• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ab initio study of chemical effect on structural properties of Ti-Al melts

    2023-11-02 08:37:02YunFeng馮運YanFeng馮艷andHaiLongPeng彭海龍
    Chinese Physics B 2023年10期
    關鍵詞:海龍

    Yun Feng(馮運), Yan Feng(馮艷), and Hai-Long Peng(彭海龍)

    School of Materials Science and Engineering,Central South University,Changsha 410083,China

    Keywords: Ti-Al alloys,chemical effect,atomic structure,ab initio simulations

    1.Introduction

    TiAl alloys attract much attention in the application of engineering,e.g.,in aerospace and automotive fields,owing to the lightweight and excellent mechanical properties.[1,2]When quenching the metallic melts at a fast-enough rate, crystallization can be avoided and the amorphous state of TiAl alloys is obtained.TiAl metallic glass (MG) has many unique properties that are preponderant to the crystalline counterparts, especially in mechanical performance and corrosion resistance.[3-5]Structural and dynamic properties of MGs can inherit from those of the liquid state, among which the most significant findings are the liquid-like regions and the associated string-like relaxation process.[6,7]From the aspect of inherency,liquid structure can significantly influence that of the metallic glass.

    Investigating the structure of TiAl melts is enlightening in unveiling the structural feature for glass-forming ability or undercooling capability.Icosahedral short-range order (ISRO)is a peculiar local packing structure that is of five-fold symmetry but energetically stable.It was proposed first by Frank to explain the undercooling behaviors of liquids.[8]Existence of the ISRO was verified in diffraction experiment on pure Ti melts,[9,10]and liquid mixtures with Ti.[11,12]And soon after,it was found to be prevailing in metallic glass compounded with Zr and/or Cu.[13]They can even aggregate together to form some backbones or mediate-range order in the glass,thus stabilizing the supercooled liquids, and benefiting the glassforming capability.[14,15]

    Emergence of ISRO has also been reported in Ti-Al alloys.Upon cooling down, the population of ISRO grows up,and they can connect with each other by volume sharing to form icosahedral medium-range order.[16,17]In TiAl3metallic glass it has been found that the connecting mode of icosahedra, i.e., the face sharing and vertex sharing, can induce the split of the second peak in pair distribution function.[18]Additionally, the cooling rate is another important factor affecting the connections between icosahedral cluster and its defective structure.[19]However, all these researches are within the frame of classical molecular dynamics(MD)simulations.Reliability of the results from the classical MD simulations strongly depends on the accuracy of the empirical potential utilized.[20-23]Anab initostudy on the structure of Ti-Al melts is desired to elucidate the detailed atomic structure including the ISRO.

    Additionally, the alloy with Al element usually displays the feature of chemical interaction, due to the strong affiliation of Al with transition metals.[20,24,25]Structure change influenced by this interaction can be summarized as chemical short-range order (CSRO).For instance, the atomic radius of Al can be changed with composition in Au-Al melt[20]and shortened in Zr-Cu-Al MGs.[26]The affiliating propensity can trigger off the formation of chemically biased clusters in Zr-Ni-Al melts.[21]Inevitably, this chemical interaction can impose nontrivial influence on the formation of icosahedral clusters that is a short-range order (SRO) in topology.However,the interplay between the icosahedral packing and chemical interaction in Ti-Al melts has remained unclear in Ti-Al melts hitherto.

    2.Simulation details

    To address the aforementioned questions, we conductedab initiomolecular dynamics (AIMD) simulations on Ti-Al alloys,with the Al concentration systematically changed,i.e.,in Ti100-xAlxalloys withx= 0, 20, 40, 60, 80, 100.The simulations were performed by using the Viennaab initiosimulation package (VASP),[27]with the electron-ion interaction described by the projected augmented-wave through using the generalized gradient approximation (GGA)[28]for the exchange-correlation function in the Perdew-Burke-Ernzerhof parameterization.[29]Plane-wave basis was used with an energy cutoff of 270 eV.Only theΓpoints were used to sample the Brillouin zone.Newton’s equations of motion were integrated in the velocity form by using the Verlet’s algorithm in NVT canonical ensembles in time steps of 3.0 fs.The temperature was controlled by a Nos′e thermostat.

