• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimization of thermoelectric properties in elemental tellurium via high pressure

    2023-11-02 08:12:08DongyaoZhao趙東堯ManmanYang楊曼曼HairuiSun孫海瑞XinChen陳欣YongshengZhang張永勝andXiaobingLiu劉曉兵
    Chinese Physics B 2023年10期
    關(guān)鍵詞:陳欣永勝海瑞

    Dongyao Zhao(趙東堯), Manman Yang(楊曼曼), Hairui Sun(孫海瑞),Xin Chen(陳欣), Yongsheng Zhang(張永勝), and Xiaobing Liu(劉曉兵),§

    1Laboratory of High-Pressure Physics and Materials Science(HPPMS),School of Physics and Physical Engineering,Qufu Normal University,Qufu 273165,China

    2Advanced Research Institute of Multidisciplinary Sciences,Qufu Normal University,Qufu 273165,China

    Keywords: high pressure,thermoelectric,thermal conductivity,power factor

    With the advent of the electronic information age, it has become the strategic focus of sustainable development to build a new energy system,develop green and recyclable renewable resources and improve energy conversion efficiency.[1,2]Thermoelectric materials with the most potential candidate for environmental energy are mainly determined by the dimensionless coefficientzT=S2T/ρ(κe+κph+κbip),whereSis Seebeck coefficient,ρis resistivity,Tis Kelvin temperature,κe,κph, andκbipare electron, phonon, and bipolar thermal conductivities, respectively.[3-5]However, due to the strong coupling between carriers and phonons, it is a great challenge to optimize the related parameters together.Over the past few decades, classical, high-performance, multicomponent compounds such as Bi2Te3and SnSe have produced encouraging results.[6-10]However, the diversity of elements leading to the segregation and complex structure increases the difficulty to get clear about the mechanism of the improvement.Hence, many research have been focused on single-element semiconductors.[11,12]

    Elemental semiconductor thermoelectric materials, such as black phosphorus (BP) and tellurium (Te), provide a better basis for interpreting the relationship between the internal physical parameters of the material due to the unicity of the elements.Theoretical predictions demonstrate that BP and its derivatives show great potential for novel ecofriendly thermoelectric applications because of the unique inplane anisotropic electronic structure.[10,13-19]Element Te, a narrow band gap semiconductor, has been considered as a potential candidate for thermoelectric materials because of its high degeneracy, large effective mass and high Seebeck coefficient.[20]Many attempts have been made to further improve the efficiency of thermoelectric conversion.[21,22]Linet al.realized doping by hot pressing, and finally optimize the carrier concentration to 2.65×1019cm-3, thus improving the electrical properties of Te.[23]Anet al.used the spark plasma sintering(SPS)method combined with the intrinsic quasi-onedimensional(1D)structure of the sample,which contributed to form the chain texture along the crystallographicc-axial direction,to optimize the carrier and phonon scattering to a certain extent.[24]Suet al.effectively replaced the alloying of samples by using the high pressure and high temperature(HPHT)method, and the phonon thermal conductivity of the material decreased from 0.65 W·m-1·K-1to 0.45 W·m-1·K-1,which optimized the phonon transport and ultimately improved the thermoelectric performance.[25]Therefore,it is not hard to see that an effective synthesis method is vital to obtain high quality thermoelectrics.Among them, HPHT technology is playing an important role in synthesizing specimens because of the advantages,such as time-saving,high efficiency,manufacturing defects and controllable reaction conditions.[25-29]In our previous work, we constructed a BP-Te heterogeneous structure to optimize the thermoelectric performance of Te through HPHT method.[16]Hence, it is essential to investigate the effect of pressure on Te.

    In this work,we successfully synthesized Te samples with doping BP under different pressures to explore the impact of pressure on electrical and thermal properties.Our results demonstrate thatzTvlues of Te-based materials are greatly improved under high pressure.The maximumzTvalue(zTmax)and the averagezTvalue(zTave)of Te+0.25 wt%GeP5samples synthesized at 5.5 GPa are significantly enhanced by 55%(68%) compared to 3.0 GPa.Moreover, with the content of GeP5increasing,the performance is further optimized.Thus,high pressure is proved to be an effective means for seeking high performance thermoelectrics.

    Using high purity germanium (Ge, 99.999%) and phosphorus(P,99.999%)ingot as raw material,single crystal GeP5was prepared by HPHT method.The high purity Te ingot(99.999%) and GeP5were weighed by mass ratio.The raw materials were then packaged in a mortar and ground for an hour.Then the target polycrystalline samples were prepared at 1000 K and 3.0 GPa-5.5 GPa for 30 minutes through HPHT method.

