• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Distributed dynamic event-based finite-time dissipative synchronization control for semi-Markov switched fuzzy cyber-physical systems against random packet losses

    2023-11-02 08:09:22XiruWu伍錫如YuchongZhang張煜翀TiantianZhang張畑畑andBinleiZhang張斌磊
    Chinese Physics B 2023年10期
    關(guān)鍵詞:張煜

    Xiru Wu(伍錫如), Yuchong Zhang(張煜翀), Tiantian Zhang(張畑畑), and Binlei Zhang(張斌磊)

    School of Electronic Engineering and Automation,Guilin University of Electronic Technology,Guilin 541004,China

    Keywords: cyber-physical systems, finite-time synchronization, distributed dynamic event-triggered mechanism,random packet losses

    1.Introduction

    Cyber-physical systems (CPSs), as the complex systems integrating computation, networks communication and control,[1,2]have been investigated intensively due to their frequent applications in network coordination and physical resources, such as network power schedules, multi-agent control and remote estimation.[3-5]It is worth noting that reliability has become the increasingly critical network-induced issue in the control of real CPSs.In Refs.[6,7], the sliding mode control approach was deployed for CPSs with malicious attacks to guarantee security and reliability.In particular, bandwidth limitation is becoming a serious problem due to the physical properties of network interaction, which generates inevitable information packet losses.Nevertheless,current research rarely refers to the effect of random packet losses in CPSs, aside from the interconnected multi-systems with complex structure.

    The Takagi-Sugeno (T-S) fuzzy model has been used to handle complex nonlinear systems due to its remarkable competence in accurate approximation.[8-10]Reference [11] built the model of partially coupled complex networks via a collection of IF-THEN rules and fuzzy membership functions.To solve the immeasurable state problem, Ref.[12] also developed an adaptive fuzzy observer using IF-THEN fuzzy rules.The T-S fuzzy model was applied in the resilient controller design of CPSs to deal with input saturation and cyberattack in Ref.[13].In reality, abrupt changes in system structure may lead to unexpected mode variation and system instability,such that Markov switched parameters are introduced to organize the T-S fuzzy system model.[14,15]In Ref.[14], a finite-time asynchronous state estimation scheme was raised for Markov jump T-S fuzzy systems.As reported in Ref.[16],the transition probability matrix is considered to be time-varying because the sojourn time obeys arbitrary probability distributions.In view of this, semi-Markov switched T-S fuzzy systems have more relaxed constraint compared with conventional ones.[17,18]For instance,in Ref.[17],Zhanget al.concerned the stabilization issue of uncertain T-S fuzzy systems under a semi-Markov chain.Therefore, it is meaningful to further explore the effective control theory in T-S fuzzy CPSs(TSFCPSs)subject to semi-Markov switched modes.

    In the study of system stability control, most of the existing results focused on Lyapunov stability within an infinite time interval, but some realistic scenes require finitetime control performance.The authors in Ref.[19] applied a power integrator technique combined with a backstepping method to achieve finite-time stability control.Such a theory has been imported to finite-time synchronization (FTS)and, simultaneously, it should also be emphasized that consideration of system properties in the achievement of FTS is necessary.[20,21]As the description of the immanent relationship between storage functions and supply rates,dissipativity performance can reflect the internal stability and has been regarded as a more powerful tool in system control than passivity andH∞theory.[22]With regard to a class of Markovian jump inertial neural networks,Songet al.derived the less conservative criterion of FTS with a dissipative index in Ref.[23].As reported in Ref.[24],the global dissipativity based on the Filippov solution was developed to ensure the FTS of memristorbased neural networks.However, the dissipative problem of FTS control for TSFCPSs has not attracted adequate attention.

    To cope with the limited communication resources, an event-triggered mechanism (ETM) was proposed to reduce frequent data transmission and overmuch consumption.[25-28]By this means, the updated data of the control input are released only when a prespecified trigger condition is satisfied.In Ref.[29], based on adaptive ETM, the authors proposed a quantized method for the distributed estimation of semi-Markov switched sensor networks.With the event-based control technique, the stability problem of linear systems suffering packet losses was solved in Ref.[30].In recent literature,a class of dynamic ETM was designed by setting an internal iterative variable in the triggering condition, which possesses lower triggering frequency than conventional ETM.[31-33]As shown in Ref.[33],the authors proposed aH∞filtering strategy for a T-S fuzzy system based on dynamic ETM, which contributed to reduction of the consumption.Although the dynamic ETM has shown superiority, some redundant data will be transmitted if subsystems share a unified triggering condition, which promotes the motivation for extending related studies under the distributed framework.[34-36]Besides,the process of packet dropout is depicted by a stochastic sequence following the continuous Bernoulli distribution in previous studies like Refs.[37-39],but this method is unsuitable for a non-uniform sampling situation where triggering instants fail to be transmitted.Therefore, there is the need to establish a realistic framework to analyze a distributed dynamic ETM(DDETM)influenced by random packet losses in semi-Markov switched TSFCPSs.

    According to the aforementioned analysis, this paper aims to investigate the strictly dissipative FTS issue of semi-Markov switched TSFCPSs with packet dropouts under a distributed dynamic event-based pinning control scheme.The main contributions are summarized as follows:

    1) To investigate the finite-time synchronization strategy within the framework of CPSs with interconnected multisystems, a T-S fuzzy model-based distributed control construction is developed.In contrast to the network models in Refs.[21,42],the presented system considers parameters subject to a semi-Markov chain and a communication process restrained by packet loss simultaneously.

