• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles study of moderate phonon-mediated pairing in high-pressure monoclinic phase of BiS2-based superconductors

    2023-11-02 08:13:36JieCheng程杰YuLanCheng程玉蘭BinLi李斌andShengLiLiu劉勝利
    Chinese Physics B 2023年10期
    關(guān)鍵詞:李斌勝利

    Jie Cheng(程杰), Yu-Lan Cheng(程玉蘭), Bin Li(李斌), and Sheng-Li Liu(劉勝利)

    1School of Science,New Energy Technology Engineering Laboratory of Jiangsu Province,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2College of Electronic and Optical Engineering&College of Flexible Electronics(Future Technology),Nanjing University of Posts and Telecommunications,Nanjing,210023,China

    Keywords: BiS2-based superconductor,high pressure,isotope effect,phonon-mediated pairing

    1.Introduction

    Superconductivity in layered crystal structure such as cuprates,[1]iron-pnictides,[2]and MgB2,[3]has aroused enormous research interest.A new family of layered BiS2-based system has triggered off another wave of extensive studies since its discovery in 2012.As the first member, the compound of Bi4O4S3was reported,[4]then theReOBiS2- (Re:rare earth),[5-9]SrFBiS2-,[10]ReOMS2(M=Sb and In)-,[11,12]and La2O2M4S6(M=Pb,Bi,Ag)-type superconductors[13-15]have been discovered successively.Here, the basic structural unit of BiS2-based compounds is the BiS2layer,which is analogous to the Cu-O planes in cuprates and the Fe-A(A=P,As,Se,Te)planes in iron-pnictides.[1,16]Of these BiS2-based compounds,theReOBiS2-type is mostly studied owing to their simple structure and easy carrier doping control.For example,in LaO1-xFxBiS2,the partial substitutions of F-for O2-sites generate electron carriers, and the maximum transition temperature (Tc) is observed to be 2.5 K whenx=0.5 at ambient pressure.[17]Interestingly, by applying external pressure,Tcabruptly increases to a maximal value of 10.7 K, which is caused by the structural phase transition from tetragonal phase(P4/nmm, ambient-pressure) to monoclinic phase (P21/m,high-pressure).[18]Moreover,band structure calculations indicate the presence of strong Fermi surface nesting at the wave vector (π,π), which is the hallmark of iron-pnictides.[19,20]Therefore,the superconducting mechanism in BiS2-based system may be expected to resemble that of iron-pnictides, although the mechanism of superconductivity in iron-pnictides is still in dispute.

    According to the Bardeen-Cooper-Schrieffer (BCS)theory,[21]theTcof a phonon-mediated conventional superconductor is proportional to its phonon frequency, and it is very sensitive to the isotope mass (M) of the constituent elements.This is the so-called isotope effect.Furthermore,the relationship betweenTcand isotope mass satisfiesTc~M-α,[22]in whichαis the isotope exponent, andα~0.5 is expected according to BCS theory.Therefore,the isotope effect can be considered as an essential indicator to investigate whether the mechanism of superconductors is conventional.For instance,αhas been reported to be~0.5 for the conventional superconductors, such as (Ba,K)BiO3(αO~0.5),[23]doped fullerene (αC~0.5),[24]and MgB2(αB~0.3).[25]In high-Tcsuperconductors with unconventional mechanisms,αgenerally deviates from 0.5(e.g.near-zeroαOin cuprates,[26]and even negativeαFein iron-pnictides[27]).