    A cubic simulation box containing 250 atoms was simulated with periodic boundary conditions applied to all the dimensions.The initial configuration was constructed at 2000 K with all atoms randomly placed in the cubic box.After a shorttime relaxation (about 36 ps) the liquid samples were subsequently cooled down to 1500 K.Atom information is collected at this temperature to investigate the structural evolution with concentration.Cell size was adjusted according to the density measured in experiment.[30]At this density,the resulting pressure of the system does not exceed±4 kbar(1 bar=105Pa).For each alloy, the total relaxation time exceeds 60 ps, with the configurations in the first 12 ps discarded and the left ones used for data analysis.

    3.Results and discussion

    The microscopic structure of amorphous system can be described by the partial pair distribution function (PDF),gαβ(r), which gives the probability of finding an atom of typeβat a distancerfrom the central atom of typeα.The total PDF can be calculated by the partial ones viag(r) =∑αβ cαcβgαβ(r).

    Figure 1 shows the calculated total and partial PDFs in Ti-Al melts with various compositions.The shapes and positions of the first peaks are nearly unchanged with the Al concentrationxAlincreasing.The first peak position is usually considered to be the diameter of the atomR(1).R(1)is found to be around 2.80 °A,2.76 °A,2.81 °A,2.84 °A for total,Al-Al,Al-Ti,and Ti-Ti pairs,respectively[see Figs.1(a)-1(d)].The atomic diameters from Al-Al and Ti-Ti pairs are consistent with the values from Pauling radius,[31]whereRAl=1.429 °A andRTi=1.467 °A.This gives the atomic size ratio about 0.97,indicating a small size discrepancy between these two species.

    To quantify the chemical effect,we evaluate the chemical environment in the nearest neighbor shells with the partial coordination number,Zαβ, which is the average neighbor number of neighbors of typeβaround the central atom of typeα.It can be calculated by the partial PDF as follows:

    whereρis the average number density,cβis the concentration of atomic typeβ,andrcis the first minimum distance in the corresponding partial PDF.The total coordination number for atom typeαisZα= ∑β Zαβ.In the case of random substitution, the neighbors around some atoms are randomly selected according to the concentration of species.This gives the ratio of coordination numbers in random substitution:Zαβ/Zβ=cα, independent of the type of the central atom.

    The calculated ratios of the coordination numbers are shown in Fig.2.The dashed lines are the expectation from random substitution.Clear deviation of the concentration is observed around central Al atoms as seen in Fig.2(a).The coordinating Ti atoms around Al atoms are found to be more than those expected from the random substitution,but the surrounding Al atoms are less than expected.This indicates that Al atoms prefer to connect with Ti atoms but avoid connecting with themselves.The excess value to the random substitution reaches a maximum value atxAl=40.The preferred connection for Ti-Al nearest neighbors and the avoidance for Al-Al ones indicate a strong affiliation between Al and Ti atoms.The affiliation tendency difference should be induced by the chemical interaction,analogous to the reported phenomenon of the concentration-biased clusters in the nearest neighbor shells in Zr-Ni-Al melt.[21]In contrast,the coordinating concentration almost coincides with that of the random substitution around the central Ti atoms [see Fig.2(b)].This implies that the biased concentration is mainly caused by the chemical interaction with Al atoms.Significantly high negative values of experimental data are found for the excess molar volume,which may relate to the concentration-biased connection in Al-Ti melts.[30]

    Fig.2.Ratio of coordinating numbers around central(a)Al atoms and(b) Ti atoms as a function of xAl, with dashed lines representing the expected value from random substitution.

    It is interesting to see how the geometric packing of local structures,e.g.,the packing of icosahedral clusters(ISRO),can be affected by the occurrence of the chemically preferred short-range order.To this end,we utilize the Voronoi tessellation method to characterize the local structure in the melt.The Voronoi index〈n3,n4,n5,n6〉,wherenidenotes the number ofi-edged faces of the polyhedral cluster surrounding an atom,is used to characterize the packing of the nearest neighbor atoms around a central atom.[33]Based on the Voronoi analysis, the local five-fold symmetry (LFFS) is defined as the fraction of the pentagon faces in the polyhedron:d5=n5/∑i ni.[34]The LFFS has been found to be a good indicator for the mechanical property of metallic glasses.[35]Typically,d5is close to 1 for clusters of icosahedral-like order,and it is close to zero for clusters of crystalline-like order(for which triple or quadruple symmetry dominates).