    2)The pinning strategy and DDETM are jointly proposed to improve the transmission schedule of desired controller signals.Unlike the approaches in Refs.[25-27],a dynamic variable related to synchronization errors is introduced to design the triggering condition,which results in a lower information update frequency.Additionally,aiming to handle the stochastic data loss sequence that does not satisfy Bernoulli distribution, an equivalent prediction model distinguished from Refs.[37-39]is provided to transform the triggering instant.

    3) Based on augmented terms with respect to delays,a mode-dependent Lyapunov-Krasovskii functional (LKF) is constructed to guarantee the FTS accompanied by the desired dissipative performance.Compared with the sum-term estimation methods in Refs.[11,27,31,43],an extended reciprocally convex matrix inequality(ERCMI)is combined with a delayproduct-type double sum term to derive a tighter result with less conservatism.

    The rest of this paper is arranged as follows: Section 2 describes the preliminaries and builds the problem model.In Section 3,synchronization and dissipativity analysis of closedloop TSFCPSs proceed via strict mathematical derivations.Section 4 provides two examples to verify the theoretical results.Section 5 gives the conclusions.

    Notations Throughout the paper,Rnand Rn×mrepresent then-dimensional Euclidean space and the set of alln×mdimensional real matrices; Z+denotes the set of all positive integers;l2[0,∞) means the space of square-summable infinite vector functions over [0,∞); vecn{·}is the symbol of the column vector, includingnblocks; diag{·}means a block-diagonal matrix;?refers to the Kronecker product;cmax(R) (cmin(R)) represents the maximum eigenvalue (minimum eigenvalue) of the matrixR; Pr{·}andE{·}represent the probability of event occurrence and mathematical expectation,respectively;Sym{P}=PT+P;and?denotes the symmetric term of a symmetric matrix.In addition, the matrixQ >0(Q <0)meansQis a positive-definite matrix(negativedefinite matrix).

    2.Problem formulation and preliminaries

    Consider a class of semi-Markovian switched discretetime complex networks withNcoupled nodes as the CPSs,which can be described by the following T-S fuzzy rules:

    Plant rulem: Ifκ1(k)isGm1,κ2(k)isGm2,...,andκp(k)isGmp,then

    Fig.1.A block diagram of the control procedure in node i.

    Asψst(k)is time-varying with incomplete measuring information,it can be expressed by the following new form:

    forμ? ≥0.Based on Refs.[16,18,22],ψ?stis limited by the following boundary conditions:

    Via the weighted average fuzzy blending method, the global TSFCPSs model with respect to subsystem (1) is described as

    where ?mrepresents the simplification of the normalized membership function ?m(κ(k))satisfying

    The model of the target node in TSFCPSs is given as

    where ?x(k)∈Rn, ?y(k)∈Ryare vectors on behalf of the target state and corresponding control output, respectively.The initial state of ?x(k)is set as ?ν(s)fors ∈{-ˉσ,-ˉσ+1,...,0}.

    We defineei(k)=xi(k)-?x(k)andeyi=yi(k)-?y(k),such that we obtain the synchronization error system of TSFCPSs as below:

    To compensate the lost data caused by packet losses,the estimated error is introduced to the controller design.Combined with the parallel distribution control(PDC)technology,the fuzzy pinning controller can be given by the following rules:

    Controller rulev: Ifκ1(k) isGv1,κ2(k) isGv1,..., andκp(k)isGvp,then

    where ˉei(k) is the estimated control input andis theith control gain matrix under the fuzzy rulev.Besides,φiis the pinning parameter, whereφi=1 means theith node is controlled,otherwiseφi=0.

    The distributed event generator functionQ(·,·) is regulated as follows:

    Here, ?ρiis a given positive parameter,andΓi(k)represents theith internal dynamic variable,which is described as

    withΓi(0)=≥0 and the given constantηi ∈(0,1).

    Remark 1 Compared with the traditional ETMs,shown in Refs.[25-27],restricted by a static-coefficient-related triggering threshold, the adopted DDETM is established under a time-varying constraint condition,where the dynamic variableΓi(k) is influenced by the real-time system errorsei(k) andεi(k).It is obvious from Eq.(8)that the triggering mechanism will reduce to the static ETM in Ref.[27]if parameter ?ρigoes to infinity.Therefore, the DDETM can flexibly regulate the distributed controller performance by changing parametersδiand ?ρi.It easily observes that the value ofδiincreases together with the decrease of the triggering rate, while the triggering rate increases with the growth of ?ρi.

    The controller dynamics can be obtained by computingei(k)in the interval offor the availability ofTherefore, controller (12) can share the same premise variablesκi(k)with system(1).

    Remark 2 Combined with the packet dropout behavior,the controller limited by the event-triggered condition will receive a relatively less feasible data packet from the sensor.It is worth noting that triggering instants are non-uniform sequences,such that the continuous Bernoulli distribution model in Refs.[8,29,38] cannot be directly employed to describe the event-based controller.By constructing a new sequence{χ(k)}k∈Z+in regard to variable, the circumstance of triggered data transmission will be captured adequately.

    Figure 2 demonstrates the operation framework of the closed-loop system, where the DDETM is proposed to manage the signal transmission.Moreover,a compensation mechanism is employed in the control input to guarantee the reliability.

    Before conducting further analysis,some essential definitions,assumptions and lemmas are listed.