    The crystal structures of powder samples had been characterized by Cu-Kαradiation x-ray diffraction(XRD)(PANalytical X’pert3, Holland).Raman spectroscopy (HR Evolution, JY Horiba) was carried on a spectrometer with excitation wavelength of 633 nm.The surface morphology and element distribution of the samples were tested by scanning electron microscope (SEM, Carl Zeiss Sigma 500 VP).TEM images were obtained on a Thermo Fisher Talos F200S G2(United States).The carrier-dependent parameters were measured at room temperature on the Hall device (Lake Shore 8404, USA) using van der Pauw geometry.Resistivity (ρ)and Seebeck coefficient(S)were measured simultaneously in CTA-3s (Cryoall China).Thermal conductivity (κ) is calculated byκ=D×Cp×dwhereDis the thermal diffusion coefficient measured on a laser heat-conducting instrument (Netzsch LFA457,Germany).The heat capacity(Cp)values were estimated by Dulong-Petit law.The density (d) was determined by Archimedean principle.

    Figure 1(a)shows powder x-ray diffraction(XRD)data of Te and GeP5-composited Te samples synthesized under different pressures.The collected XRD patterns can be well characterized as hexagonal structure ofP3121 group.[30]As shown in the figure,no other second phase was observed.Figure 1(b)shows the typical Raman spectra of all sample prepared under various pressures.It can be observed that the peaks located at 91 cm-1,119 cm-1,138 cm-1are correspond to the three characteristic peaks of elemental Te phase, representing the three vibration modes E1,A1,and E2,respectively.[31]Meanwhile, three obvious characteristic peaks at 358 cm-1,434 cm-1,and 462 cm-1,can be attributed to BP phase,representing A1g, B2g, and A2gvibration modes, respectively.[32]The results show that GeP5decomposed into BP and Ge via HPHT conditions.

    Fig.1.Phase characterization of produced GeP5-composited Te samples under different synthetic pressures:(a)XRD patterns and(b)Raman spectrum.

    Hall effect test of the prepared samples was carried out at room temperature,listed in Table 1.The positive Hall coefficient reveal that all samples are p-type semiconductor.It can be seen that the introduction of GeP5significantly increased the carrier concentration(nH)of Te.The decomposed Ge has two less electron than Te,and when it replaces Te as an acceptor impurity,it can introduce holes,meaning that the electrons in the valence band are transferred to the acceptor level,which leads to a significant increase in hole concentration.More importantly, with the synthetic pressure increasing, we find that thenHare improved up to 2.5×1019cm-3, which is two orders of magnitude higher than the pure Te sample, while the fluctuation of mobility (μH) is in a small range.The result leads to substantial optimization of electrical properties.

    Table 1.The Hall effect test for the samples synthesized under different pressures.

    Fig.2.Temperature-dependent electronic transport properties of Te, GeP5-composited Te samples synthesized under different pressures.(a)Resistivity.(b)Seebeck coefficient.(c)Relationship between the carrier concentration and Seebeck coefficient.(d)Power factor(PF).

    The electrical transport performance depending on temperature was measured in the range of 300 K-610 K.Figure 2(a) shows the lower resistivity of the GeP5-composited Te samples.In addition, as plotted in Fig.2(b),GeP5-introduced samples exhibit higher Seebeck coefficient comparing with pristine Te when the test temperature is above 450 K.Both the parameters are optimized in higher temperature range, and the values increase continuously with the temperature increasing.When the temperature exceeds 550 K, theSgradually decreases due to the appearance of intrinsic excitation, resulting in an increase in minority carriers,[33]which restrains theSof the sample.Comparing with pure Te, the introduction of GeP5makes the bipolar effect move to high temperature region.Figure 2(c) shows the relationship betweenSandnHbased on the single parabolic band model.We can find that the carrier effective mass (m?,black line) of pure Te is smaller than the GeP5-composited Te samples, which can partly eliminate the reduction ofSby the increasing ofnH.Combined with the changes in theρandS,we noted that the PF values of the sample were significantly enhanced with the synthetic pressure rising,reaching a maximum value of 10.18 μW·cm-1·K-2at 490 K of Te+0.50 wt% GeP5sample synthesized at 5.5 GPa, as shown in Fig.2(d).Higher fabricating pressure improves the decomposition efficiency of GeP5, thus leading to the increase ofnH, ultimately optimizing the electrical transport property.