    Distribution probability ofd5is Gaussian-like in the liquid [see Fig.3(a)].The population of perfect icosahedral clusters (d5=1) is small, and the highest percentage is only about 1.8% in Ti40Al60melt.This indicates that the most of icosahedral clusters are distorted in liquid.Interestingly, the population of icosahedral-like clusters(d5>0.5)is higher in the mixture than that in pure metal, while the population of crystalline-like clusters (d5<0.5) is smaller in the mixture.This gives a non-monotonic evolution of the population of the icosahedral-like clusters with Al concentration.As the atomic size ratio is small(=0.97),we conclude that the evolution of atomic packing structure can be dominated by the chemical interaction,rather than the entropic effect from the mixing of two different hard spheres.

    Although the LFFS clusters can exhibit the evolution tendency of the population with concentration,an overall ordered or disordered extent in liquid is still unclear.For this,we use the structural entropy or Shannon entropy to measure the local structure diversity in the liquid:[36]

    Here,Piis the percentage of Voronoi polyhedron of typeiin the liquid.For the ordered system with only one type of local structure,S=0.For the disordered system where the probabilities of all the local structures are the same,Sreaches its maximum value.

    Figure 4(a) shows the composition evolution of the calculated structural entropy in Al-Ti system.Interestingly, a non-monotonic evolution is observed: the structural entropy first decreases then increases, with a minimum emerging atxAl=60.Thus, the liquid structure is more ordered in the middle composition.As alluded above,this relatively ordered structure can be due to the chemical interaction emerging in the middle compositions.In experiment and AIMD simulation, it is found that the mixing enthalpy also shows a nonmonotonic evolution; it first decreases, then increases, with a minimum value reported atxAl≈60,[37,38]coinciding well with the composition of the minimum local structural entropy found here.The most negative mixing enthalpy verifies the strongest chemical interaction at this composition, and can lead to the most ordered local structure.

    The chemical interaction may also affect the spatial correlation of local structures.To this end,we calculate the spatial correlation indexCijbetween two polyhedral clusters of typeiandj, which is represented by LLFS (d5) and defined asCij=pij/-1, wherepijis the probability of LFFS of typesiandjbeing the nearest neighbors in the simulated alloys,andis the probability of these two clusters in random mixing.[15]Therefore,a positive value ofCijindicates the preferred correlation between clustersiandj, while a negative value represents the anticorrelation (i.e., the atoms of these two types avoid being nearest neighbors).

    Fig.4.(a)Voronoi structural entropy as a function of composition;patial correlation of different LFFS clusters for the nearest(b)Al-Al pairs,(c)Al-Ti pairs,and(d)Ti-Ti pairs in Ti40Al60.

    To distinguish the correlation between different atomic pairs, we calculate the pair-type dependentCi j, with the results shown in Figs.4(b)-4(d) for Al-Al, Al-Ti, and Ti-Ti pairs,respectively.The correlation index is positive in the diagonal direction (from bottom left to top right), which represents the correlation between alike clusters.The largest values appear in the bottom left corner and the top right corner,indicating that the correlation among the icosahedral-like clusters or the crystalline-like clusters is the strongest.Of the different atomic pairs,the Al-Ti pair has the largest maximum correlation extent, Al-Al pair has the intermediate one, and the Ti-Ti pair has the smallest one.This, exactly, corresponds to the chemical interaction found in Fig.2.Although the results shown in Fig.4 are from Ti40Al60melt,we find that this conclusion remains unchanged with the mixing concentration changing.This shows that the chemical interaction plays an important role in determining the connection of local structures in Ti-Al alloys.

    4.Conclusions

    Ab initiomolecular dynamics simulations are conducted to study the chemical effect on the structural properties in Ti-Al alloys, for which the Al concentration is systematically changed.The liquid structure is measured by pair correlation functions, which shows a splitting tendency in the secondary peaks in the intermediate compositions in Al-Al and Al-Ti pairs.The chemical effect is characterized by the partial coordination numbers, finding that there exists a preferred connection for Al-Ti nearest pairs.This effect is also exhibited as the excess Ti coordinating atoms in the polyhedral clusters:those atoms are characterized by the local five-fold symmetry parameter.With Al concentration increasing,the structural entropy shows a non-monotonic behavior: it first decreases to a minimum value at Ti40Al60,then increases beyond this point.This indicates the relatively ordered local structure induced by chemical interaction.The spatial correlation displays the strongest intensity in the crystalline-like or the icosahedrallike clusters for Al-Ti pairs,coinciding with the preferred connection found in these pairs.