    Definition 1[20]There is a matrixQ, a given constant ?ωand two positive scalarsε1,ε2withε1<ε2.The error system (13) is said to be mean-square finite-time bounded with respect to(ε1,ε2,X,T, ?ω)if the following condition is insured for?k ∈{1,2,...,T}:

    Definition 2[22]Given a fixed scalarγ >0,the real matricesΥ1=ΥT1≤0,Υ2andΥ3=, system (1) with disturbanceω(k)∈l2[0,∞) can achieve the strictly (Υ1,Υ2,Υ3)-γdissipative FTS with respect to(?1,?2,X,T, ?ω,γ)if error system(13)satisfies the condition of Definition 1 and the following inequation for allT ≥0:

    where the energy supply rateJ(ey(k),ω(k))is denoted as

    Fig.2.The framework of detailed signal transmission in the whole closed-loop CPSs.

    Assumption 1 The initial value of the error system should conform to the following condition:

    Lemma 3[41]For a positive matrixQand positive integerν1<ν2, any discrete-time variableχ(k)∈Rncan satisfy the following inequality:

    3.Main results

    In this section,the finite-time strictly dissipative synchronization conditions are discussed and the desired controller is designed under the DDETM.

    3.1.Finite-time boundness analysis

    The finite-time boundness of synchronization errors will be analyzed firstly in the following theorem.Consider the semi-Markov switched error system (13) affected by random packet losses.

    where

    where

    where

    Define ΔV(k,λ(k)) =V(k+1,λ(k+1))-ξV(k,λ(k)), we can obtainE{ΔV(k,λ(k))}along the trajectories of the error system(13),and it follows that

    Using Lemma 3,we can obtain

    Then,

    To estimate the bound ofE{ΔV5(k,λ(k))},the following zero-value equations are presented for any symmetric matricesM1andM2:

    With the combination of Eqs.(30) and (31), it follows from Jensen’s inequality theory that

    where the delay-dependent termΠ3,[σ(k)]is described as

    Relying on the inequality(17)in Lemma 2,Π3,[σ(k)]can be further bounded as follows:

    Notice that activation functions satisfy the Lipschitz continuity in(A2),and one has the following inequations:

    whereA1,A2,B1andB2are defined in Eq.(20).Moreover,based on the event-triggered constraint condition (8), we can derive that for any positive constant ˉh,

    Repeating the process from inequations (21)-(35), we easily get

    where

    andis stated in Eq.(20).From the convex combination technique and(A1),we have the following inference:

    Then,with the help of the Schur complement theory,the constraint<0 will hold for≤σ(k)≤if inequation(18)is satisfied,such that

    Hence, we can further conduct the following iterative operation with regard to finite timek:

    wherecmax(H)is the maximum eigenvalue of matrixH.The value ofV(0,λ(0))is estimated as

    With the combination of inequations(42)and(43),we have

    Due to the conditionP11,s ≥c11Xin Eq.(19),it exists as

    such that the following inequation holds:

    The finite-time boundness of the error system (13) can be eventually derived.This completes the proof.

    Remark 4 In the finite-time boundness analysis of the closed-loop error system, an augmented mode-dependent LKF, containing vectors?1(k),?2(k) and?3(k), is constructed and inspired by Ref.[23].Differing from the common LKF that is only formed by error or state vectors, the augmented terms observe more information of delays through more sum-terms.Specifically, the improved delay-producttype terms inV1(k,λ(k))andV6(k,λ(k))further consider the change rate ofσ(k)and develop the results in Ref.[41].Moreover, the proposed>0 in Eq.(19) provides a more relaxed range for the stability criterion.

    Remark 5 In Refs.[11,27,31], some inequality techniques, such as Abel lemma, Wirtinger-based inequality and Jensen’s inequality,were introduced to handle the single sumterm or simple double sum-term.However,the delay-producttype double sum term inV6(k,λ(k)) will contribute to more nonlinearities and uncertainty.To obtain more accurate estimation, the ERCMI is raised by not introducing additional decision variables or adding the dimension of LMIs, in order to further reduce the conservatism.

    3.2.Finite-time strict dissipativity analysis

    where

    and other parameters are defined in Eq.(20).Moreover, the controller gain matrix is described as

    Proof Considering the LKF candidate constructed in Theorem 1.For any invertible matrixFsv, one has the following zero-value equation:

    As the controller is greatly impacted by the pinning parameterφi,we can further obtain the following inequation:

    To study the strictly dissipative performance of the synchronization error system,an object function is constructed as follows:

    Similar to Eq.(38),it derives from Eqs.(49)-(51)that

    Recalling Eq.(40)and the application of the Schur complement, we can getE{ΔV(k,λ(k))-G(k)} ≤0, which is equivalent to

    Based on the iterative operation within the time interval[0,k]in Eq.(42),it derives the following inequation under the zeroinitial condition:

    With the premises ofE{V(k,λ(k))}>0,it is easily concluded that

    Obviously, the closed-loop TSFCPSs can satisfy finite-time strictly (Υ1,Υ2,Υ3)-γ-dissipative performance in the right of Definition 2.The proof is accomplished.

    Remark 6 In terms of the dissipativeness definition and results of Theorem 1,a new framework is established to analyze the finite-time dissipative synchronization of the closedloop system,in order to obtain the sufficient condition in Theorem 2.By utilizing the LMI technique, controller gain matrices under various modes can be calculated.Notice that the number of modes and nodes affects complexity; therefore, a tradeoff between computational burden and conservation is necessary in real application.

    The following corollary is formulated for the Markov switched CPSs absent from the T-S fuzzy model:

    where

    and other notations are given by Eq.(48).If LMIs are feasible,the controller gain is calculated asFurthermore, we can also derive the condition of finite-timeH∞synchronization for CPSs when settingΥ1=-1,Υ2=0 andΥ3=γ2+γ.

