• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lower bound on the spread of valley splitting in Si/SiGe quantum wells induced by atomic rearrangement at the interface

    2023-11-02 08:12:08GangWang王剛ShanGuan管閃ZhiGangSong宋志剛andJunWeiLuo駱軍委
    Chinese Physics B 2023年10期
    關鍵詞:軍委王剛

    Gang Wang(王剛), Shan Guan(管閃), Zhi-Gang Song(宋志剛), and Jun-Wei Luo(駱軍委),?

    1State Key Laboratory of Superlattices and Microstructures,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,China

    2Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: quantum wells,valley splitting,alloy concentration fluctuation

    1.Introduction

    In the pursuit of universal fault-tolerant quantum computing, the realization of quantum error correction requires a substantial number of qubits that can be effectively controlled and coherently coupled.[1]Leveraging advanced semiconductor fabrication techniques capable of integrating billions of transistors on a single Si chip,[2]electron spins confined in Si quantum dots have emerged as a highly promising platform for quantum computing.[3]Notably, the weak intrinsic spin-orbit interaction and the presence of nuclear zero-spin isotopes contribute to a prolonged coherence time for the electron spin,effectively suppressing both spin relaxation[4,5]and dephasing.[6-8]Despite recent progress[9-16]has been made,Si spin qubits still face the challenge of valley degeneracy,which obstructs the isolation of individual two-level spin-1/2 states[9,10,14,17,18]and introduces a significant leakage channel,thereby impeding high fidelity.[5,19-22]However,the presence of discontinuous heterointerfaces, coupled with strong quantum confinement, can lift the low-lying two-fold valley degeneracy and establish an energy separation known as the valley splitting(EVS).This approach effectively addresses fidelity degradation in spin-only qubits in Si.Unfortunately,the measuredEVSin Si/SiGe quantum wells tends to be relatively narrow,typically around tens to hundreds ofμeV.[23-29]This narrow energy splitting exacerbates challenges related to rapid spin relaxation,[5,19,20]dephasing,[21,22]and errors in spin transport.[30]Moreover,the disorder in the SiGe alloy barrier introduces significant fluctuations in the valley splitting energy, ranging from nearly zero to thousands of μeV.[31-34]Consequently, this poses a significant challenge to the scalability of silicon qubits within the context of universal faulttolerant quantum computing.[34]

    Both extensive theoretical work[32,35-49]and experimental observations[24,27,28,34,50-55]have pointed out that theEVSdepends sensitively on the microscopic details near the interface.Particularly, a recent investigation[34]delves into the atomic-scale reconstruction of the Si/SiGe interface and reveals its three-dimensional(3D)morphology,highlighting the microscopic alloying concentration fluctuation along the confinement direction (i.e.,zaxis in Fig.1(a)) as the underlying cause of the substantial spread observed in theEVSmeasurements of various quantum dot devices.However,the in-plane randomness is inevitably ignored in their analysis since the concentration was obtained with its in-plane components averaged in advance,as illustrated in Fig.1(b).It is worth noting that by carefully controlling the epitaxial growth of Si/SiGe heterostructures, the one-dimensional concentration fluctuationδρGe(z) can be effectively minimized to a satisfactory extent, whereas the atomic random distribution within each SiGe barrier layerρGe(x,y) remains uncontrollable.Therefore, the effect of in-plane randomness onEVSis supposed to be more important than the out-of-plane one in terms of device preparation process.Nevertheless, the impact of this type of randomness has been largely disregarded in prior investigations,[35,37-40,43,56-60]partially due to the limitations of the adopted conventional theoretical methods.

    Fig.1.(a) The three-dimensional (3D) representation showcasing the landscape of a Si/Si0.7Ge0.3 QW.(b)Schematic diagram illustrating the process of performing in-plane averaging on the concentration fluctuations of Si and Ge atoms within the 3D landscape of Si/Si0.7Ge0.3 to derive the one-dimensional(1D)concentration profiles,ρGe(z).

    In this study, we employ the atomistic empirical pseudopotential computation method(EPM)to investigate the impact of alloy disorder on theEVSin Si/SiGe quantum well(QW).Surprisingly,we discover a remarkable and significant spread in theEVS, even in the absence of alloy concentration fluctuation along the quantum confinement direction in Si/SiGe QW.Notably,we find that the minimum extent of the spread inEVSis attributed to the stochastic distribution of Si and Ge atoms within the plane, independent of vertical alloy concentration fluctuations.Moreover, we elucidate the concept of in-plane random distribution of Si and Ge atoms as a consequence of changes in the interface step morphology,providing insights into the occurrence of fluctuation in theEVSinduced by in-plane randomness.Our results thus offer valuable guidance for enhancing the performance of Si-based spin qubits through interface engineering, highlighting the significance of addressing in-plane randomness for achieving improved qubit performance.