    For this new BiS2-based system, the fundamental question is whether the superconductivity can be understood within a conventional electron-phonon coupling framework.Hence,several investigations concerning the isotope effect of BiS2-based compounds have been proposed.By replacing S element in Bi4O4S3with32S and34S, the isotope exponentαSis estimated to be in a range:-0.1<αS<0.1.[28]A similar unconventional isotope effect is also observed in LaO0.6F0.4BiSSe with BiSSe-type superconducting layers, in which the change ofTcbetween the76Se sample and80Se sample is apparently smaller than that expected from the photon-mediated mechanism.[29]Very recently, Yamashitaet al.pointed out that under high pressure, the superconducting mechanism can be transformed from unconventional to conventional one by breaking the structural symmetry in superconducting BiS2layers.[30]It should be noted that these above-mentioned results of unconventional superconducting mechanism are based on the low-Tctetragonal structures at ambient-pressure.Therefore, it is highly desirable to investigate the isotope effect on the high-pressure monoclinic phase,which may present an important clue to the understanding of the pairing mechanism in BiS2-based superconductors.

    In this work, we perform first-principles phonon calculations for the high-pressure monoclinic structure of LaO0.5F0.5BiS2.The changes inTcbetween32S sample and34S sample are observed,furthermore,the corresponding isotope exponent of 0.13≤α ≤0.20 is obtained.These findings prompt the high-pressure structure of LaO0.5F0.5BiS2to be a moderate phonon-mediated superconductor, which is quite different from the unconventional isotope effect of ambientpressure phase.

    2.Computational method

    The lattice data of LaO0.5F0.5BiS2were constructed by Materials Studio software.Starting from the initial lattice parameters, we performed the full structural optimization including both the lattice parameters and atomic positions.Phonon calculations were carried out by using density functional perturbation theory (DFPT) method via QUANTUM ESPRESSO program and a standard solid-state pseudopotential (SSSP).[31-33]The exchange-correlation energy was described by the Perdew-Burke-Ernzerhof (PBE) functional based on generalized gradient approximation (GGA).[34]For self-consistent calculation,8×8×8k-point grid was used with an energy cutoff of 30 Ry (1 Ry=13.6056923 eV) for the wave function and 300 Ry for the charge density.Dynamical matrices and electron-phonon coupling were calculated on a 4×4×4q-point mesh.Then,a dense 24×24×24 grid was used for evaluating an accurate electron-phonon interaction matrix.

    3.Results and discussion

    Crystal structures of LaO0.5F0.5BiS2for ambientpressure tetragonal and high-pressure monoclinic phases are cited from Ref.[35] (a= 4.1091 °A,c= 13.4196 °A) and Ref.[18] (a= 4.042 °A,b= 4.059 °A,c= 12.809 °A,β=97.31°),respectively.Here,half of the O sites are replaced by F,serving as the electron doping.Without such a replacement,the ambient-pressure structure and high-pressure structure belong to the space groupsP4/nmmandP21/m, respectively.The optimized results are summarized in Table 1, together with available experimental data.For the ambient-pressure tetragonal phase, the calculated structures coincide well with experimental results.However, there is a large difference between the calculation results and experimental data for highpressure phase,which can be attributed to an obvious contrast between the pressure application of calculated (18 GPa) and experimental conditions(4 GPa).

    Figure 1 shows the calculated phonon dispersions and partial phonon density of states (PDOS) for LaO0.5F0.5BiS2in tetragonal phase at 0 GPa, in which 30 phonon bands are extended to 430 cm-1.A striking feature of this phonon spectrum is the presence of phonon softening along theAMdirection, indicating that the ambient-pressure structure of LaO0.5F0.5BiS2is dynamically unstable.Note that the soft phonon found here is an intrinsic property of the BiS2plane in tetragonal phase.[36]It is clearly seen from the PDOS that these unstable modes are directly traceable to the inplane vibrations of S atoms,which is consistent with previous report.[37]Moreover, unstable phonon modes are intimately associated with a charge density wave instability,and conventional phonon-mediated pairing cannot explain the superconductivity of LaO0.5F0.5BiS2in the tetragonal phase.[38]

    Table 1.Calculated lattice parameters and atomic positions of LaO0.5F0.5BiS2 for ambient-and high-pressure phases, with related experimental results listed for comparisons.