    4.Numerical simulations

    In this section,numerical examples and simulation results are presented to demonstrate the effectiveness of the proposed theories.

    Example 1 Consider the following dynamic equation of the gearing connected single-link robot arm as the target model of CPSs:[25,38]

    whereq(t)and ˙q(t)denote the arm angle position and angular velocity.Given parameterL=0.5,g=9.81,D=2.Here,Mλ(k)andJλ(k)are mode-dependent withM1= 1,J1= 1,M2=5,J2=5,M3=10 andJ3=10.

    Setxi1(t)=qi(t) andxi2(t)= ˙qi(t) for CPSs containing six nodes,and Eq.(57)can be discretized by the first-order Euler approximation method with the sampling period Δt=0.1 s.Referring to Ref.[38],the CPSs are constructed by a T-S fuzzy model with the following membership functions:

    wherexi1(k)∈(-π,π),β=10-2/π.System parameters subject to two fuzzy rules and three modes are selected as

    Fuzzy rule 1 Ifxi1(k)is 0 rad,then

    The retarded coefficient is set as?=0.9.

    Fig.3.The physical structure of the gearing connected single-link robot arm and coupled topological relation under three switched modes.

    As shown in Fig.3, CPSs can change topology relations among three modes, and the corresponding elements in the transition probability matrix satisfy

    WhenL=2,the values ofare given as

    Assume that nodes 1, 2 and 6 are the controller, some parameters are supposed as ?L=diag{I,I,0,0,0,I},ξ=1.02,?1=10,?2=50,T=50, ?ρ1= ?ρ2= ?ρ6=0.15,η1=η2=0.6,η6=0.5, ?ρ1= ?ρ2= ?ρ6=25,δ1=δ2=δ6=0.4 and ?ω=1.8.The dissipativity-related matrices are set asΥ1=-0.4I,Υ2=IandΥ3=4I.By solving the LMIs proposed in Theorem 2,controller gains and the maximum dissipative levelγare deduced.Table 1 gives the allowable maximum dissipative levelγfor different ˉσandδi, where a larger ˉσresults in the decrease in dissipative levelγand a smallerδiwill improve the dissipative performance.

    Randomly choose the initial values of CPSs within the range of[-π,π], and let ?x(k)=[-3,2]fork ∈[-5.0]Z.Figure 4 reveals the evolution of synchronization errors under random 200 realizations, which proves that the designed control method can ensure error convergence.As shown in Fig.5,the states of CPSs subject to packet losses track the state of the target node in finite timeT.As Remark 3 said,the PDC method is used and the curves of the controller states and their triggering instants are depicted in Figs.6(a)and 6(b).The update frequency of the control signals is reduced efficiently.

    Fig.4.The response of the synchronization errors in closed-loop CPSs under 200 realizations.

    Table 1.The allowable maximum dissipative level γ for various ˉσ and δi.

    Table 2.A comparison of TR under various methods.

    Fig.5.States of the closed-loop CPSs under packet losses and switched system modes.

    To indicate the advantage, Table 2 compares the triggering rate (TR) of three pinned nodes under various triggering mechanisms in Refs.[27,28]and this paper.Clearly,the average TR(ATR)of our used DDETM is significantly lower than techniques in others.Moreover, we observe ATR rises with the growth of ?ρi.

    Fig.6.(a)The curves of controller signals.(b)The triggering instants of controllers 1,2 and 6.

    Example 2 For Corollary 1,consider the Markov doublemode-switched CPSs,including five subsystems where the parameter matrices are provided in Table 3.

    Based on LMIs given in Eq.(55), we can calculate the feasible controller gains as follows:

    and the allowable maximum dissipative levelγ=2.5261.

    Fig.7.The phase diagram of ?x(k)for two switched modes.

    Table 3.System parameter matrices for each mode.

    Assumed initial values of nodes in the interval [-3,3],simulation results of closed-loop errors and states are exhibited in Fig.8, where FTS can be realized for CPSs suffering from random packet losses.Controller signals are shown in Fig.9 and the curves are step-like;this indicates that transmission only occurs at triggering sampling instants.Figure 10(a)gives the variation tendency of three dynamic variablesΓi(k)fori=1,2,5, which vary together with the synchronization errors.The triggering performance of each node is displayed in Fig.10(b).

    In the following, the control performance for the situation of different parameter values will be discussed.As listed in Table 4,we compare the TR when the value ofδiis set from 0 to 0.8.It is obvious that ATR decreases with the decline ofδimonotonically,as described in Remark 1.Although a lower TR saves more computation resources,control ability may be affected because of receiving less available data.

    Fig.10.(a)The evolutions of the dynamic variable Γi(k)for i=1,2,5.(b)The triggering instants of controllers 1,2 and 5.

    Table 4.A comparison of TRs under different values of δi.

    5.Conclusions

    In this paper, the problem of finite-time dissipative synchronization control for TSFCPSs subject to semi-Markov switched parameters and packet losses has been addressed by applying the DDETM.Aiming to build the model of signals affected by random packet dropouts transmitting to the controller, combined with a compensation strategy, an equivalent prediction model is introduced to process the Bernoulli distributed time sequence.Based on an augmented modedependent LKF and ERCMI technique, the criterion of FTS with strictly dissipative performance has been deduced in terms of LMIs, which further solves the control gain matrices.The theoretical effectiveness and superiority are proved by two examples.In the future,the event-based control strategy will be extended to CPSs with more realistic problems,such as cyber-attack and sensor faults.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.62263005),Guangxi Natural Science Foundation (Grant No.2020GXNSFDA238029), Laboratory of AI and Information Processing (Hechi University),Education Department of Guangxi Zhuang Autonomous Region (Grant No.2022GXZDSY004), Innovation Project of Guangxi Graduate Education (Grant No.YCSW2023298),and Innovation Project of GUET Graduate Education (Grant Nos.2022YCXS149 and 2022YCXS155).