    Figures 3(a)-3(c) is the scanning electron microscope(SEM)images of the GeP5-composited Te sample synthesized at 3.0 GPa, 4.5 GPa, and 5.5 GPa, respectively.The images show that with the increase of synthetic pressure, the grain boundaries become more abundant (as shown in Figs.3(d)-3(e)), indicating that high pressure has an inhibitory effect on grain growth.The affluent boundaries in the sample can enhance the phonons scattering, and then reduce the phonon conductivity.[34]

    Figures 4(a)-4(e) show the SEM images and the corresponding energy dispersive spectrometer (EDS) mapping of the sample synthesized at 5.5 GPa.It can be clearly observed that the BP embedded in the matrix,indicating that GeP5have decomposed into Ge and P,and the elemental P has been converted into BP phase basing on the Raman results in Fig.1(b),randomly distributing around the grain boundaries.In addition, the element Ge uniformly disperses in the basis materials,which has positive influence on the diminution of thermal conductivity.

    Fig.3.(a)-(c)SEM images for the produced GeP5-composited Te samples synthesized under different pressures,(d)-(f)grain size distribution corresponding to panels(a)-(c).

    Fig.4.(a)SEM image of Te+0.5 wt%GeP5,(b)-(e)the corresponding EDS elemental mappings.

    The detailed microstructure of Te+0.50 wt% GeP5synthesized at 5.5 GPa was characterized by high-resolution transmission electron microscopy (HRTEM) and inverse fast Fourier transform (IFFT) as shown in Fig.5.We can observe the clear lattice fringes of the sample, and then select the yellow and red regions for IFFT in Fig.5(a).As shown in Figs.5(b)and 5(c),the Te can be observed in the sample,evidenced by the gauged interplanar distances of 0.323 nm,corresponding to the(101)planes.Meanwhile,(041)planes of BP is also observed,proved by the measured interplanar distances is 0.223 nm.It indicates that BP acts as the second phase in Te matrix, which is benefit for enhancing the scattering of intermediate frequency phonon.Moreover,the lattice deformation and dislocation can also be found in the domains within our samples, which can effectively disperse the transportation of phonons, reducing the lattice thermal conductivity, thus optimizing the thermoelectric properties.

    Fig.5.Microstructure of produced GeP5-composited Te sample:(a)HRTEM image,and(b),(c)the IFFT images.

    Figure 6(a)shows the temperature dependence of the total thermal conductivity(κ)in the range of 300 K-610 K.Theκof all samples prepared under high pressure markedly decreases comparing with the pristine Te.With the increase of temperature,theκgradually decreases in the range of 300 K-550 K, and then shows an upward trend due to the emergence of intrinsic excitation.The minimum thermal conductivity is achieved 0.61 W·m-1·K-1at 550 K for the sample of Te+0.25 wt%GeP5synthesized at 4.5 GPa.We further calculated the phonon and bipolar thermal conductivity according to Wiedemann-Franz law:κph+bip=κ-κe,(κe=LσT,Lis the Lorenz number, which is estimated by the equationL=1.5+exp(-|S|/116),[35,36]as shown in Fig.6(b), about 36%decrease for the sample synthesized at high pressure.The reduction ofκph+bipcan be attributed to the combining effect of the existence of BP,lattice defects,and more grain boundary density introduced by high pressure.

    Benefitting from the superiority of high pressure and the introduction of BP, the figure of merit,zT, of GeP5-composited Te sample is significantly improved, as shown in Fig.7(a) and Fig.S1(f).ThezTmaxof Te+0.50 wt% GeP5sample synthesized at 5.5 GPa is obtained of 0.76 at 524 K,which is~11 times that of the pure Te.In Fig.7(b),thezTavepresents a progressive increase with the synthetic pressures rising.The peak and averagezTvalues of Te+0.25 wt%GeP5at the temperatures range of 300 K-610 K are increased by 55%and 68%compared with the sample synthesized at 3.0 GPa.

    In short, we demonstrated that, under HPHT conditions,the dynamic regulation of carrier behavior and grain boundary density can achieve the double optimization of the electrical property and thermal transport for element Te.The results show that the peakzTof Te+0.25 wt%GeP5synthesized at 5.5 GPa reaches 0.65 at 524 K, which is 55% improvement compared with the lower preparation pressure.Importantly,this work clearly confirms the advantages of pressure that can dramatically modulating the thermoelectric transport properties, being an effective way for searching high performance thermoelectric materials.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos.11804185, 11974208,52172212, 52102335, and 52002217) and the Natural Science Foundation of Shandong Province, China(Grant Nos.ZR2020YQ05, ZR2019MA054, 2019KJJ020,ZR2021YQ03,and 2022KJA043).