    2.Atomistic computation method

    We calculate the electronic structures of Si/SiGe QWs by directly diagonalizing the band Hamiltonian,which is described by its potential,V(r).This potential encompasses spin-orbit-coupled and nonlocal empirical pseudopotentials.For the system’s pseudopotential, we employ a superposition of screened pseudopotentialsvα(r) of the constituent atom,[61,62]

    To emulate the epitaxy growth of a Si/SiGe QW on a Si0.7Ge0.3buffer layer, where the Si QW is subject to biaxial tensile strain,we initially set the in-plane lattice constant of the supercell to the lattice constant of bulk Si0.7Ge0.3,obtained by Vegard’s law.Subsequently, we determine the optimized lattice constant in the vertical direction and atomic equilibrium positions by minimizing the strain energy of the entire supercell through the use of the atomistic valence force field(VFF)method.[71,72]

    3.Results and discussions

    3.1.Considerable EVS fluctuation in the absence of alloy concentration fluctuation

    We first study the impact of alloy concentration fluctuation in the Si0.7Ge0.3barrier on theEVSof Si/Si0.7Ge0.3QWs using EPM.To simulate the actual setups, numerous Si/Si0.7Ge0.3QW structures are constructed through the direct sampling methods and the Si0.7Ge0.3random alloy part comprises 3600 atoms.Each constructed Si/Si0.7Ge0.3QWs feature distinct random alloy configurations within the Si0.7Ge0.3barriers.Consequently,these Si/Si0.7Ge0.3QW structures exhibit varying degrees of alloy concentration fluctuation.To quantify the extent of alloy concentration fluctuation in different Si/Si0.7Ge0.3QW structures, we utilizeσ(ρGe(z))as a measure, as defined in the caption of Fig.2.As illustrated in Figs.2(a)-2(b),the representative Ge concentration profiles clearly show the reduction in size of the alloy concentration fluctuation within the Si/Si0.7Ge0.3QW.Notably, it is challenging to precisely control the magnitude of alloy concentration fluctuation to achieve sufficiently small values through random sampling of the Si0.7Ge0.3barrier.To address this issue,we build Si0.7Ge0.3by spatially restricting the degrees of freedom of the random configuration space.Specifically, we systematically produce a set of Si/Si0.7Ge0.3QWs by maintaining a constant Si-to-Ge atom ratio per atomic monolayer(ML)along the vertical direction.Meanwhile,the distribution of Si and Ge atoms is randomized within each barrier layer.In this way,we obtain the concentration profile of ideal laterally infinite Si/Si0.7Ge0.3QW(see Fig.2(c)).

    Upon obtaining a range of Si/Si0.7Ge0.3QW structures with varying degrees of alloy concentration fluctuation, we then carry out calculation to determine the correspondingEVS.Within the atomistic simulation,a 10 MV/m of electric field is applied in the QW confinement direction.There are two reasons for applying an electric field: First, in real SiGe quantum devices, there is typically a perpendicular electric field across the SiGe heterostructure in the order of a few MV/m.Second, it is well studied that the valley splitting in Si/SiGe quantum wells fast decays with an increasing thickness of the quantum well and exhibits oscillations at the atomic scale(~3 ML).[37,38,40,58]To ensure a focused investigation on the electronic states near the interface of one side of the quantum well and avoid the influence of the interface on the other side,an electric field is applied in thez-direction which confines the electronic states to the desired region of interest.However,the presence of an electric field can exacerbate the effect of potential variation resulting from SiGe disorder on the electronic states within the Si quantum well.Specifically,a higher electric field strength can lead to more pronounced fluctuations in the valley splitting in Si/SiGe quantum wells.From Fig.2(d),one observes that an increased degree of alloy concentration fluctuation within the Si/Si0.7Ge0.3QW leads to a greater energy fluctuation ofEVS,as denoted by the green empty circles in Fig.2(d).Moreover, increasing the degree of alloy concentration fluctuation generally increases theEVS.These findings align with the conclusions drawn in Ref.[34],indicating that alloy concentration fluctuation alongzis responsible for the spreading of the energy fluctuation inEVS.However, our atomistic calculations(depicted by the orange empty circles in Fig.2(d))show that,even in the absence of alloy concentration fluctuation within the Si/Si0.7Ge0.3QW, a substantial energy fluctuation inEVS, amounting to±0.33 meV, persists.This significant fluctuation arises solely from the random in-plane distribution of Si and Ge atoms within the Si0.7Ge0.3barrier layer.Remarkably, this fluctuation inEVSis comparable in magnitude to the one caused by the alloy concentration fluctuation.It is crucial to emphasize that while the concentration fluctuation of the Si0.7Ge0.3barrier in the vertical direction can be mitigated through the epitaxial growth of Si/Si0.7Ge0.3heterostructures with low-temperature budget,the atomic random distribution within the SiGe barrier layer remains uncontrollable.Consequently, such a uncertainEVSresulting from the in-plane atomic randomness is an inherent characteristic and represents the lower bound of the energy fluctuation in Si/Si0.7Ge0.3QWs.

    It should be clarified that, in the process of generating SiGe random alloys, we deliberately opted for a finite supercell size,a choice that unavoidably introduces some hypothetical order within the SiGe alloys.Nevertheless, we wish to reiterate our stance that our study is primarily centered on the comparative evaluation of the energy ranges associated withEVSvariations within the two distinct Si/SiGe QW structural categories(σ(ρGe(z))/=0 andσ(ρGe(z))=0).The utilization of a finite supercell size inherently contributes to an augmentation of theEVSfluctuation in both classes of Si/SiGe QW structures.However, it is noteworthy that the inherent characteristics of the supercell size exert minimal influence on the relative magnitudes of these energy ranges.Our focus remains directed toward discerning the relative size ofEVSfluctuation between the two aforementioned structural categories.