    Acknowledgements

    This work was done by using the computer resources provided by High Performance Computing Cluster of Central South University.

    Project supported by the Open Research Fund of Songshan Lake Materials Laboratory, China (Grant No.2022SLABFN14) and the Natural Science Foundation of Hunan Province,China(Grant No.2021JJ30833).

    猜你喜歡
    海龍
    Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
    王海龍作品選
    悅泰海龍
    葉海龍
    快速反應
    政工學刊(2021年12期)2021-12-22 08:40:28
    過“政治生日”
    政工學刊(2021年11期)2021-11-01 01:08:56
    封面人物
    天工(2021年2期)2021-03-03 07:29:16
    葉海龍,你別裝啦
    奇妙的“中華海龍”
    海龍與海馬
    少妇丰满av| 777米奇影视久久| 亚洲精品乱久久久久久| 插阴视频在线观看视频| 一本久久精品| 亚洲人成网站在线播| 亚洲人成网站在线观看播放| 国产一区二区三区综合在线观看 | 啦啦啦中文免费视频观看日本| 51国产日韩欧美| 熟妇人妻不卡中文字幕| 亚洲性久久影院| 99视频精品全部免费 在线| 日韩中字成人| 免费av中文字幕在线| 六月丁香七月| 亚洲av综合色区一区| 国产伦精品一区二区三区四那| 人体艺术视频欧美日本| 五月伊人婷婷丁香| 观看美女的网站| 国产淫片久久久久久久久| 免费看av在线观看网站| 熟女av电影| 美女脱内裤让男人舔精品视频| 观看av在线不卡| 丰满乱子伦码专区| 在线免费观看不下载黄p国产| 亚洲精品中文字幕在线视频 | 色视频www国产| 丰满乱子伦码专区| 在线观看免费视频网站a站| 亚洲综合精品二区| 在线观看免费高清a一片| 国产成人精品婷婷| 精品久久久久久久久亚洲| 国产精品福利在线免费观看| 亚洲av男天堂| 国产成人免费无遮挡视频| 特大巨黑吊av在线直播| 午夜视频国产福利| 在线观看美女被高潮喷水网站| 国产真实伦视频高清在线观看| 日韩欧美 国产精品| 国产白丝娇喘喷水9色精品| 熟女av电影| 亚洲欧美日韩东京热| 欧美精品人与动牲交sv欧美| 噜噜噜噜噜久久久久久91| 狂野欧美激情性bbbbbb| 尾随美女入室| 国产一区二区三区av在线| 亚洲国产精品一区三区| 欧美日韩亚洲高清精品| 国产一区二区三区综合在线观看 | 欧美成人一区二区免费高清观看| 九九爱精品视频在线观看| 91狼人影院| 亚洲精品亚洲一区二区| 嫩草影院新地址| 人妻系列 视频| 人妻 亚洲 视频| 日韩人妻高清精品专区| 日韩成人av中文字幕在线观看| 国产黄色视频一区二区在线观看| a级一级毛片免费在线观看| 在线观看av片永久免费下载| 欧美另类一区| 青春草国产在线视频| 日韩在线高清观看一区二区三区| 国产精品福利在线免费观看| 国产高清有码在线观看视频| 中文在线观看免费www的网站| av视频免费观看在线观看| 中国美白少妇内射xxxbb| 最近最新中文字幕大全电影3| 精品视频人人做人人爽| 国产精品一区二区三区四区免费观看| 国产成人精品久久久久久| 亚洲av中文av极速乱| 欧美日韩精品成人综合77777| 十分钟在线观看高清视频www | 一本色道久久久久久精品综合| 