    猜你喜歡
    陳欣永勝海瑞
    韓永勝
    大江南北(2022年11期)2022-11-08 12:04:18
    唱一首祖國的贊歌
    陳欣運用補腎益精法治療育齡期月經(jīng)過少腎虛證經(jīng)驗
    一種兩級雙吸管道輸油泵
    “海瑞定理Ⅰ”的歷史性反思
    法律史評論(2020年1期)2020-09-11 06:25:02
    謝永勝
    寶藏(2018年6期)2018-07-10 02:26:38
    蛋白質(zhì)計算問題歸納
    愛心義賣
    生死連環(huán)計
    長江叢刊(2015年8期)2015-12-02 02:31:04
    論海瑞的“廉名”傳播及歷史啟示
    久久精品国产亚洲av高清一级| 亚洲狠狠婷婷综合久久图片| 国产又黄又爽又无遮挡在线| av视频在线观看入口| 欧美激情久久久久久爽电影| 特大巨黑吊av在线直播 | av超薄肉色丝袜交足视频| 中文字幕精品免费在线观看视频| 成熟少妇高潮喷水视频| 女性生殖器流出的白浆| 欧美国产日韩亚洲一区| 久久国产精品影院| av电影中文网址| 99精品在免费线老司机午夜| 成人特级黄色片久久久久久久| 国产在线观看jvid| 视频在线观看一区二区三区| 亚洲av片天天在线观看| 精品国产超薄肉色丝袜足j| 亚洲色图av天堂| 亚洲自偷自拍图片 自拍| 久久精品国产综合久久久| 国内精品久久久久精免费| 最近最新中文字幕大全电影3 | 成人特级黄色片久久久久久久| 免费无遮挡裸体视频| 国产亚洲精品一区二区www| 99久久99久久久精品蜜桃| 欧美性长视频在线观看| 亚洲av成人不卡在线观看播放网| 亚洲熟妇中文字幕五十中出| 国产av又大| 欧美另类亚洲清纯唯美| 国产熟女xx| 夜夜看夜夜爽夜夜摸| av在线播放免费不卡| 午夜福利免费观看在线| 免费在线观看亚洲国产| 99国产精品99久久久久| 欧美亚洲日本最大视频资源| 亚洲精品美女久久久久99蜜臀| 最近最新免费中文字幕在线| 国产精品 欧美亚洲| 天天一区二区日本电影三级| 成人三级黄色视频| 黄频高清免费视频| 精品午夜福利视频在线观看一区| 女性被躁到高潮视频| 久久久久亚洲av毛片大全| 男女床上黄色一级片免费看| 欧美在线一区亚洲| 国产久久久一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 久久精品人妻少妇| 极品教师在线免费播放| 亚洲成a人片在线一区二区| 丁香六月欧美| 日韩精品青青久久久久久| www.999成人在线观看| 一边摸一边抽搐一进一小说| 级片在线观看| 国产亚洲精品久久久久久毛片| 日韩成人在线观看一区二区三区| 91成年电影在线观看| 久久香蕉激情| 亚洲 欧美一区二区三区| 夜夜看夜夜爽夜夜摸| 男女做爰动态图高潮gif福利片| 精品国产乱码久久久久久男人| 可以在线观看的亚洲视频| 国产在线精品亚洲第一网站| 亚洲成人久久性| 日韩欧美三级三区| 成年人黄色毛片网站| 两个人看的免费小视频| 亚洲电影在线观看av| 他把我摸到了高潮在线观看| 黄片大片在线免费观看| 国产高清videossex| 99国产精品一区二区三区| 免费看a级黄色片| 19禁男女啪啪无遮挡网站| 最近最新免费中文字幕在线| 亚洲人成网站高清观看| 一区二区三区高清视频在线| 精品久久久久久久毛片微露脸| 久久香蕉激情| 欧美乱码精品一区二区三区| 村上凉子中文字幕在线| 久久久久久久精品吃奶| 中文字幕最新亚洲高清| 久久婷婷成人综合色麻豆| 久久99热这里只有精品18| 最近最新中文字幕大全免费视频| √禁漫天堂资源中文www| 欧美国产精品va在线观看不卡| 一区二区三区高清视频在线| 十八禁网站免费在线| 欧美zozozo另类| 