    3.2.Effect of interface atomic step on EVS

    Having identified the lower bound of theEVSspread in Si/Si0.7Ge0.3QWs, we next clarify its origin by using a simplified atomic step model.SinceEVSis recognized as an interface-related phenomenon, the in-plane atomic randomness effect within the barrier alloying layer predominantly relies on the behavior of interface roughness.This behavior can be basically described by a sequence of atomic step edges at the interfaces,as depicted in Figs.3(a)-3(b).To streamline the discussion and focus on the impact of a single interface atomic step edge onEVS,we deliberately select pure Ge as the barrier material for the Si QWs,instead of Si0.7Ge0.3.By doing so,we isolate the influence of alloy disorder and direct our attention specifically toward the interface step effect.

    We consider a scenario where a one-monolayer-tall(a/4)interface atomic step edge,along they-direction,is positioned atx=γLx(whereais the Si lattice constant andLxrepresents the supercell size in thex-direction), as depicted in Fig.3(c).The calculatedEVSdependent on the step position is plotted in Fig.3(d).Notably, one observes a significant alteration in theEVSwhen the interface step is moved along thexdirection, with the magnitude ofEVSreaching its minimum when the interface step is located at 0.4Lx.

    To elucidate the suppressive effect of the interface step onEVS, we establish an effective mass model.The interface atomic step depicted in Fig.3(c)can be conceptualized as dividing one interface (atzI/F) into two halves and vertically shifting one half upward by one ML(a/4).This process gives rise to two laterally distributed half-interfaces,labeled as I/F-1 and I/F-2.When an external electric fieldFis applied along the QW growth(z)direction,the electronic states primarily localize at the upper interface containing the atomic step.The corresponding confinement potential can be expressed as[47,48]

    hereεdenotes the dielectric constant and rect(x) represents the rectangle function.[73]The vertical coordinates of the two laterally distributed single interfaces are related byzI/F-2=zI/F-1+.For a single interface(I/F)located atzI/F,the valley coupling matrix can be expressed using the effective mass approximation theory[40,48,60]as follows:

    where eiωrepresents an extra phase change induced by the valley coupling.[38]To validate the effective model developed above,we perform a fitting procedure using our atomistic calculation results ofEVSand Eq.(5),with adjustments made to the parametersC,ω, andα/β.The results, as depicted in Fig.3(d),demonstrate the capability of the model,incorporating two laterally distributed interfaces, to accurately describe the impact of the interface atomic step onEVS.The effective model reveals that the atomic-step-position-dependent behavior ofEVSarises from a phase difference e-ik0a/2between the two laterally distributed interfaces, which are vertically separated by one ML.

    3.3.Effect of in-plane random distribution of Si,Ge atoms on EVS

    The effective model can be easily extended to investigate scenarios involving multiple interface atomic steps,which contain the changes in the surface topography and can largely reflect the in-plane random distribution of Si and Ge atoms in the absence of alloy concentration fluctuations along the quantum confinement axis.To explore the effects of multiple interface atomic steps onEVS, we initially consider the case of a single interface step positioned atγLx, where the Ge concentration in the nearest neighboring SiGe atomic layer to the Si QW isγ.In order to approximate the random distribution of Si and Ge atoms within the SiGe layer while maintaining a constant Ge concentration, we divide the entire width of the in-plane Ge section,observed in the case of a single step,into two sections separated by a distance ofλLx, as depicted in Fig.4(a).This separation generates four interface segments,each characterized by its vertical coordinatezI/F-i,center positionxiand widthwialong thexdirection.As a result, the QW potential takes on a specific form denoted as

    Having determined the parametersC,ω, andα/βin Eq.(5)through fitting the results of atomistic simulations, we can readily compute theEVSfor multiple interface steps using the derived equation

    Figure 4(b)represents the dependence ofEVSon two factors:the fractional width of the in-plane Ge section before the step separation,denoted asγ,and the fractional distance of the step separation,denoted asλ.It is evident that,for a fixedγcorresponding to the intra-layer Ge concentration,varying the separation distancesλleads to distinct values ofEVS.This observation underscores how the rearrangement of Si and Ge atoms within a 1 ML-thick interface layer can induce changes inEVS.

    Fig.4.(a)A schematic diagram illustrating the separation of interface atomic steps.The initial in-plane Ge section with a width of γLx is equally divided into two subsections,which are separated by a distance of λLx.(b)The valley splitting energy is calculated using the step separation model,represented by Eq.(8).The parameters C,ω,and α/β in Eq.(8)(multiple steps)are consistent with those in Eq.(5)(single step).The variation of EVS is shown as a function of the fractional width of the in-plane Ge section before the step separation, denoted as γ, and the fractional separation spacing,denoted as λ.The values of γ and λ adhere to the constraint γ+λ <1.