    猜你喜歡
    張煜
    老家的院子和池塘
    你好,身體(3)
    虎鯨飛天
    鋁合金油箱放油塞可靠性分析
    溫暖陪伴,快樂加倍
    花開的季節(jié)
    Measuring Loschmidt echo via Floquet engineering in superconducting circuits
    江門市新會(huì)區(qū)大鰲鎮(zhèn)特沙小學(xué)作品集
    ViVi美眉(2021年12期)2021-05-30 10:48:04
    腫瘤醫(yī)生自揭治療亂象之后
    久久久国产成人精品二区| 久久久成人免费电影| 国产精品美女特级片免费视频播放器| 看非洲黑人一级黄片| 国产av在哪里看| 久久人人精品亚洲av| 亚洲欧美日韩高清在线视频| 日本av手机在线免费观看| av在线蜜桃| 人人妻人人看人人澡| 国产精华一区二区三区| 日本免费一区二区三区高清不卡| 国产精品乱码一区二三区的特点| 欧美成人精品欧美一级黄| 99久国产av精品| 日韩 亚洲 欧美在线| 久久6这里有精品| 久久久精品94久久精品| 亚洲欧美成人综合另类久久久 | 中文字幕免费在线视频6| 国产精品嫩草影院av在线观看| 美女xxoo啪啪120秒动态图| 亚洲av男天堂| 国产极品精品免费视频能看的| 搞女人的毛片| 精品久久久噜噜| 国产在线精品亚洲第一网站| 久久草成人影院| a级毛色黄片| 欧美成人一区二区免费高清观看| 午夜亚洲福利在线播放| 91麻豆精品激情在线观看国产| 波多野结衣高清无吗| 免费无遮挡裸体视频| 波多野结衣巨乳人妻| 精品国内亚洲2022精品成人| 如何舔出高潮| 女的被弄到高潮叫床怎么办| 国产精品一区www在线观看| 99久国产av精品国产电影| 国产黄片视频在线免费观看| 精品久久久久久久久av| 免费av毛片视频| 国内揄拍国产精品人妻在线| 欧美日韩在线观看h| 自拍偷自拍亚洲精品老妇| 亚洲av二区三区四区| 国产色爽女视频免费观看| 中文字幕免费在线视频6| 可以在线观看的亚洲视频| 男插女下体视频免费在线播放| 精品免费久久久久久久清纯| 99在线人妻在线中文字幕| 国产精品,欧美在线| 久久精品国产自在天天线| 蜜臀久久99精品久久宅男| 国产免费一级a男人的天堂| 国产精品一区二区三区四区免费观看| 小蜜桃在线观看免费完整版高清| 特大巨黑吊av在线直播| 最近手机中文字幕大全| 综合色丁香网| 国产一区二区亚洲精品在线观看| 成人特级av手机在线观看| 男女边吃奶边做爰视频| 亚洲内射少妇av| av国产免费在线观看| av在线蜜桃| 少妇熟女aⅴ在线视频| 日本在线视频免费播放| 国产成人a∨麻豆精品| 一边亲一边摸免费视频| 波多野结衣高清作品| 久久久成人免费电影| 3wmmmm亚洲av在线观看| 深夜a级毛片| 亚洲精品日韩在线中文字幕 | АⅤ资源中文在线天堂| 一区福利在线观看| 国产一区二区在线观看日韩| 国产爱豆传媒在线观看| 一本久久精品| 日韩欧美三级三区| 成人三级黄色视频| 日韩一本色道免费dvd| av福利片在线观看| 欧美激情久久久久久爽电影| 亚洲成av人片在线播放无| 免费人成在线观看视频色| 老司机福利观看| 国产麻豆成人av免费视频| 国产亚洲av嫩草精品影院| 男女视频在线观看网站免费| 舔av片在线| 高清日韩中文字幕在线| 成人毛片60女人毛片免费| 亚洲色图av天堂| av在线亚洲专区| 大又大粗又爽又黄少妇毛片口| 久久精品国产鲁丝片午夜精品| 性欧美人与动物交配| 一进一出抽搐动态| 一本久久中文字幕| 一级毛片久久久久久久久女| 亚洲最大成人av| 亚洲国产欧美人成| 国国产精品蜜臀av免费| 色哟哟·www| 国产一区二区亚洲精品在线观看| 国产精品爽爽va在线观看网站| 欧美性猛交黑人性爽| 国产一区二区激情短视频| 国产一区二区在线av高清观看| 中文精品一卡2卡3卡4更新| 色吧在线观看| 有码 亚洲区| 国产精品一区二区三区四区久久| 亚洲国产欧洲综合997久久,| 亚洲内射少妇av| 九色成人免费人妻av| 波多野结衣高清作品| 波多野结衣高清作品| 99九九线精品视频在线观看视频| 国产一区二区激情短视频| 国产一区二区在线av高清观看| 我的女老师完整版在线观看| 国产淫片久久久久久久久| 日日摸夜夜添夜夜爱| 国产高清有码在线观看视频| 日本av手机在线免费观看| 日本av手机在线免费观看| 日本免费a在线| 青青草视频在线视频观看| 国产精品女同一区二区软件| 国产一区二区亚洲精品在线观看| 