亚洲成国产人片在线观看| 久久精品国产综合久久久| 国产精品综合久久久久久久免费| 露出奶头的视频| 国产熟女午夜一区二区三区| 99久久99久久久精品蜜桃| 久久精品人妻少妇| 久久人妻福利社区极品人妻图片| 色综合欧美亚洲国产小说| 天天一区二区日本电影三级| 一a级毛片在线观看| 日本a在线网址| 18禁黄网站禁片午夜丰满| 国产精品电影一区二区三区| 村上凉子中文字幕在线| 免费搜索国产男女视频| 久久久久精品国产欧美久久久| 白带黄色成豆腐渣| 男女做爰动态图高潮gif福利片| 亚洲五月天丁香| 亚洲国产中文字幕在线视频| 精品国产超薄肉色丝袜足j| 亚洲精品色激情综合| 成人手机av| 久久久久久久久免费视频了| 成人国产一区最新在线观看| 精品免费久久久久久久清纯| 丰满人妻熟妇乱又伦精品不卡| 白带黄色成豆腐渣| 哪里可以看免费的av片| 久久久久久亚洲精品国产蜜桃av| 国产精品1区2区在线观看.| 国产高清激情床上av| 国产精品 国内视频| 精品日产1卡2卡| 国产亚洲精品综合一区在线观看 | 一级黄色大片毛片| 深夜精品福利| 国产成人一区二区三区免费视频网站| 老熟妇乱子伦视频在线观看| 国产精品久久久久久精品电影 | 在线免费观看的www视频| 叶爱在线成人免费视频播放| 国产精品 欧美亚洲| 中文亚洲av片在线观看爽| 亚洲第一青青草原| 99热6这里只有精品| 香蕉久久夜色| 久久婷婷人人爽人人干人人爱| 中亚洲国语对白在线视频| 国产高清videossex| 国产午夜福利久久久久久| 久久香蕉国产精品| 成人亚洲精品av一区二区| 国产黄片美女视频| 在线免费观看的www视频| 99精品久久久久人妻精品| 午夜日韩欧美国产| 日韩 欧美 亚洲 中文字幕| 亚洲国产精品成人综合色| 精品久久久久久久久久久久久 | а√天堂www在线а√下载| 成人三级做爰电影| 亚洲中文字幕一区二区三区有码在线看 | 黄频高清免费视频| 久久久久久久久免费视频了| 在线视频色国产色| 99riav亚洲国产免费| 我的亚洲天堂| 亚洲成人精品中文字幕电影| x7x7x7水蜜桃| 国产激情欧美一区二区| 此物有八面人人有两片| 亚洲av第一区精品v没综合| 久久草成人影院| 激情在线观看视频在线高清| 首页视频小说图片口味搜索| 亚洲精华国产精华精| 成人18禁高潮啪啪吃奶动态图| 老汉色∧v一级毛片| 成在线人永久免费视频| 欧美成人免费av一区二区三区| 欧美精品亚洲一区二区| 亚洲无线在线观看| 国产精品永久免费网站| 日韩欧美国产一区二区入口| 免费搜索国产男女视频| 看黄色毛片网站| 亚洲国产精品999在线| 欧美黑人巨大hd| 精品久久久久久久久久免费视频| 午夜福利高清视频| 国产精品 国内视频| 精品国产乱子伦一区二区三区| 嫩草影视91久久| 91av网站免费观看| 淫妇啪啪啪对白视频| 神马国产精品三级电影在线观看 | 欧美日韩乱码在线| √禁漫天堂资源中文www| 国产一区二区三区视频了| 视频区欧美日本亚洲| 在线看三级毛片| 国产视频内射| 精品久久久久久久久久免费视频| 国产男靠女视频免费网站| 51午夜福利影视在线观看| 久久精品国产99精品国产亚洲性色| 激情在线观看视频在线高清| videosex国产| 日韩欧美在线二视频| 丝袜在线中文字幕| 亚洲av熟女| xxx96com| 国产真人三级小视频在线观看| 国产色视频综合| 搡老熟女国产l中国老女人| 午夜福利一区二区在线看| av福利片在线| 一二三四在线观看免费中文在| 久久香蕉国产精品| 成人18禁在线播放| 午夜福利高清视频| 99riav亚洲国产免费| 国产亚洲精品综合一区在线观看 | 久久精品国产亚洲av高清一级| 级片在线观看| av天堂在线播放| 日本 欧美在线| 国产精品电影一区二区三区| 丰满的人妻完整版| 