    3.4.Eliminating the EVS fluctuation caused by in-plane random distribution of Si,Ge atoms

    Based on the preceding discussions,it is evident that the fluctuation of valley splitting induced by in-plane randomness imposes a lower limit on the wide spectrum ofEVSin Si/Si0.7Ge0.3QWs,presenting a challenge to the integration of Si electron spin qubits.To tackle this issue,we explore strategies to mitigate this lower limit through interface engineering.Our proposed approach involves the epitaxial growth of a thin Ge layer before the heterogeneous growth of Si0.7Ge0.3on the Si active layer.The inclusion of a thin Ge layer at the Si/Si0.7Ge0.3interface effectively separates the Si well and SiGe barrier, ensuring that the wave function ofΔ±zvalley states remains immune to in-plane potential fluctuations arising from the disorder in the distribution of Si and Ge atoms within the Si0.7Ge0.3barrier layer, as depicted in Figs.5(a)-5(b).Consequently,both the valley coupling and valley splitting in the Si active layer remain unaffected by the disorder within the Si0.7Ge0.3barrier.We substantiate this proposition through atomistic EPM simulations,as illustrated in Fig.5(c).These simulations demonstrate an exponential reduction in the fluctuation ofEVSresulting from the random distribution of Si and Ge atoms within the Si0.7Ge0.3barrier layer as the thickness of the interfacial Ge layer increases.Remarkably, the introduction of a 4-ML thick interfacial Ge layer diminishes the fluctuation inEVSto one-tenth of its original magnitude.It is worth emphasizing that our prior calculations[33,74]have shown a significant amplification ofEVSwith the incorporation of a 4-ML thick Ge layer at the Si QW interface,and this result has also been experimentally validated.[75]

    Fig.5.(a) Schematic diagram illustrating the structure of the Si/Si0.7Ge0.3 QW is presented,where the white solid line represents the distribution of Ge concentration, while the red and blue solid lines depict the wave functions of the split Δ±z valley states.(b) Schematic diagram showcasing the structure of the Si/nGe-thick Ge/Si0.7Ge0.3 QW is displayed,with emphasis on the Ge concentration profile and the wave function of the split Δ±z valley states.(c)The energy fluctuation of valley splitting,resulting from the in-plane random distribution of Si and Ge atoms near the Si/Si0.7Ge0.3 interface in the Si0.7Ge0.3 barrier, is effectively mitigated through the insertion of a few Ge layers at the interface.The magnitude of EVS fluctuation,quantified by δEVS,is plotted on the vertical axis,while the thickness of the inserted Ge layer in monolayers(ML)is shown on the horizontal axis. δEVSLB at nGe=0ML is the lower bound of EVS fluctuation in Si/Si0.7Ge0.3 QWs,labeled with superscript“LB”.

    4.Conclusions

    Our investigation has provided significant insights into the phenomenon ofEVSin Si/SiGe QWs.Surprisingly, we have demonstrated that a substantial spread ofEVScan occur even in the absence of concentration fluctuation.This spread, which arises solely from the in-plane random distribution of Si and Ge atoms within the SiGe barrier,represents the lower bound of the wide spectrum ofEVSobserved in various Si/SiGe devices.We have developed effective atomic step models to describe the impact of in-plane disorder onEVS.By recognizing and incorporating the influence of in-plane randomness, we propose an experimentally feasible method to mitigate the fluctuation ofEVSthrough the design of the interface atomic structure.Specifically, we suggest the inclusion of a thin Ge layer at the Si/SiGe interface, which effectively reduces the alloying-disorder-inducedEVSfluctuations.Our study thus paves the way for the development of more reliable Si-based electron spin qubits.

    Appendix A:Local interface induced valley coupling

    where the periodic Bloch waves are expanded as plane wavesu±(r)=, andΣdenotes the summation of coefficients of plane wavesΣ=,here onlyG1=G2case is considered sinceG1/=G2terms would lead to fast oscillations in the integrand that average to zero.In Eq.(A1)we integrate by parts the first term

    Fig.A1.The contribution of each term in Eq.(A2).The thickness of Si/Ge QW is 10 nm.The barrier height is 150 meV.For the summation of the plane expansion coefficients of Bloch waves,Σ=-0.2607.[48,60]

    Acknowledgements

    Project supported by the National Science Fund for Distinguished Young Scholars (Grant No.11925407), the Basic Science Center Program of the National Natural Science Foundation of China(Grant No.61888102),and the Key Research Program of Frontier Sciences of CAS(Grant No.ZDBS-LYJSC019), and CAS Project for Young Scientists in Basic Research(Grant No.YSBR-026).