爱豆传媒免费全集在线观看| 一区福利在线观看| 亚洲av免费在线观看| 午夜福利视频1000在线观看| 成熟少妇高潮喷水视频| 欧美日韩国产亚洲二区| 中文字幕av成人在线电影| 亚洲内射少妇av| 日韩高清综合在线| 欧美3d第一页| 国产成人一区二区在线| 午夜福利高清视频| 亚洲欧洲国产日韩| 校园人妻丝袜中文字幕| 特大巨黑吊av在线直播| 赤兔流量卡办理| 免费无遮挡裸体视频| 午夜福利在线观看免费完整高清在 | 麻豆久久精品国产亚洲av| 国产高清激情床上av| 一区二区三区四区激情视频 | 神马国产精品三级电影在线观看| 国国产精品蜜臀av免费| 男人和女人高潮做爰伦理| 国内久久婷婷六月综合欲色啪| 久久久久国产网址| 亚洲自拍偷在线| 精品午夜福利在线看| 久久久久网色| 欧美日本视频| 中文字幕av在线有码专区| 国产精品综合久久久久久久免费| 九色成人免费人妻av| 热99re8久久精品国产| 人人妻人人看人人澡| 国产高潮美女av| 爱豆传媒免费全集在线观看| 欧美xxxx黑人xx丫x性爽| 男女那种视频在线观看| 黄色配什么色好看| 亚洲精品亚洲一区二区| 美女国产视频在线观看| 午夜亚洲福利在线播放| 成人av在线播放网站| 高清在线视频一区二区三区 | 老师上课跳d突然被开到最大视频| 日韩国内少妇激情av| 日本免费一区二区三区高清不卡| 亚洲av.av天堂| 亚洲av熟女| 美女 人体艺术 gogo| 精品人妻一区二区三区麻豆| 免费看光身美女| 午夜福利高清视频| 丰满的人妻完整版| 日日干狠狠操夜夜爽| 午夜爱爱视频在线播放| 中文在线观看免费www的网站| 少妇熟女aⅴ在线视频| 免费看a级黄色片| 亚洲精品粉嫩美女一区| 亚洲va在线va天堂va国产| 国产精品一二三区在线看| 成人美女网站在线观看视频| 变态另类成人亚洲欧美熟女| 亚洲欧美日韩无卡精品| 搡老妇女老女人老熟妇| 亚洲欧美精品综合久久99| 国产精品一区二区在线观看99 | 国产精品免费一区二区三区在线| 卡戴珊不雅视频在线播放| 国产69精品久久久久777片| 日韩国内少妇激情av| 少妇丰满av| 欧美在线一区亚洲| 精品99又大又爽又粗少妇毛片| 国产日韩欧美在线精品| 午夜激情欧美在线| 级片在线观看| 亚洲国产高清在线一区二区三| 色综合亚洲欧美另类图片| 麻豆国产av国片精品| 中国美白少妇内射xxxbb| 欧美日韩精品成人综合77777| 国产精品久久久久久av不卡| 大又大粗又爽又黄少妇毛片口| 欧美又色又爽又黄视频| 亚洲七黄色美女视频| 乱码一卡2卡4卡精品| 欧美精品一区二区大全| 国产黄色小视频在线观看| 免费在线观看成人毛片| 国产免费男女视频| 日韩欧美一区二区三区在线观看| 亚洲人与动物交配视频| 国产精品国产高清国产av| 精品午夜福利在线看| 亚洲一区高清亚洲精品| 国产精品一区二区在线观看99 | 精品久久久久久久末码| 真实男女啪啪啪动态图| 我的老师免费观看完整版| 亚洲自偷自拍三级| 久久精品夜色国产| 久久久久久久久久成人| 亚洲欧洲国产日韩| 99在线视频只有这里精品首页| 亚洲欧美日韩高清在线视频| 亚洲自拍偷在线| 免费观看的影片在线观看| 少妇的逼水好多| 久久国产乱子免费精品| 一本久久精品| 精品久久久久久久人妻蜜臀av| 欧美日本亚洲视频在线播放| 精品久久久久久久末码| 女的被弄到高潮叫床怎么办| 精品一区二区三区人妻视频| 少妇裸体淫交视频免费看高清| 色尼玛亚洲综合影院| 日韩一本色道免费dvd| 91久久精品国产一区二区成人| 亚洲不卡免费看| 麻豆久久精品国产亚洲av| 偷拍熟女少妇极品色| 国产av一区在线观看免费| 国产高潮美女av| 成人午夜高清在线视频| 日韩视频在线欧美| 欧美又色又爽又黄视频| 国产精品久久久久久av不卡| 成人欧美大片| 久久99精品国语久久久| 国产精品久久视频播放| 日韩大尺度精品在线看网址| 深夜a级毛片| 久久九九热精品免费| 亚洲国产精品成人久久小说 | 国产成人精品婷婷| 啦啦啦啦在线视频资源| 波野结衣二区三区在线| 色吧在线观看| 夜夜夜夜夜久久久久| 夫妻性生交免费视频一级片| 国产成人福利小说| 国产91av在线免费观看| 久久久久久久亚洲中文字幕| av天堂中文字幕网| 亚洲欧洲日产国产| 中文字幕免费在线视频6| 我的老师免费观看完整版| 国产精品女同一区二区软件| 欧洲精品卡2卡3卡4卡5卡区| 欧美一区二区精品小视频在线| 淫秽高清视频在线观看| 日本三级黄在线观看| 1000部很黄的大片| 长腿黑丝高跟| 熟女人妻精品中文字幕| 亚洲在久久综合| 波多野结衣高清作品| 女人被狂操c到高潮| 黄色日韩在线| 精品午夜福利在线看| 在线免费十八禁| 午夜免费男女啪啪视频观看| 久久久午夜欧美精品| 插阴视频在线观看视频| a级一级毛片免费在线观看| 久久精品久久久久久噜噜老黄 | 国产av不卡久久| 国产成人aa在线观看| 一个人看视频在线观看www免费| 丰满的人妻完整版| 国产淫片久久久久久久久| 成人永久免费在线观看视频| 久久婷婷人人爽人人干人人爱| 久久九九热精品免费| 国产亚洲精品av在线| 99热网站在线观看| 成人av在线播放网站| 夫妻性生交免费视频一级片| 日本爱情动作片www.