首页视频小说图片口味搜索| 欧美一区二区精品小视频在线| 欧美日韩乱码在线| 中文字幕av电影在线播放| 亚洲国产看品久久| 国产麻豆成人av免费视频| 岛国在线观看网站| 成人亚洲精品一区在线观看| 久久人妻av系列| 婷婷精品国产亚洲av在线| 亚洲aⅴ乱码一区二区在线播放 | 韩国精品一区二区三区| 午夜福利视频1000在线观看| 色老头精品视频在线观看| 精品久久久久久久人妻蜜臀av| 久久欧美精品欧美久久欧美| 男人的好看免费观看在线视频 | 欧美+亚洲+日韩+国产| av视频在线观看入口| 成人一区二区视频在线观看| 国产主播在线观看一区二区| 首页视频小说图片口味搜索| 日韩免费av在线播放| 国产成人精品无人区| 国内精品久久久久精免费| 99re在线观看精品视频| 国产精品美女特级片免费视频播放器 | 俺也久久电影网| 国产亚洲精品综合一区在线观看 | 1024视频免费在线观看| 国产免费男女视频| 国产一区二区在线av高清观看| 99久久综合精品五月天人人| 此物有八面人人有两片| 国产熟女午夜一区二区三区| 女同久久另类99精品国产91| 欧美在线一区亚洲| 熟妇人妻久久中文字幕3abv| or卡值多少钱| 啦啦啦观看免费观看视频高清| 18禁黄网站禁片免费观看直播| 好男人在线观看高清免费视频 | 午夜精品在线福利| 欧美精品亚洲一区二区| 久久久久久大精品| 国内精品久久久久精免费| 久久狼人影院| 桃色一区二区三区在线观看| 999久久久国产精品视频| 亚洲五月天丁香| 好看av亚洲va欧美ⅴa在| 国产精品一区二区三区四区久久 | 欧美又色又爽又黄视频| 后天国语完整版免费观看| 免费无遮挡裸体视频| 国产精品爽爽va在线观看网站 | 97人妻精品一区二区三区麻豆 | 成在线人永久免费视频| 可以免费在线观看a视频的电影网站| 亚洲 欧美 日韩 在线 免费| 国产高清有码在线观看视频 | 欧美乱色亚洲激情| 变态另类丝袜制服| 亚洲在线自拍视频| 在线免费观看的www视频| 欧美一级毛片孕妇| 伊人久久大香线蕉亚洲五| 高清毛片免费观看视频网站| 一级a爱视频在线免费观看| 99国产综合亚洲精品| 国产成人av激情在线播放| 日韩精品免费视频一区二区三区| 少妇的丰满在线观看| 欧美+亚洲+日韩+国产| 久久午夜亚洲精品久久| 亚洲三区欧美一区| 欧美成人一区二区免费高清观看 | 成人一区二区视频在线观看| 天堂动漫精品| 男女那种视频在线观看| 在线免费观看的www视频| 熟女少妇亚洲综合色aaa.| 国产精品影院久久| x7x7x7水蜜桃| 亚洲精品在线观看二区| 可以在线观看的亚洲视频| 在线观看www视频免费| 一个人观看的视频www高清免费观看 | 亚洲精品中文字幕一二三四区| 国产精品野战在线观看| 亚洲,欧美精品.| 国产久久久一区二区三区| 成人三级黄色视频| 成年女人毛片免费观看观看9| 欧美又色又爽又黄视频| 久久香蕉激情| 久久精品91蜜桃| 夜夜爽天天搞| 欧美不卡视频在线免费观看 | 久久久国产成人精品二区| 嫩草影视91久久| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区mp4| 精品免费久久久久久久清纯| 99国产精品一区二区三区| 俄罗斯特黄特色一大片| 亚洲av成人一区二区三| a级毛片a级免费在线| 可以在线观看毛片的网站| 国产欧美日韩一区二区三| 午夜福利成人在线免费观看| 丁香欧美五月| 亚洲欧美激情综合另类| 人人妻,人人澡人人爽秒播| 可以在线观看的亚洲视频| 国产午夜福利久久久久久| 在线观看午夜福利视频| 久久国产精品影院| 18禁裸乳无遮挡免费网站照片 | 亚洲熟妇中文字幕五十中出| 怎么达到女性高潮| 亚洲精品美女久久久久99蜜臀| 久久人妻av系列| 在线永久观看黄色视频| 亚洲欧洲精品一区二区精品久久久| 国产主播在线观看一区二区| www.