国产精品女同一区二区软件| videossex国产| 在线免费十八禁| 欧美丝袜亚洲另类| 狠狠精品人妻久久久久久综合| 在线观看一区二区三区激情| 国产午夜精品一二区理论片| 久久久a久久爽久久v久久| 国语对白做爰xxxⅹ性视频网站| 在线观看av片永久免费下载| 国产精品国产三级专区第一集| 色吧在线观看| 亚洲经典国产精华液单| 欧美bdsm另类| 国产亚洲5aaaaa淫片| 久久久久久久久久人人人人人人| 精品亚洲成国产av| 18禁在线无遮挡免费观看视频| 97超视频在线观看视频| 亚洲综合色惰| 中文字幕av成人在线电影| 最黄视频免费看| 国产精品国产三级专区第一集| 我的女老师完整版在线观看| 国产精品一及| 又粗又硬又长又爽又黄的视频| 久久99热这里只频精品6学生| 一区二区三区乱码不卡18| 少妇人妻精品综合一区二区| 在线观看一区二区三区激情| 精品国产露脸久久av麻豆| 日本色播在线视频| 激情五月婷婷亚洲| 亚洲av免费高清在线观看| 狠狠精品人妻久久久久久综合| 久久精品国产亚洲av涩爱| 国内少妇人妻偷人精品xxx网站| 色婷婷av一区二区三区视频| 一区二区三区免费毛片| 美女中出高潮动态图| 免费av不卡在线播放| 一区在线观看完整版| 国产视频首页在线观看| 18禁在线无遮挡免费观看视频| 在线免费观看不下载黄p国产| 国产v大片淫在线免费观看| 精品一品国产午夜福利视频| 国产精品一区二区性色av| 天天躁夜夜躁狠狠久久av| 人妻制服诱惑在线中文字幕| 色视频在线一区二区三区| 久久这里有精品视频免费| 日韩欧美精品免费久久| 我要看日韩黄色一级片| 少妇被粗大猛烈的视频| 国产高潮美女av| 色网站视频免费| 国产伦理片在线播放av一区| 99热这里只有是精品50| 热99国产精品久久久久久7| 久久久国产一区二区| 亚洲国产精品专区欧美| 色网站视频免费| 视频区图区小说| av国产精品久久久久影院| 最近的中文字幕免费完整| 亚洲精品国产av蜜桃| 你懂的网址亚洲精品在线观看| 欧美bdsm另类| 嫩草影院新地址| 黄色视频在线播放观看不卡| 美女中出高潮动态图| 人体艺术视频欧美日本| 亚洲怡红院男人天堂| 校园人妻丝袜中文字幕| 成年免费大片在线观看| 青春草视频在线免费观看| 亚洲精品自拍成人| xxx大片免费视频| 久久久久国产精品人妻一区二区| 国产成人午夜福利电影在线观看| 日韩人妻高清精品专区| 最后的刺客免费高清国语| 老熟女久久久| 免费高清在线观看视频在线观看| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 岛国毛片在线播放| 亚洲精品,欧美精品| 一级片'在线观看视频| 99久久综合免费| 国产久久久一区二区三区| 不卡视频在线观看欧美| 免费观看av网站的网址| 超碰av人人做人人爽久久| 色婷婷久久久亚洲欧美| av专区在线播放| 国产真实伦视频高清在线观看| 伦理电影免费视频| 人妻系列 视频| 久久精品国产a三级三级三级| 欧美xxⅹ黑人| 欧美少妇被猛烈插入视频| 妹子高潮喷水视频| 国产精品99久久久久久久久| 美女国产视频在线观看| 啦啦啦视频在线资源免费观看| a级毛色黄片| 亚洲国产日韩一区二区| 亚洲国产av新网站| videossex国产| 亚洲国产毛片av蜜桃av| 国产高潮美女av| 欧美精品国产亚洲| videossex国产| 99久久精品国产国产毛片| 日日啪夜夜爽| 欧美三级亚洲精品| 色哟哟·www| 亚洲va在线va天堂va国产| 国产乱人偷精品视频| 久久精品国产鲁丝片午夜精品| 欧美人与善性xxx| 欧美xxⅹ黑人| 亚洲国产欧美在线一区| 国产在视频线精品| 精品一品国产午夜福利视频| 午夜福利高清视频| 各种免费的搞黄视频| 性色av一级| 尾随美女入室| 男的添女的下面高潮视频| 