在线观看| 国产成人午夜福利电影在线观看| 亚洲内射少妇av| 亚洲av成人精品一区久久| 国产伦精品一区二区三区视频9| 又爽又黄无遮挡网站| 欧美+亚洲+日韩+国产| 麻豆成人午夜福利视频| 国产高清不卡午夜福利| 男女边吃奶边做爰视频| 色播亚洲综合网| 国产成人a∨麻豆精品| 国产 一区 欧美 日韩| 国产一级毛片七仙女欲春2| 日韩成人av中文字幕在线观看| 黄色欧美视频在线观看| 哪个播放器可以免费观看大片| 麻豆国产av国片精品| 婷婷亚洲欧美| 日韩强制内射视频| 国产高清三级在线| 我的老师免费观看完整版| 免费大片18禁| 亚洲国产精品久久男人天堂| 亚洲激情五月婷婷啪啪| 两个人视频免费观看高清| 啦啦啦韩国在线观看视频| 欧美日韩精品成人综合77777| 在现免费观看毛片| 国产精品伦人一区二区| 99久久久亚洲精品蜜臀av| 日韩av在线大香蕉| 成人一区二区视频在线观看| 精品久久久久久久久亚洲| 岛国在线免费视频观看| 男人狂女人下面高潮的视频| 亚洲成人av在线免费| 欧美一区二区国产精品久久精品| 干丝袜人妻中文字幕| 精品一区二区三区人妻视频| 我要搜黄色片| 国产综合懂色| 亚洲精品日韩av片在线观看| 久久久国产成人免费| 免费观看精品视频网站| 少妇人妻一区二区三区视频| 给我免费播放毛片高清在线观看| 中文资源天堂在线| av免费在线看不卡| 女人被狂操c到高潮| 边亲边吃奶的免费视频| 久久久久九九精品影院| 午夜福利在线观看免费完整高清在 | 一级黄片播放器| 国产三级中文精品| 麻豆av噜噜一区二区三区| 久久99蜜桃精品久久| 免费看av在线观看网站| 精华霜和精华液先用哪个| 欧美成人精品欧美一级黄| 婷婷色综合大香蕉| 国产精品永久免费网站| 99久久精品热视频| 十八禁国产超污无遮挡网站| 亚洲内射少妇av| 免费一级毛片在线播放高清视频| 中国国产av一级| 免费av观看视频| 中国国产av一级| 成人永久免费在线观看视频| 女人十人毛片免费观看3o分钟| 国产午夜精品论理片| 亚洲精品色激情综合| 淫秽高清视频在线观看| 成年女人永久免费观看视频| 麻豆国产av国片精品| 九草在线视频观看| 日韩av不卡免费在线播放| 一级毛片电影观看 | 日本色播在线视频| 色播亚洲综合网| av专区在线播放| 久久欧美精品欧美久久欧美| 国产视频首页在线观看| 国产黄色视频一区二区在线观看 | 国产色爽女视频免费观看| 日本黄色视频三级网站网址| a级毛片a级免费在线| 老师上课跳d突然被开到最大视频| 日韩一本色道免费dvd| 午夜福利在线观看吧| 久久亚洲国产成人精品v| 亚洲av免费在线观看| 国产精品蜜桃在线观看 | 亚洲av成人av| 校园春色视频在线观看| 2022亚洲国产成人精品| 日本欧美国产在线视频| 国产女主播在线喷水免费视频网站 | 国产成人91sexporn| 中文在线观看免费www的网站| 国产一区亚洲一区在线观看| 免费一级毛片在线播放高清视频| 久久综合国产亚洲精品| 亚洲精华国产精华液的使用体验 | 熟女电影av网| 久99久视频精品免费| 亚洲精品亚洲一区二区| 欧美丝袜亚洲另类| 自拍偷自拍亚洲精品老妇| 中出人妻视频一区二区| 亚洲综合色惰| 欧美另类亚洲清纯唯美| ponron亚洲| 嫩草影院新地址| 五月玫瑰六月丁香| 在线免费十八禁| 欧美人与善性xxx| 久久人人爽人人爽人人片va| 国产一级毛片在线| 亚洲人成网站在线播放欧美日韩| 天堂√8在线中文| 嘟嘟电影网在线观看| 亚洲国产高清在线一区二区三| 我的女老师完整版在线观看| 久久久色成人| 欧美潮喷喷水| 久久国产乱子免费精品| 亚洲欧美中文字幕日韩二区| 国产精品一区二区在线观看99 | 亚洲一区高清亚洲精品| 不卡视频在线观看欧美| 国产午夜精品久久久久久一区二区三区| 美女xxoo啪啪120秒动态图| 精品久久久久久成人av| 国内少妇人妻偷人精品xxx网站| 91在线精品国自产拍蜜月| 