    猜你喜歡
    軍委王剛
    重慶談判期間的軍委通訊工作
    歌劇《天下黃河》
    受不了
    對《也談對“軍委參”的解讀》的問與答
    軍事歷史(2015年2期)2015-05-21 06:35:38
    原野上的花
    名人讀意林
    意林(2010年11期)2010-05-14 16:48:46
    你報我寫
    你報我寫
    故事林(2007年2期)2007-05-14 15:37:47
    1975年軍委擴大會議的歷史意義
    軍事歷史(2001年6期)2001-08-21 06:50:32
    紅軍長征時期組成左路軍及右路軍后的軍委和總部
    軍事歷史(1993年6期)1993-08-16 02:18:44
    国产v大片淫在线免费观看| 欧美又色又爽又黄视频| 久久中文看片网| 69av精品久久久久久| 两人在一起打扑克的视频| 真实男女啪啪啪动态图| 亚洲在线自拍视频| 欧美极品一区二区三区四区| 国产色爽女视频免费观看| 免费一级毛片在线播放高清视频| 欧美最新免费一区二区三区 | 嫩草影院精品99| 国产精品一区二区免费欧美| 亚洲精品影视一区二区三区av| 精华霜和精华液先用哪个| 老熟妇仑乱视频hdxx| 国产午夜精品论理片| 亚洲人成网站在线播| 男人的好看免费观看在线视频| 女生性感内裤真人,穿戴方法视频| 午夜福利欧美成人| 全区人妻精品视频| 99视频精品全部免费 在线| 国产高清视频在线播放一区| 免费看a级黄色片| 97人妻精品一区二区三区麻豆| 国产精品国产高清国产av| 免费观看精品视频网站| 特大巨黑吊av在线直播| 99精品久久久久人妻精品| 成人午夜高清在线视频| 亚洲无线在线观看| 天堂动漫精品| 精品一区二区免费观看| 国产精品久久久久久亚洲av鲁大| 女同久久另类99精品国产91| 国产伦在线观看视频一区| 亚洲在线观看片| 久久精品国产亚洲av天美| 三级毛片av免费| 欧美zozozo另类| 日本 av在线| 人妻夜夜爽99麻豆av| 九九在线视频观看精品| 欧美激情久久久久久爽电影| 国内精品美女久久久久久| 波多野结衣高清无吗| 他把我摸到了高潮在线观看| 日本免费a在线| 欧美成人一区二区免费高清观看| 欧美丝袜亚洲另类 | 男女之事视频高清在线观看| 又爽又黄无遮挡网站| 真实男女啪啪啪动态图| 变态另类成人亚洲欧美熟女| 日韩中字成人| 日韩欧美免费精品| 在现免费观看毛片| 国内久久婷婷六月综合欲色啪| 波多野结衣巨乳人妻| 变态另类成人亚洲欧美熟女| 久久国产乱子伦精品免费另类| 久久精品国产清高在天天线| 欧美日韩乱码在线| 日韩欧美免费精品| 国产美女午夜福利| 亚洲人成网站高清观看| 白带黄色成豆腐渣| 国产三级在线视频| 国产精品女同一区二区软件 | 欧美午夜高清在线| av在线天堂中文字幕| 最近最新免费中文字幕在线| 欧美3d第一页| 国产精品电影一区二区三区| 亚洲成人免费电影在线观看| 最新中文字幕久久久久| 极品教师在线免费播放| 男人和女人高潮做爰伦理| 亚洲av不卡在线观看| 国产精品电影一区二区三区| 999久久久精品免费观看国产| 欧美激情久久久久久爽电影| 亚洲成av人片在线播放无| 久久国产精品影院| 色在线成人网| 五月玫瑰六月丁香| 精品久久国产蜜桃| 免费人成视频x8x8入口观看| 免费在线观看亚洲国产| 亚洲第一欧美日韩一区二区三区| av黄色大香蕉| 97超级碰碰碰精品色视频在线观看| 首页视频小说图片口味搜索| av福利片在线观看| 一二三四社区在线视频社区8| 男人和女人高潮做爰伦理| 99精品在免费线老司机午夜| 成人av一区二区三区在线看| 亚洲无线在线观看| 亚洲久久久久久中文字幕| 老熟妇乱子伦视频在线观看| 波多野结衣高清作品| 久9热在线精品视频| 99精品在免费线老司机午夜| 成人国产一区最新在线观看| 精品免费久久久久久久清纯| 国产综合懂色| 久久精品人妻少妇| 狠狠狠狠99中文字幕| 91麻豆av在线| 亚洲电影在线观看av| 哪里可以看免费的av片| 欧美3d第一页| 午夜两性在线视频| 90打野战视频偷拍视频| 亚洲av电影不卡..