    For the high-pressure monoclinic structure of LaO0.5F0.5BiS2, we carry out the phonon calculations in a pressure range from 12 GPa to 18 GPa.The corresponding phonon dispersion curves and PDOS curves at 18 GPa are plotted in Fig.2(a).There is no imaginary frequency in both phonon spectra, suggesting the dynamic stabilization of high-pressure phase.As seen from the phonon dispersion,the frequency extends to 700 cm-1, and it can be divided into two parts.The first part is the low-frequency band, with the phonon frequency ranging from 0 cm-1to 300 cm-1,mainly caused by the vibrations of La and Bi atoms, while the highfrequency bands(340 cm-1-700 cm-1)mostly originate from the contributions of S, F, and O atoms.It is well understood that S, F, and O atoms with lighter mass usually have higher vibration frequency than Bi and La atoms.In addition, we provide a further analysis of each phonon band at theΓpoint.The point group atΓpoint is C1, and theΓ-point mode can be decomposed asΓ= 30 A.The detailed frequencies are listed in Table 2,with the three acoustical branches excluded.Furthermore, in Fig.2(b), we give the atom vibration pattern of several typical phonon bands atΓpoint, whose frequencies are 181.9 cm-1(A8mode),477.4 cm-1(A18mode),and 569.8 cm-1(A26mode), corresponding to the three colored lines from bottom to top in Fig.2(a).The A8mode corresponds to the in-plane stretching vibrations with motion along thex(y)axis.In the A18mode,the O,F,and S2atoms vibrate along the samezdirection,opposite to the vibration direction of S1atoms,while the A26mode corresponds to the vibration of only O atom and S2atom.

    Fig.2.(a)Phonon dispersion and projected PDOS for LaO0.5F0.5BiS2 in high-pressure monoclinic phase at 18 GPa.(b) Atom vibration pattern of typical A8,A18,and A26 modes at Γ point.

    Table 2.Phonon mode frequencies(in unit cm-1)at Γ point for LaO0.5F0.5BiS2 in high-pressure monoclinic phase,with I denoting infrared active,and R representing Raman active.

    To investigate the isotope effect of LaO0.5F0.5BiS2in high-pressure monoclinic phase, we perform the substitution of S element.Then the LaO0.5F0.5BiS2samples with32S and34S isotopes are obtained,labeled as32S sample and34S sample, respectively.The effect of electron-phonon coupling on conventional superconductivity can be well represented by the Eliashberg function[39]

    Here,N(EF) is the density of states at the Fermi level,ωis the frequency,nandn'run over electronic band,vover phononic band,kandqover the Brillouin zone.The electronphonon matrix elementis defined by the variation in the self-consistent crystal potential.Integrating the Eliashberg function over frequency,we can get the electron-phonon coupling factorλas follows:

    The characteristic phonon frequencyωlnis defined as

    For LaO0.5F0.5BiS2in high-pressure phase with32S sample and34S sample, figure 3 shows the Eliashberg functionα2F(ω)and electron-phonon couplingλ(ω)at 18 GPa.Combining with the PDOS in Fig.2, it can be clearly found that the electron-phonon interaction of Bi-S bond plays a crucial role in enhancing the value ofα2F(ω).Accordingly,the difference ofα2F(ω) between32S sample and34S sample is mainly reflected the in high-frequency region, showing a small red-shift with the increase of isotope mass of S element.Under the pressure application of 18 GPa, both32S sample and34S sample have a factorλ=0.61, suggesting that the LaO0.5F0.5BiS2in high-pressure phase is a moderately coupled electron-phonon superconductor.The values of electronphonon coupling factorλand the characteristic phonon frequencyωlnfor32S sample and34S samples in a pressure range of 12 GPa-18 GPa are listed in Table 3.For the32S sample at 12 GPa, the value ofλis about 0.40, with the logarithmically averaged frequencyωln=271.3 K.With the increase of pressure, theλmonotonically increases, accompanied by the decrease ofωln.In addition, the isotope substitution of S element has little influence onλ, but the values ofωlnin34S samples are generally smaller than those of32S ones.For instance,theωlnof32S sample at 13 GPa is about 274.0 K,while it decreases to 271.4 K for34S sample.