七月丁香在线播放| 国产淫片久久久久久久久| 久久久a久久爽久久v久久| 国产在线免费精品| 男女下面进入的视频免费午夜| 欧美zozozo另类| 亚洲精品国产av蜜桃| 网址你懂的国产日韩在线| 亚洲欧美成人综合另类久久久| 国产成人免费无遮挡视频| 国产欧美日韩一区二区三区在线 | 一本久久精品| 在线观看一区二区三区激情| 男女免费视频国产| 搡老乐熟女国产| 日韩一区二区三区影片| 日韩欧美一区视频在线观看 | 秋霞伦理黄片| 中文欧美无线码| 黑人猛操日本美女一级片| 最近2019中文字幕mv第一页| 成人午夜精彩视频在线观看| 亚洲av男天堂| av国产久精品久网站免费入址| 午夜免费男女啪啪视频观看| 亚洲精品自拍成人| 丰满少妇做爰视频| 精品视频人人做人人爽| 国产黄频视频在线观看| 高清欧美精品videossex| 青春草视频在线免费观看| 亚洲欧美日韩无卡精品| 国产成人免费无遮挡视频| 久久精品国产鲁丝片午夜精品| 亚洲最大成人中文| 26uuu在线亚洲综合色| 欧美一区二区亚洲| 亚洲图色成人| 精品人妻偷拍中文字幕| 久久久成人免费电影| 一级a做视频免费观看| 精品久久久久久久久亚洲| 五月伊人婷婷丁香| 黑人高潮一二区| 国产亚洲91精品色在线| 中国三级夫妇交换| 久久久精品94久久精品| 一级毛片电影观看| 久久久久人妻精品一区果冻| 一二三四中文在线观看免费高清| 午夜老司机福利剧场| 色视频www国产| 下体分泌物呈黄色| 熟妇人妻不卡中文字幕| 少妇高潮的动态图| 国产男人的电影天堂91| 五月天丁香电影| 亚洲最大成人中文| 天美传媒精品一区二区| 高清毛片免费看| 亚洲成色77777| 少妇人妻久久综合中文| 在线免费十八禁| av线在线观看网站| av.在线天堂| 精品久久久久久电影网| 国产69精品久久久久777片| 人妻制服诱惑在线中文字幕| 亚洲av成人精品一二三区| 99久久精品国产国产毛片| 久久精品国产鲁丝片午夜精品| 大陆偷拍与自拍| 日韩三级伦理在线观看| 99久国产av精品国产电影| 老师上课跳d突然被开到最大视频| 九草在线视频观看| 精品久久久久久电影网| 最近的中文字幕免费完整| 联通29元200g的流量卡| 男人舔奶头视频| 国产一区亚洲一区在线观看| 久久久色成人| 熟女av电影| 亚洲欧美成人综合另类久久久| 国产在视频线精品| 欧美变态另类bdsm刘玥| av播播在线观看一区| 黄色怎么调成土黄色| av视频免费观看在线观看| 亚洲成人中文字幕在线播放| 国产av国产精品国产| 欧美成人午夜免费资源| 亚洲av日韩在线播放| 一级毛片电影观看| 欧美日韩亚洲高清精品| 亚洲精品久久久久久婷婷小说| 久久97久久精品| 99久久人妻综合| 国产精品.久久久| 26uuu在线亚洲综合色| 欧美日韩国产mv在线观看视频 | 边亲边吃奶的免费视频| 日本爱情动作片www.在线观看| 亚洲图色成人| 亚洲精品视频女| 欧美另类一区| 内地一区二区视频在线| 国产午夜精品久久久久久一区二区三区| 欧美另类一区| 99久久人妻综合| 亚洲电影在线观看av| 一级毛片电影观看| 在线亚洲精品国产二区图片欧美 | 午夜视频国产福利| 高清视频免费观看一区二区| .国产精品久久| 亚洲av中文字字幕乱码综合| 尤物成人国产欧美一区二区三区| 成人高潮视频无遮挡免费网站| 欧美日韩综合久久久久久| 欧美xxⅹ黑人| 搡女人真爽免费视频火全软件| 丰满乱子伦码专区| 日韩亚洲欧美综合| 国产 一区 欧美 日韩| 久久久久国产网址| 大陆偷拍与自拍| 最黄视频免费看| 少妇裸体淫交视频免费看高清| 丝袜脚勾引网站| 新久久久久国产一级毛片| 看免费成人av毛片| 91久久精品电影网| 免费不卡的大黄色大毛片视频在线观看| 国产精品爽爽va在线观看网站| 五月伊人婷婷丁香| 激情五月婷婷亚洲| 99久国产av精品国产电影| 