在线观看| 成人欧美大片| 亚洲最大成人中文| 好男人电影高清在线观看| 美女黄网站色视频| 无人区码免费观看不卡| 伊人久久精品亚洲午夜| 嫩草影视91久久| 午夜福利欧美成人| 国产一区二区亚洲精品在线观看| 俄罗斯特黄特色一大片| www.www免费av| 97超级碰碰碰精品色视频在线观看| 精品人妻一区二区三区麻豆 | 久久国产乱子免费精品| 男女视频在线观看网站免费| 国产色婷婷99| 人人妻人人澡欧美一区二区| 18美女黄网站色大片免费观看| 国产又黄又爽又无遮挡在线| 中文亚洲av片在线观看爽| 深夜a级毛片| 久久国产乱子免费精品| 久久久成人免费电影| 欧美黄色片欧美黄色片| АⅤ资源中文在线天堂| 国产高清有码在线观看视频| 俺也久久电影网| 欧美黄色淫秽网站| 啦啦啦韩国在线观看视频| 中文字幕av在线有码专区| 麻豆一二三区av精品| 欧美潮喷喷水| 免费看光身美女| 日本黄色视频三级网站网址| 国产精品影院久久| 精品一区二区免费观看| 国产av不卡久久| 欧美激情在线99| 欧美日韩福利视频一区二区| 国产精品伦人一区二区| 欧美极品一区二区三区四区| 午夜精品一区二区三区免费看| 91在线观看av| 小说图片视频综合网站| 三级国产精品欧美在线观看| 免费看a级黄色片| ponron亚洲| 波多野结衣高清无吗| 人妻夜夜爽99麻豆av| 神马国产精品三级电影在线观看| 亚洲美女视频黄频| 欧美性猛交黑人性爽| 99riav亚洲国产免费| 久久久久精品国产欧美久久久| 日韩中文字幕欧美一区二区| 国产高清有码在线观看视频| 日日夜夜操网爽| 亚洲自拍偷在线| 亚洲狠狠婷婷综合久久图片| 老女人水多毛片| 91字幕亚洲| 欧美在线一区亚洲| 在线播放无遮挡| 午夜a级毛片| 最近在线观看免费完整版| 亚洲,欧美,日韩| 久久99热这里只有精品18| 久久久国产成人免费| 国产午夜精品论理片| 欧美午夜高清在线| 国产麻豆成人av免费视频| 亚洲欧美日韩东京热| 国产精品免费一区二区三区在线| 国产69精品久久久久777片| 久久国产精品影院| 性色av乱码一区二区三区2| av在线老鸭窝| 神马国产精品三级电影在线观看| 国产亚洲av嫩草精品影院| 18+在线观看网站| 草草在线视频免费看| 国产欧美日韩一区二区精品| 亚洲av五月六月丁香网| 丰满乱子伦码专区| 亚洲第一电影网av| 2021天堂中文幕一二区在线观| 亚洲黑人精品在线| netflix在线观看网站| 男女下面进入的视频免费午夜| 真人一进一出gif抽搐免费| 国产伦在线观看视频一区| 黄片小视频在线播放| 亚洲欧美激情综合另类| 国产视频一区二区在线看| a级毛片免费高清观看在线播放| 国产成人啪精品午夜网站| 久久久久久九九精品二区国产| 最近中文字幕高清免费大全6 | 可以在线观看毛片的网站| 中文字幕人成人乱码亚洲影| aaaaa片日本免费| .国产精品久久| 亚洲最大成人av| 别揉我奶头 嗯啊视频| 成人国产一区最新在线观看| 欧美成狂野欧美在线观看| 欧美日韩国产亚洲二区| 哪里可以看免费的av片| 国产aⅴ精品一区二区三区波| 婷婷精品国产亚洲av在线| 精品久久久久久久末码| 特级一级黄色大片| 一个人免费在线观看的高清视频| 精品乱码久久久久久99久播| 美女高潮的动态| 成人特级黄色片久久久久久久| 欧美性感艳星| 国产在线男女| 久久人人爽人人爽人人片va | 国产av在哪里看| 久久性视频一级片| 国产乱人伦免费视频| 久久久久久国产a免费观看| 精品99又大又爽又粗少妇毛片 | 国产亚洲欧美在线一区二区| 国产综合懂色| 97人妻精品一区二区三区麻豆| 亚洲av免费高清在线观看| 内射极品少妇av片p| 十八禁网站免费在线| 成年女人毛片免费观看观看9| 不卡一级毛片| 欧美在线一区亚洲| 伊人久久精品亚洲午夜| av在线天堂中文字幕| 午夜精品一区二区三区免费看| 欧美bdsm另类| 桃色一区二区三区在线观看| 国产三级中文精品| 国产欧美日韩一区二区精品| 成人特级黄色片久久久久久久| 51午夜福利影视在线观看| 中文字幕久久专区| 精品国产三级普通话版| 国产单亲对白刺激| 久久久久亚洲av毛片大全| 午夜福利视频1000在线观看| 麻豆成人av在线观看| 18禁在线播放成人免费| 色综合婷婷激情| 欧美黑人欧美精品刺激| 国内久久婷婷六月综合欲色啪| 日本与韩国留学比较| 精品欧美国产一区二区三| 成人国产综合亚洲| 91在线精品国自产拍蜜月| 国产精品电影一区二区三区| 国产高清视频在线观看网站| av在线老鸭窝| 国产精品,欧美在线| 成年女人毛片免费观看观看9| 日韩人妻高清精品专区| 久久久久国内视频| 亚洲精品一卡2卡三卡4卡5卡| 我要搜黄色片| 9191精品国产免费久久| 精品久久国产蜜桃| 国产精品电影一区二区三区| 天堂√8在线中文| 国内久久婷婷六月综合欲色啪| 美女大奶头视频| 在线免费观看不下载黄p国产 | 亚州av有码| 99热这里只有精品一区| 五月伊人婷婷丁香| 女人被狂操c到高潮| 亚洲精品亚洲一区二区| 精品一区二区三区视频在线| 久久精品91蜜桃| 91久久精品国产一区二区成人| 免费av观看视频| 精品午夜福利在线看| 日韩欧美在线二视频| 日韩成人在线观看一区二区三区| 