    Fig.3.Eliashberg function α2F(ω) and electron-phonon coupling λ(ω) for LaO0.5F0.5BiS2 in high-pressure phase with 32S sample and 34S sample at 18 GPa.

    Table 3.Values of electron-phonon coupling factor λ,characteristic phonon frequency ωln,and superconductive transition temperature Tc for LaO0.5F0.5BiS2 in high-pressure phase with 32S sample and 34S sample in a pressure range of 12 GPa-18 GPa.

    The effect of electron-phonon coupling onTcis well quantified by the McMillan-Allen-Dynes formula as follows:[40]

    whereμ?is a pseudopotential parameter that represents the effective electron-electron mutual Coulomb repulsion suppressing pairing instability, and hereμ?= 0.1.We further analyze the isotope effect ofTcby using the isotope coefficientα,which is given by

    in which[M]32Sand[M]34Sare the atomic mass of32S and34S isotopes,respectively.

    The calculatedTcof LaO0.5F0.5BiS2in high-pressure phase for32S sample and34S sample under the pressure in a range of 12 GPa-18 GPa is displayed in Table 3.Comparing with the34S sample, theTcof32S sample is high,which is in agreement with the isotope effect.However, the calculatedTcof LaO0.5F0.5BiS2in high-pressure phase is always lower than the experimental value,for example,the calculatedTcof32S sample at 18 GPa is 4.0 K, while its experimental one is 5.5 K.[18]Based on the changes ofTcbetween32S sample and34S sample, the isotope coefficient is exhibited in Fig.4.It is found that the isotope coefficient of LaO0.5F0.5BiS2in high-pressure monoclinic phase is estimated to be 0.13≤α ≤0.20,which is much greater than that of ambient-pressure phase, and slightly smaller than that of conventional MgB2(i.e.0.30).[25]We thus conclude that the moderate electron-phonon coupling has a vital role in determining the superconductivity of high-pressure phase.Moreover, taking into account the calculatedTclower than experimental value,cooperative multiple pairing mechanism should be also considered,such as electron-electron correlation.[41,42]Recalling the unconventional isotope effect of BiS2-based superconductors in ambient-pressure structure,the switch of superconductive mechanism may ascribe to structural symmetry breaking induced by high-pressure effect.This is an important step toward the clarification of the origin of superconductivity for BiS2-based system in high-pressure phase.In the future, thorough research on BiS2-based superconductors for both ambient- and high-pressure phases is very essential and necessary.

    Fig.4.Variation of Tc difference Δln(Tc)between32S and34S samples,and isotope coefficient α with pressure in a range of 12 GPa-18 GPa.

    4.Conclusions

    Using the first-principles calculations, we reported the substitution effect of32S by the heavier isotope34S on the phonon spectra, electron-phonon coupling factor, and the superconductivity of LaO0.5F0.5BiS2in high-pressure monoclinic phase.The electron-phonon coupling factor can reach to 0.61, and corresponding isotope coefficient is estimated to be 0.13≤α ≤0.20.It should be noted that the calculatedTcof high-pressure phase is lower than the experimental result.Therefore,we confirm the vital role of moderate phononmediated pairing in determining the superconductivity of highpressure phase.However,to further clarify the nature of superconductivity in BiS2-based superconductors,cooperative multiple paring interactions still need studying in future.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China(Grant No.12175107)and the Natural Science Foundation of Nanjing University of Posts and Telecommunications(Grant Nos.NY219087 and NY220038).