极品教师在线视频| 在线观看一区二区三区激情| 黄色一级大片看看| 午夜福利网站1000一区二区三区| 成人国产av品久久久| 久久久久精品性色| 免费看av在线观看网站| 精品亚洲乱码少妇综合久久| 日本欧美视频一区| 三级经典国产精品| 亚洲精品久久久久久婷婷小说| 一区在线观看完整版| 亚洲色图综合在线观看| 亚洲精品日本国产第一区| 国产精品久久久久久久久免| 亚洲图色成人| 亚洲精华国产精华液的使用体验| 一级毛片 在线播放| 51国产日韩欧美| 久久国产精品大桥未久av | 一级黄片播放器| 婷婷色av中文字幕| 熟女人妻精品中文字幕| 老司机影院成人| 午夜激情福利司机影院| 成人综合一区亚洲| 精品少妇黑人巨大在线播放| 久久久久国产网址| 高清午夜精品一区二区三区| 成人毛片a级毛片在线播放| 国产永久视频网站| 各种免费的搞黄视频| 欧美成人一区二区免费高清观看| 蜜桃亚洲精品一区二区三区| 夫妻性生交免费视频一级片| 亚洲自偷自拍三级| 亚洲精品第二区| 中文字幕人妻熟人妻熟丝袜美| 少妇被粗大猛烈的视频| 久久久久网色| 色5月婷婷丁香| 十分钟在线观看高清视频www | 嫩草影院新地址| 精品一区二区三卡| 日韩伦理黄色片| 丝瓜视频免费看黄片| 91午夜精品亚洲一区二区三区| 国产老妇伦熟女老妇高清| 国产在线视频一区二区| 欧美精品国产亚洲| 美女中出高潮动态图| 久久精品国产自在天天线| 欧美高清性xxxxhd video| 91久久精品电影网| 一级黄片播放器| 亚洲电影在线观看av| 天美传媒精品一区二区| 欧美日本视频| 少妇人妻 视频| 中文在线观看免费www的网站| 哪个播放器可以免费观看大片| 最近2019中文字幕mv第一页| 亚洲av二区三区四区| 亚洲成人中文字幕在线播放| 国精品久久久久久国模美| 亚洲综合精品二区| 成年女人在线观看亚洲视频| 日产精品乱码卡一卡2卡三| 国产精品三级大全| 久久 成人 亚洲| 在线亚洲精品国产二区图片欧美 | .国产精品久久| 在线观看av片永久免费下载| 国产精品爽爽va在线观看网站| 在线免费十八禁| 国产一区有黄有色的免费视频| 美女脱内裤让男人舔精品视频| 久久精品国产自在天天线| 欧美性感艳星| 亚洲av在线观看美女高潮| 全区人妻精品视频| 国产成人91sexporn| 日韩成人av中文字幕在线观看| 免费看日本二区| 婷婷色麻豆天堂久久| 天堂俺去俺来也www色官网| 日本黄大片高清| 久久久久国产精品人妻一区二区| 精品熟女少妇av免费看| 婷婷色综合大香蕉| 亚洲欧美一区二区三区国产| 免费人妻精品一区二区三区视频| 亚洲国产色片| 街头女战士在线观看网站| 丝袜脚勾引网站| 久久久午夜欧美精品| av国产久精品久网站免费入址| 人妻一区二区av| 在线观看免费高清a一片| 欧美老熟妇乱子伦牲交| 少妇的逼好多水| 国产日韩欧美在线精品| 我的老师免费观看完整版| 99热6这里只有精品| 1000部很黄的大片| 天堂俺去俺来也www色官网| 国产免费一级a男人的天堂| 精品久久久精品久久久| 国产白丝娇喘喷水9色精品| 久久韩国三级中文字幕| 久久毛片免费看一区二区三区| 97在线视频观看| 国产成人午夜福利电影在线观看| 黑丝袜美女国产一区| 国产成人91sexporn| 嫩草影院新地址| 三级国产精品片| 九草在线视频观看| 一区在线观看完整版| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产毛片av蜜桃av| 黑丝袜美女国产一区| 精品午夜福利在线看| 午夜老司机福利剧场| 免费人成在线观看视频色| www.