熟女人妻精品国产| 国产高清激情床上av| 成熟少妇高潮喷水视频| 自线自在国产av| 女警被强在线播放| 日韩精品青青久久久久久| 国产精品美女特级片免费视频播放器 | 老司机午夜十八禁免费视频| 嫩草影视91久久| 一进一出抽搐动态| 男人舔女人的私密视频| 国产高清有码在线观看视频 | 精品少妇一区二区三区视频日本电影| 日韩大码丰满熟妇| 黄色成人免费大全| 一边摸一边抽搐一进一小说| 精品国产亚洲在线| 欧美zozozo另类| 国产亚洲精品一区二区www| av在线天堂中文字幕| 亚洲中文日韩欧美视频| 极品教师在线免费播放| 国产精品乱码一区二三区的特点| cao死你这个sao货| av免费在线观看网站| 亚洲国产欧美一区二区综合| 熟女电影av网| 后天国语完整版免费观看| 亚洲精品国产区一区二| 久9热在线精品视频| 99久久久亚洲精品蜜臀av| 后天国语完整版免费观看| 白带黄色成豆腐渣| 亚洲精品国产精品久久久不卡| 国产精品电影一区二区三区| a级毛片a级免费在线| 久久青草综合色| 国产精品二区激情视频| 免费观看精品视频网站| 长腿黑丝高跟| 国产精品野战在线观看| 黄色视频,在线免费观看| 好看av亚洲va欧美ⅴa在| 听说在线观看完整版免费高清| 国产亚洲精品综合一区在线观看 | 亚洲成a人片在线一区二区| 精品人妻1区二区| 亚洲成人久久爱视频| 一二三四在线观看免费中文在| 日韩视频一区二区在线观看| 一级毛片女人18水好多| 色综合亚洲欧美另类图片| 免费在线观看成人毛片| 欧美日韩黄片免| 欧美在线一区亚洲| 亚洲专区字幕在线| 淫秽高清视频在线观看| 啦啦啦观看免费观看视频高清| av在线播放免费不卡| 热99re8久久精品国产| 精品福利观看| 久久人妻福利社区极品人妻图片| 黄色毛片三级朝国网站| 久久婷婷人人爽人人干人人爱| 99久久精品国产亚洲精品| 国产亚洲精品久久久久久毛片| 少妇裸体淫交视频免费看高清 | 精品无人区乱码1区二区| 国产亚洲精品久久久久久毛片| 精品免费久久久久久久清纯| 级片在线观看| 两个人免费观看高清视频| 色尼玛亚洲综合影院| 他把我摸到了高潮在线观看| 精品国产乱子伦一区二区三区| 美女高潮到喷水免费观看| 亚洲国产欧美网| 俄罗斯特黄特色一大片| 午夜激情av网站| 在线观看午夜福利视频| 12—13女人毛片做爰片一| 免费在线观看黄色视频的| 亚洲真实伦在线观看| 欧美中文日本在线观看视频| av在线播放免费不卡| 久久伊人香网站| 国产av一区二区精品久久| 91大片在线观看| АⅤ资源中文在线天堂| 中文字幕高清在线视频| 51午夜福利影视在线观看| 黄色成人免费大全| 亚洲一卡2卡3卡4卡5卡精品中文| 男人舔奶头视频| 国产v大片淫在线免费观看| 欧美黑人精品巨大| 夜夜躁狠狠躁天天躁| 欧美日韩中文字幕国产精品一区二区三区| av电影中文网址| 亚洲av熟女| 日本成人三级电影网站| 99精品久久久久人妻精品| 少妇粗大呻吟视频| 国产视频内射| 黄色女人牲交| 怎么达到女性高潮| 中文字幕另类日韩欧美亚洲嫩草| 国产乱人伦免费视频| 成年人黄色毛片网站| 此物有八面人人有两片| 国产单亲对白刺激| 国产av一区二区精品久久| 一级毛片女人18水好多| 香蕉丝袜av| 白带黄色成豆腐渣| 欧美人与性动交α欧美精品济南到| 精品人妻1区二区| 精品久久久久久成人av| 久久精品aⅴ一区二区三区四区| 正在播放国产对白刺激| 99在线人妻在线中文字幕| 中文资源天堂在线| 男女视频在线观看网站免费 | 亚洲精品美女久久久久99蜜臀| 日日摸夜夜添夜夜添小说| 91av网站免费观看| 中文亚洲av片在线观看爽| 欧美日韩一级在线毛片| 免费看a级黄色片| svipshipincom国产片| 