    猜你喜歡
    李斌勝利
    堅(jiān)持就是勝利
    World Wetlands Day
    The Wizard of Oz
    The Wizard of Ozby L. Frank Baum
    The Wizard of Ozby L. Frank Baum
    Factory Life in the 1800's
    鼓舞人心的勝利
    勝利30
    NBA特刊(2018年21期)2018-11-24 02:47:58
    李斌:蔚來(lái)為未來(lái)而來(lái)
    金橋(2018年4期)2018-09-26 02:25:08
    堅(jiān)持
    国产国语露脸激情在线看| 国产在视频线精品| 久久热在线av| 国产视频首页在线观看| 成人影院久久| 男女国产视频网站| 亚洲内射少妇av| 美女国产视频在线观看| 国产精品.久久久| 少妇熟女欧美另类| 毛片一级片免费看久久久久| 色哟哟·www| 精品久久久久久电影网| 欧美精品一区二区免费开放| 免费女性裸体啪啪无遮挡网站| 欧美97在线视频| 在线亚洲精品国产二区图片欧美| 国产 精品1| 9191精品国产免费久久| 亚洲国产精品一区三区| 精品久久蜜臀av无| 免费高清在线观看日韩| 国产成人精品一,二区| 精品99又大又爽又粗少妇毛片| 不卡av一区二区三区| av国产精品久久久久影院| 夫妻午夜视频| 国产成人91sexporn| 国产精品成人在线| 亚洲中文av在线| 久久久精品免费免费高清| 久久精品国产亚洲av天美| 人妻系列 视频| av电影中文网址| 久久精品久久精品一区二区三区| 色哟哟·www| 成年女人毛片免费观看观看9 | 激情五月婷婷亚洲| av免费在线看不卡| 视频区图区小说| 久久99精品国语久久久| 老鸭窝网址在线观看| 国产成人午夜福利电影在线观看| 精品一区二区三卡| 老熟女久久久| 亚洲国产成人一精品久久久| av不卡在线播放| 丝袜美足系列| 啦啦啦中文免费视频观看日本| 一级毛片电影观看| 亚洲国产欧美在线一区| 免费在线观看黄色视频的| 久久99精品国语久久久| 最黄视频免费看| 如日韩欧美国产精品一区二区三区| 精品人妻偷拍中文字幕| 中文字幕人妻丝袜制服| 久久国产精品大桥未久av| 亚洲国产日韩一区二区| 午夜福利,免费看| 精品一品国产午夜福利视频| 亚洲少妇的诱惑av| 国产一级毛片在线| 成人二区视频| 最近的中文字幕免费完整| 2021少妇久久久久久久久久久| 天美传媒精品一区二区| 国产激情久久老熟女| 国产一区二区在线观看av| 街头女战士在线观看网站| 中文字幕人妻丝袜制服| 黄片小视频在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 国产爽快片一区二区三区| 婷婷成人精品国产| 欧美日韩精品网址| 777久久人妻少妇嫩草av网站| 天天躁日日躁夜夜躁夜夜| 国产av国产精品国产| 国产视频首页在线观看| 日本猛色少妇xxxxx猛交久久| 自拍欧美九色日韩亚洲蝌蚪91| 女人精品久久久久毛片| 观看av在线不卡| 国产精品一国产av| 1024视频免费在线观看| 国产精品国产三级专区第一集| 2022亚洲国产成人精品| 成人毛片60女人毛片免费| 大陆偷拍与自拍| 90打野战视频偷拍视频| 日韩熟女老妇一区二区性免费视频| 午夜福利,免费看| 高清视频免费观看一区二区| 国产精品不卡视频一区二区| 1024香蕉在线观看| 国产深夜福利视频在线观看| 狠狠精品人妻久久久久久综合| 日韩人妻精品一区2区三区| 美女大奶头黄色视频| 在线看a的网站| 