色视频.com| 精品99又大又爽又粗少妇毛片| 午夜日本视频在线| 91在线精品国自产拍蜜月| 熟女av电影| 亚洲av成人精品一二三区| 国产人妻一区二区三区在| 波野结衣二区三区在线| 亚洲精品国产色婷婷电影| 丝袜喷水一区| 精品久久久久久久久亚洲| 久久精品国产亚洲网站| 国产精品久久久久久久电影| 色视频在线一区二区三区| 日日摸夜夜添夜夜添av毛片| 色视频在线一区二区三区| 亚洲无线观看免费| 久久久久人妻精品一区果冻| 成人综合一区亚洲| 丰满乱子伦码专区| 少妇的逼水好多| 2018国产大陆天天弄谢| tube8黄色片| 亚洲av电影在线观看一区二区三区| 欧美一级a爱片免费观看看| 爱豆传媒免费全集在线观看| 免费黄网站久久成人精品| 国产精品国产三级专区第一集| 少妇猛男粗大的猛烈进出视频| 欧美97在线视频| 免费黄频网站在线观看国产| 99热6这里只有精品| 久久久久国产网址| 91aial.com中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 最近最新中文字幕大全电影3| 性高湖久久久久久久久免费观看| 亚洲av成人精品一二三区| 中文字幕精品免费在线观看视频 | 欧美xxⅹ黑人| 777米奇影视久久| 美女福利国产在线 | 黄色怎么调成土黄色| 尾随美女入室| 免费不卡的大黄色大毛片视频在线观看| 你懂的网址亚洲精品在线观看| 国产精品久久久久久av不卡| 亚洲国产日韩一区二区| 99久久综合免费| 欧美变态另类bdsm刘玥| 久久久久久久久久人人人人人人| 2018国产大陆天天弄谢| 美女高潮的动态| 日本免费在线观看一区| 久久久久视频综合| 卡戴珊不雅视频在线播放| 观看免费一级毛片| 久久久久久九九精品二区国产| 国产成人a∨麻豆精品| 国产乱人偷精品视频| 中文字幕久久专区| 高清黄色对白视频在线免费看 | 最近2019中文字幕mv第一页| 伊人久久精品亚洲午夜| 日日撸夜夜添| 日本一二三区视频观看| 熟女av电影| 色婷婷av一区二区三区视频| 一二三四中文在线观看免费高清| 干丝袜人妻中文字幕| 国产毛片在线视频| 五月伊人婷婷丁香| 国产精品久久久久成人av| 午夜免费观看性视频| 精品久久久久久久久亚洲| 高清不卡的av网站| 久久精品国产鲁丝片午夜精品| 久久鲁丝午夜福利片| 精品一区二区免费观看| 性色avwww在线观看| 少妇的逼水好多| 日韩中字成人| 观看美女的网站| 久久精品国产鲁丝片午夜精品| 大陆偷拍与自拍| 精品一区在线观看国产| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99| 国国产精品蜜臀av免费| 欧美高清性xxxxhd video| 亚洲成人中文字幕在线播放| 成年av动漫网址| 深夜a级毛片| 麻豆乱淫一区二区| 永久免费av网站大全| 亚洲精品日本国产第一区| 免费看光身美女| 亚洲国产精品一区三区| 免费观看av网站的网址| 下体分泌物呈黄色| 2022亚洲国产成人精品| 亚洲欧美中文字幕日韩二区| 精华霜和精华液先用哪个| 国产伦精品一区二区三区四那| 王馨瑶露胸无遮挡在线观看| 亚洲精品久久久久久婷婷小说| 少妇精品久久久久久久| 日日摸夜夜添夜夜爱| 国产精品一区二区性色av| 国产精品国产三级国产专区5o| 日韩中文字幕视频在线看片 | 亚洲欧美日韩卡通动漫| 亚洲一区二区三区欧美精品| 亚洲国产毛片av蜜桃av| 91久久精品国产一区二区成人| 欧美精品一区二区大全| 午夜精品国产一区二区电影| av一本久久久久| 久久人妻熟女aⅴ| 狠狠精品人妻久久久久久综合| 搡老乐熟女国产| 寂寞人妻少妇视频99o| 欧美成人精品欧美一级黄| 在线观看三级黄色| 大香蕉久久网| 亚洲欧美中文字幕日韩二区| 最黄视频免费看| 91精品一卡2卡3卡4卡| 日韩欧美精品免费久久| 亚洲欧美精品专区久久| 国产一区有黄有色的免费视频| 免费观看无遮挡的男女| 国产精品国产三级专区第一集| 精品久久久噜噜| 国产免费视频播放在线视频| 国产精品偷伦视频观看了| 亚洲丝袜综合中文字幕|