亚洲美女搞黄在线观看| 男的添女的下面高潮视频| 午夜老司机福利剧场| 亚洲无线观看免费| 天堂√8在线中文| 国产精品永久免费网站| 久久99精品国语久久久| 亚洲四区av| 成人亚洲欧美一区二区av| 在线观看美女被高潮喷水网站| 中文字幕精品亚洲无线码一区| 国产视频内射| 麻豆久久精品国产亚洲av| av卡一久久| 91精品一卡2卡3卡4卡| 精品午夜福利在线看| 亚洲国产精品国产精品| www日本黄色视频网| 成年免费大片在线观看| 男女啪啪激烈高潮av片| 好男人在线观看高清免费视频| 在线a可以看的网站| 日日摸夜夜添夜夜爱| 久久精品国产亚洲av涩爱 | 性欧美人与动物交配| 我的老师免费观看完整版| 男人和女人高潮做爰伦理| 亚洲精品影视一区二区三区av| 99久久精品一区二区三区| 色吧在线观看| 免费看日本二区| 国产乱人视频| 能在线免费观看的黄片| 国产精品99久久久久久久久| 少妇高潮的动态图| 国产一区二区在线av高清观看| 直男gayav资源| 中文欧美无线码| 成人性生交大片免费视频hd| 日韩国内少妇激情av| 国产成人福利小说| 日本三级黄在线观看| 午夜福利在线在线| 国内精品宾馆在线| 波野结衣二区三区在线| 亚洲七黄色美女视频| 成人一区二区视频在线观看| 国产伦精品一区二区三区视频9| 久久久国产成人精品二区| 波野结衣二区三区在线| 校园人妻丝袜中文字幕| 午夜免费男女啪啪视频观看| 亚洲国产欧美在线一区| 国产高清三级在线| 久久99热这里只有精品18| 蜜桃久久精品国产亚洲av| 欧美bdsm另类| 99riav亚洲国产免费| 少妇熟女欧美另类| 色哟哟哟哟哟哟| 好男人在线观看高清免费视频| 国产亚洲精品久久久久久毛片| 亚洲高清免费不卡视频| 婷婷亚洲欧美| 久久综合国产亚洲精品| 国产成人一区二区在线| 免费观看人在逋| 精品不卡国产一区二区三区| 免费在线观看成人毛片| 国产精品一及| 亚洲性久久影院| 欧美日韩乱码在线| 一个人看的www免费观看视频| 午夜福利在线观看吧| 1024手机看黄色片| 国产精品乱码一区二三区的特点| 观看美女的网站| 看黄色毛片网站| 99在线人妻在线中文字幕| 99精品在免费线老司机午夜| 亚洲中文字幕一区二区三区有码在线看| 久久这里只有精品中国| 中文字幕制服av| 男人舔女人下体高潮全视频| 中出人妻视频一区二区| 成人三级黄色视频| 热99re8久久精品国产| 亚洲电影在线观看av| 性插视频无遮挡在线免费观看| 国产探花极品一区二区| 久久久精品欧美日韩精品| 中文字幕av在线有码专区| 97在线视频观看| 欧美最黄视频在线播放免费| 日韩欧美三级三区| 国产乱人偷精品视频| 久久99热这里只有精品18| 欧美极品一区二区三区四区| av免费观看日本| 亚洲av不卡在线观看| av免费观看日本| 亚洲欧美精品综合久久99| 欧美日韩精品成人综合77777| 极品教师在线视频| 26uuu在线亚洲综合色| 校园春色视频在线观看| 精品一区二区免费观看| 久久久a久久爽久久v久久| www日本黄色视频网| 91久久精品国产一区二区三区| 午夜视频国产福利| 欧美一区二区精品小视频在线| 好男人在线观看高清免费视频| 欧美精品一区二区大全| 青春草国产在线视频 | 亚洲av成人av| 日韩在线高清观看一区二区三区| 综合色丁香网| 国产高清不卡午夜福利| 99久国产av精品国产电影| 午夜福利高清视频| 欧美色欧美亚洲另类二区| 深夜a级毛片| 成年av动漫网址| 我的女老师完整版在线观看| 国内精品久久久久精免费| 丰满人妻一区二区三区视频av| 精品久久久噜噜| 色哟哟·www| 赤兔流量卡办理| 搡老妇女老女人老熟妇| av天堂中文字幕网| 1024手机看黄色片| 看免费成人av毛片| 人人妻人人澡欧美一区二区| 婷婷色av中文字幕| 美女国产视频在线观看| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 亚洲成av人片在线播放无| 日韩av在线大香蕉| 悠悠久久av| 久久草成人影院| 久久久久久久久久黄片| 小蜜桃在线观看免费完整版高清| 欧美性感艳星| 黄色配什么色好看| 亚洲欧美清纯卡通| 中文字幕av成人在线电影| 久久精品久久久久久久性| 26uuu在线亚洲综合色| 国产高清三级在线| 在线观看66精品国产| 国产视频首页在线观看| 久久久久久久久久成人| 少妇猛男粗大的猛烈进出视频 | 日本黄色视频三级网站网址| 亚洲人与动物交配视频| 18禁黄网站禁片免费观看直播| 中文字幕人妻熟人妻熟丝袜美| 一边亲一边摸免费视频|