免费观看在线日韩| 国产欧美亚洲国产| 黄色一级大片看看| 亚洲国产日韩一区二区| 女人久久www免费人成看片| 国产一区二区激情短视频 | 免费看av在线观看网站| 国产精品99久久99久久久不卡 | 青春草亚洲视频在线观看| 国产精品人妻久久久影院| 各种免费的搞黄视频| 最近最新中文字幕免费大全7| 亚洲av国产av综合av卡| 日韩人妻精品一区2区三区| 91午夜精品亚洲一区二区三区| 熟女电影av网| 久久久久久久久久久免费av| 久久99一区二区三区| 欧美日韩视频精品一区| 91国产中文字幕| 欧美日韩一级在线毛片| 男人操女人黄网站| 69精品国产乱码久久久| 只有这里有精品99| 香蕉国产在线看| 观看av在线不卡| 少妇人妻 视频| 日韩不卡一区二区三区视频在线| 人人妻人人澡人人看| 日韩大片免费观看网站| 各种免费的搞黄视频| 最近最新中文字幕免费大全7| 午夜激情久久久久久久| 一级片'在线观看视频| 久久久精品国产亚洲av高清涩受| 亚洲av成人精品一二三区| 看非洲黑人一级黄片| 精品国产一区二区久久| 亚洲av成人精品一二三区| 国产精品偷伦视频观看了| 午夜av观看不卡| 亚洲欧洲国产日韩| 亚洲激情五月婷婷啪啪| 男女边摸边吃奶| 日本av免费视频播放| 精品国产一区二区久久| 少妇的丰满在线观看| 黑人猛操日本美女一级片| av国产精品久久久久影院| 国产1区2区3区精品| 欧美日韩视频高清一区二区三区二| 在线观看国产h片| 色视频在线一区二区三区| 久久精品久久精品一区二区三区| 久久国产亚洲av麻豆专区| 精品卡一卡二卡四卡免费| 又黄又粗又硬又大视频| 9热在线视频观看99| 久久精品夜色国产| 最近2019中文字幕mv第一页| 侵犯人妻中文字幕一二三四区| 久久久久国产精品人妻一区二区| 国产精品久久久久久久久免| 韩国高清视频一区二区三区| 亚洲国产成人一精品久久久| 伊人久久大香线蕉亚洲五| 国产亚洲av片在线观看秒播厂| 在线观看一区二区三区激情| 美女午夜性视频免费| 热99久久久久精品小说推荐| 日本黄色日本黄色录像| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区黑人 | 久久影院123| 制服人妻中文乱码| 国产成人av激情在线播放| 国精品久久久久久国模美| 少妇猛男粗大的猛烈进出视频| 中文字幕最新亚洲高清| 人人妻人人添人人爽欧美一区卜| 国产精品 欧美亚洲| 综合色丁香网| 精品久久久精品久久久| 老司机亚洲免费影院| 最近2019中文字幕mv第一页| 女人被躁到高潮嗷嗷叫费观| 97在线人人人人妻| 日韩视频在线欧美| 欧美+日韩+精品| 久久久国产精品麻豆| 国产成人精品久久久久久| 欧美日韩成人在线一区二区| www.精华液| 亚洲一区中文字幕在线| 在线观看人妻少妇| 成人免费观看视频高清| 精品卡一卡二卡四卡免费| 另类精品久久| 成人午夜精彩视频在线观看| 肉色欧美久久久久久久蜜桃| 日本vs欧美在线观看视频| 免费观看性生交大片5| 侵犯人妻中文字幕一二三四区| 亚洲国产毛片av蜜桃av| av有码第一页| 制服诱惑二区| 亚洲精品国产色婷婷电影| 亚洲欧美中文字幕日韩二区| 999久久久国产精品视频| 免费黄频网站在线观看国产| 亚洲视频免费观看视频| 亚洲经典国产精华液单| 婷婷色综合大香蕉| 人人妻人人添人人爽欧美一区卜| 九色亚洲精品在线播放| 天堂俺去俺来也www色官网| 国产爽快片一区二区三区| 欧美精品高潮呻吟av久久| 赤兔流量卡办理| 日韩,欧美,国产一区二区三区| 国产成人精品在线电影| 看免费成人av毛片| 日本免费在线观看一区| 