日本黄色片子视频| 亚洲精品在线观看二区| bbb黄色大片| 国产精品一区二区性色av| 亚洲精华国产精华精| 伊人久久精品亚洲午夜| 亚洲av第一区精品v没综合| 久久久久久久久中文| 五月玫瑰六月丁香| 国内精品久久久久精免费| 国产伦精品一区二区三区视频9| 麻豆av噜噜一区二区三区| 国产高潮美女av| 国产成人影院久久av| 亚洲经典国产精华液单 | 三级男女做爰猛烈吃奶摸视频| 欧美日韩乱码在线| 国产探花极品一区二区| 嫩草影院新地址| 欧美高清成人免费视频www| 床上黄色一级片| 国产 一区 欧美 日韩| avwww免费| 欧美3d第一页| 亚洲精品日韩av片在线观看| 欧美中文日本在线观看视频| 亚洲乱码一区二区免费版| 精品人妻熟女av久视频| 91久久精品电影网| 亚洲国产色片| 日本黄色视频三级网站网址| 国产亚洲av嫩草精品影院| 国产老妇女一区| 色播亚洲综合网| 人妻制服诱惑在线中文字幕| 美女xxoo啪啪120秒动态图 | 午夜免费激情av| 国产乱人伦免费视频| 69av精品久久久久久| 日本熟妇午夜| 免费人成视频x8x8入口观看| 国产精品98久久久久久宅男小说| 男女视频在线观看网站免费| 欧美最新免费一区二区三区 | 久久久久久久久久成人| 国产伦人伦偷精品视频| 亚洲一区二区三区不卡视频| 免费看美女性在线毛片视频| 国产探花极品一区二区| 69av精品久久久久久| 亚洲国产精品合色在线| 老鸭窝网址在线观看| 人妻制服诱惑在线中文字幕| 丝袜美腿在线中文| 国产白丝娇喘喷水9色精品| 久久久久久久精品吃奶| 国产精品1区2区在线观看.| 一个人观看的视频www高清免费观看| 亚洲国产精品合色在线| 亚洲精品影视一区二区三区av| 成年版毛片免费区| 久久久久国内视频| 午夜福利在线观看免费完整高清在 | 精品无人区乱码1区二区| 久久久久久九九精品二区国产| 亚洲国产色片| 亚洲av成人不卡在线观看播放网| x7x7x7水蜜桃| 2021天堂中文幕一二区在线观| 97超级碰碰碰精品色视频在线观看| 99国产极品粉嫩在线观看| 欧美xxxx性猛交bbbb| 91久久精品电影网| 免费在线观看亚洲国产| 久久国产乱子免费精品| 免费黄网站久久成人精品 | 啦啦啦韩国在线观看视频| 国产av不卡久久| 可以在线观看毛片的网站| 精品久久国产蜜桃| 欧美日本视频| 日本免费a在线| 国产精品乱码一区二三区的特点| 欧美zozozo另类| 精品福利观看| 久久性视频一级片| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 男人舔奶头视频| 午夜激情福利司机影院| 最好的美女福利视频网| 免费看日本二区| 久久精品国产自在天天线| 99热这里只有精品一区| 免费电影在线观看免费观看| 99精品在免费线老司机午夜| 亚洲最大成人av| 一本综合久久免费| 免费搜索国产男女视频| 在线a可以看的网站| 嫁个100分男人电影在线观看| 亚洲电影在线观看av| 1024手机看黄色片| 婷婷精品国产亚洲av在线| 成人鲁丝片一二三区免费| 亚洲欧美日韩无卡精品| 欧美国产日韩亚洲一区| 亚洲熟妇中文字幕五十中出| 亚洲久久久久久中文字幕| 搡女人真爽免费视频火全软件 | 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| 青草久久国产| 国产爱豆传媒在线观看| aaaaa片日本免费| 精品人妻视频免费看| 99久国产av精品| 少妇被粗大猛烈的视频| 99久久成人亚洲精品观看| 亚洲激情在线av| 午夜精品一区二区三区免费看| 国产三级黄色录像| 国产亚洲精品av在线| 国产黄色小视频在线观看| 欧美精品啪啪一区二区三区| 性插视频无遮挡在线免费观看| 久久香蕉精品热| 亚洲成av人片免费观看| 久久欧美精品欧美久久欧美| 一级av片app| 久久精品国产自在天天线| 久久久久精品国产欧美久久久| 亚洲精品色激情综合| 亚洲三级黄色毛片| 国产三级黄色录像| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久久久人妻精品电影| 日本成人三级电影网站| 亚洲欧美日韩高清专用| 亚洲专区中文字幕在线| 久久草成人影院| 久久婷婷人人爽人人干人人爱| 久久国产精品人妻蜜桃| 国产一区二区激情短视频| 91狼人影院| 一区二区三区四区激情视频 | 欧美zozozo另类| 国语自产精品视频在线第100页| 在线观看午夜福利视频| 午夜福利高清视频| 成人鲁丝片一二三区免费| 91av网一区二区| 国产69精品久久久久777片| eeuss影院久久| 欧美3d第一页| 国产欧美日韩一区二区三| 18禁黄网站禁片午夜丰满| 人妻制服诱惑在线中文字幕| 免费大片18禁| 亚洲av中文字字幕乱码综合| 国产av不卡久久| 高潮久久久久久久久久久不卡| 亚洲成人中文字幕在线播放| 国产69精品久久久久777片| 久久精品久久久久久噜噜老黄 | 色播亚洲综合网| 国产精品99久久久久久久久| 免费观看人在逋| 国产精品1区2区在线观看.