国产av潘金莲| 国产激情欧美一区二区| av视频在线观看入口| 每晚都被弄得嗷嗷叫到高潮| 99久久国产精品久久久| 久久精品aⅴ一区二区三区四区| 亚洲 欧美一区二区三区| 满18在线观看网站| 亚洲 国产 在线| 中文字幕最新亚洲高清| 久久久久久大精品| 又紧又爽又黄一区二区| aaaaa片日本免费| 黄片小视频在线播放| 黄片播放在线免费| 国产伦人伦偷精品视频| 一二三四在线观看免费中文在| 日本撒尿小便嘘嘘汇集6| 免费在线观看完整版高清| 欧美乱色亚洲激情| 精品欧美国产一区二区三| 一级a爱片免费观看的视频| 我的亚洲天堂| 高清黄色对白视频在线免费看| 少妇粗大呻吟视频| 国产激情久久老熟女| 久久久久久久午夜电影| 亚洲精品一卡2卡三卡4卡5卡| 亚洲成a人片在线一区二区| 亚洲成av片中文字幕在线观看| 不卡av一区二区三区| 后天国语完整版免费观看| 久久亚洲精品不卡| 在线国产一区二区在线| 日韩高清综合在线| 村上凉子中文字幕在线| 黄色a级毛片大全视频| 欧美成人性av电影在线观看| 自线自在国产av| 伦理电影免费视频| 少妇裸体淫交视频免费看高清 | 亚洲avbb在线观看| 精品久久久久久久毛片微露脸| 精品国产超薄肉色丝袜足j| 国产麻豆69| 18禁国产床啪视频网站| 国产亚洲精品一区二区www| 久久九九热精品免费| 中文字幕人成人乱码亚洲影| 色综合婷婷激情| 午夜福利视频1000在线观看 | 夜夜躁狠狠躁天天躁| 69av精品久久久久久|