亚洲第一青青草原| 热re99久久国产66热| 最近最新中文字幕大全免费视频| 欧美三级亚洲精品| 欧美色欧美亚洲另类二区| 丁香欧美五月| 日本三级黄在线观看| 亚洲成av片中文字幕在线观看| 久久精品国产综合久久久| 日日干狠狠操夜夜爽| 亚洲熟女毛片儿| 亚洲人成伊人成综合网2020| 黄色女人牲交| 久久久久久久久中文| 亚洲黑人精品在线| 亚洲成人久久性| 久久久久国产一级毛片高清牌| 在线永久观看黄色视频| 午夜日韩欧美国产| 久久精品91无色码中文字幕| 自线自在国产av| 国产激情久久老熟女| 99在线人妻在线中文字幕| 国产免费男女视频| 亚洲成av人片免费观看| 最好的美女福利视频网| 在线播放国产精品三级| 精品久久久久久久毛片微露脸| 757午夜福利合集在线观看| 俺也久久电影网| av中文乱码字幕在线| 国产片内射在线| 国产精品爽爽va在线观看网站 | 国产亚洲精品久久久久5区| 黑人巨大精品欧美一区二区mp4| 三级毛片av免费| 两个人免费观看高清视频| 波多野结衣巨乳人妻| 夜夜爽天天搞| 韩国精品一区二区三区| 亚洲精品国产一区二区精华液| 亚洲熟妇中文字幕五十中出| 日本熟妇午夜| 给我免费播放毛片高清在线观看| 此物有八面人人有两片| 级片在线观看| 久久中文字幕一级| 国产一级毛片七仙女欲春2 | 亚洲成人国产一区在线观看| 国产熟女xx| 91国产中文字幕| 村上凉子中文字幕在线| 精品久久久久久久久久免费视频| 一夜夜www| 老汉色∧v一级毛片| 精品午夜福利视频在线观看一区| www.999成人在线观看| www日本在线高清视频| 亚洲成av人片免费观看| 国产真人三级小视频在线观看| 看免费av毛片| 色播亚洲综合网| 日本免费一区二区三区高清不卡| 色av中文字幕| 日韩三级视频一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 午夜精品久久久久久毛片777| 搡老岳熟女国产| 啦啦啦观看免费观看视频高清| 欧美成人性av电影在线观看| 午夜视频精品福利| 午夜久久久在线观看| 欧美性猛交黑人性爽| 亚洲精品一卡2卡三卡4卡5卡| 亚洲人成伊人成综合网2020| 国产精品免费一区二区三区在线| 中文资源天堂在线| 一本一本综合久久| 日韩精品免费视频一区二区三区| 中文字幕高清在线视频| a在线观看视频网站| 欧美日本亚洲视频在线播放| 午夜免费鲁丝| 99国产精品一区二区蜜桃av| 男人舔女人的私密视频| 一本精品99久久精品77| 欧美激情高清一区二区三区| 午夜两性在线视频| 久久精品国产99精品国产亚洲性色| 一二三四社区在线视频社区8| 亚洲午夜精品一区,二区,三区| 无人区码免费观看不卡| 久久中文看片网| 国产成+人综合+亚洲专区| 国产亚洲av嫩草精品影院| 97人妻精品一区二区三区麻豆 | 亚洲精品色激情综合| 女性被躁到高潮视频| 黄色片一级片一级黄色片| 婷婷六月久久综合丁香| 欧美日本视频| 午夜福利视频1000在线观看| 国产一区在线观看成人免费| 丁香六月欧美| 丝袜人妻中文字幕| 精华霜和精华液先用哪个| 男男h啪啪无遮挡| 一区二区三区精品91| 日韩 欧美 亚洲 中文字幕| 久久久久久久久中文| 久久性视频一级片| 午夜a级毛片| 搡老熟女国产l中国老女人| 99在线视频只有这里精品首页| 久久精品夜夜夜夜夜久久蜜豆 | 国语自产精品视频在线第100页| 亚洲欧美激情综合另类| 波多野结衣高清作品| 精品福利观看| 久久久久久亚洲精品国产蜜桃av| 国产黄a三级三级三级人| 在线观看免费视频日本深夜| 精品欧美一区二区三区在线| 国产亚洲欧美在线一区二区| 欧美成人午夜精品| 成人亚洲精品av一区二区| 黄色视频,在线免费观看| 一区二区三区高清视频在线| 一本精品99久久精品77|