| 欧美成人a在线观看| 激情在线观看视频在线高清| 一级毛片久久久久久久久女| 午夜视频国产福利| АⅤ资源中文在线天堂| 九色国产91popny在线| 在线观看一区二区三区| xxxwww97欧美| 在线观看av片永久免费下载| 久久午夜亚洲精品久久| 99视频精品全部免费 在线| 色精品久久人妻99蜜桃| 精品福利观看| 免费搜索国产男女视频| 搞女人的毛片| 国产精品精品国产色婷婷| 亚洲av中文字字幕乱码综合| 一二三四社区在线视频社区8| 日韩大尺度精品在线看网址| 国产精品久久久久久精品电影| 国产精品久久电影中文字幕| 国产一区二区在线观看日韩| 老司机午夜福利在线观看视频| 色在线成人网| 国产大屁股一区二区在线视频| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影| 1024手机看黄色片| 97人妻精品一区二区三区麻豆| 久久人妻av系列| 久久久精品欧美日韩精品| 久久久久国产精品人妻aⅴ院| 欧美成狂野欧美在线观看| 国产三级在线视频| 老女人水多毛片| 国产精品三级大全| 免费一级毛片在线播放高清视频| 久久久久久国产a免费观看| 国产精品野战在线观看| 久久精品综合一区二区三区| 窝窝影院91人妻| 色哟哟·www| 亚洲av中文字字幕乱码综合| 成人特级av手机在线观看| 成人一区二区视频在线观看| 亚洲av成人av| 真实男女啪啪啪动态图| 亚洲内射少妇av| 亚洲国产精品合色在线| 亚洲国产色片| 男女下面进入的视频免费午夜| 日韩大尺度精品在线看网址| 欧美成人性av电影在线观看| 12—13女人毛片做爰片一| 精品午夜福利视频在线观看一区| 久久久久久久久久黄片| 欧美绝顶高潮抽搐喷水| 真人一进一出gif抽搐免费| 久久国产乱子免费精品| 人妻丰满熟妇av一区二区三区| 欧美一区二区亚洲| 中文亚洲av片在线观看爽| xxxwww97欧美| 欧美黄色片欧美黄色片| 特级一级黄色大片| 真人一进一出gif抽搐免费| 91av网一区二区| 人妻丰满熟妇av一区二区三区| 69人妻影院| 欧美日韩黄片免| 国产精品亚洲av一区麻豆| 欧美黑人欧美精品刺激| 天天一区二区日本电影三级| 国产淫片久久久久久久久 | 国产麻豆成人av免费视频| 男女做爰动态图高潮gif福利片| 天堂av国产一区二区熟女人妻| 久久6这里有精品| 人妻夜夜爽99麻豆av| 色av中文字幕| 国产精品日韩av在线免费观看| 伦理电影大哥的女人| 成人av在线播放网站| 日韩中字成人| 真人做人爱边吃奶动态| 成人无遮挡网站| 国产三级在线视频| 天堂网av新在线| 欧美成人性av电影在线观看| 午夜福利高清视频| 高清在线国产一区| 偷拍熟女少妇极品色| 国产极品精品免费视频能看的| 中出人妻视频一区二区| 国产欧美日韩精品亚洲av| 激情在线观看视频在线高清| 美女 人体艺术 gogo| 国产蜜桃级精品一区二区三区| 91九色精品人成在线观看| 欧美乱妇无乱码| 少妇被粗大猛烈的视频| 亚洲中文日韩欧美视频| 欧美成人一区二区免费高清观看| 久久人人精品亚洲av| 国内精品久久久久精免费| 丝袜美腿在线中文| 国产精品久久久久久亚洲av鲁大| 国产 一区 欧美 日韩| 天美传媒精品一区二区| 国产爱豆传媒在线观看| 在线播放国产精品三级| 在线观看美女被高潮喷水网站 | 午夜福利在线观看吧| 99国产极品粉嫩在线观看| 99热这里只有是精品50| 久久久久久久精品吃奶| 人人妻,人人澡人人爽秒播| 精品久久久久久久久久免费视频| 最近中文字幕高清免费大全6 | 国产真实伦视频高清在线观看 | 嫩草影视91久久| 久久人妻av系列| 成人午夜高清在线视频| 神马国产精品三级电影在线观看| 男女那种视频在线观看| 丝袜美腿在线中文| av在线观看视频网站免费| 高潮久久久久久久久久久不卡| 久久6这里有精品| 99国产极品粉嫩在线观看| 精品一区二区三区av网在线观看| 国产精品久久久久久人妻精品电影| 神马国产精品三级电影在线观看| 99热这里只有是精品50| 啪啪无遮挡十八禁网站| 亚洲美女黄片视频| 亚洲三级黄色毛片| 97热精品久久久久久| 91av网一区二区| 亚洲中文日韩欧美视频| 免费av毛片视频| 欧美+日韩+精品| 国产淫片久久久久久久久 | 欧美成人免费av一区二区三区| 露出奶头的视频|