亚洲av中文av极速乱| 少妇人妻 视频| 国产激情久久老熟女| 中文天堂在线官网| 两性夫妻黄色片| 熟女电影av网| 欧美激情 高清一区二区三区| 日韩精品免费视频一区二区三区| 欧美成人精品欧美一级黄| 精品人妻一区二区三区麻豆| 日韩一区二区视频免费看| 亚洲精品美女久久久久99蜜臀 | 国产精品麻豆人妻色哟哟久久| 赤兔流量卡办理| 久久久国产精品麻豆| 欧美精品一区二区大全| 少妇被粗大猛烈的视频| 视频在线观看一区二区三区| 最新中文字幕久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人添人人爽欧美一区卜| 亚洲精品av麻豆狂野| 欧美国产精品va在线观看不卡| 少妇熟女欧美另类| 蜜桃国产av成人99| 精品国产一区二区三区四区第35| 1024香蕉在线观看| 最近中文字幕2019免费版| 日本免费在线观看一区| 18在线观看网站| 26uuu在线亚洲综合色| 成人国产av品久久久| 90打野战视频偷拍视频| 亚洲精品自拍成人| www.精华液| 国产精品99久久99久久久不卡 | xxxhd国产人妻xxx| 亚洲国产色片| 久久精品国产亚洲av天美| 国产精品久久久av美女十八| a级片在线免费高清观看视频| 波野结衣二区三区在线| 交换朋友夫妻互换小说| 国产国语露脸激情在线看| 啦啦啦在线观看免费高清www| 人人妻人人添人人爽欧美一区卜| 又黄又粗又硬又大视频| 日韩一区二区三区影片| 国产日韩欧美亚洲二区| 人妻 亚洲 视频| 国产av码专区亚洲av| 制服诱惑二区| 欧美精品av麻豆av| 美女国产高潮福利片在线看| 精品亚洲乱码少妇综合久久| av视频免费观看在线观看| 男女免费视频国产| 性少妇av在线| 亚洲,一卡二卡三卡| 国产精品99久久99久久久不卡 | 王馨瑶露胸无遮挡在线观看| 三级国产精品片| 久久婷婷青草| 国产在线视频一区二区| 人成视频在线观看免费观看| 国产精品亚洲av一区麻豆 | 婷婷色综合大香蕉| 国产亚洲午夜精品一区二区久久| 多毛熟女@视频| 嫩草影院入口| 青春草国产在线视频| 欧美在线黄色| 国产精品一区二区在线观看99| 视频在线观看一区二区三区| 亚洲成国产人片在线观看| 午夜久久久在线观看| av在线播放精品| 韩国高清视频一区二区三区| 欧美av亚洲av综合av国产av | 亚洲综合精品二区| 国产无遮挡羞羞视频在线观看| 另类精品久久| 国产午夜精品一二区理论片| 看免费成人av毛片| 2022亚洲国产成人精品| av片东京热男人的天堂| 国产精品人妻久久久影院| 精品卡一卡二卡四卡免费| 天堂俺去俺来也www色官网| 天天影视国产精品| 美女脱内裤让男人舔精品视频| 亚洲精品,欧美精品| 国产亚洲欧美精品永久| 国产免费一区二区三区四区乱码| 999精品在线视频| 欧美变态另类bdsm刘玥| 国产男女超爽视频在线观看| 欧美人与性动交α欧美精品济南到 | 捣出白浆h1v1| 日本wwww免费看| 99久久精品国产国产毛片| 青春草视频在线免费观看| 日产精品乱码卡一卡2卡三| 一区二区三区四区激情视频| 伊人久久国产一区二区| 国产福利在线免费观看视频| 18禁观看日本| 国产成人精品在线电影| 中文字幕色久视频| 777久久人妻少妇嫩草av网站| 国产精品不卡视频一区二区| 欧美日韩视频精品一区| 色哟哟·www| av不卡在线播放| 狠狠精品人妻久久久久久综合| 人人妻人人爽人人添夜夜欢视频| 亚洲第一区二区三区不卡| 亚洲欧美成人综合另类久久久| 黄片播放在线免费| 最近的中文字幕免费完整| 国产亚洲av片在线观看秒播厂| 精品人妻熟女毛片av久久网站| 美女大奶头黄色视频| 中文字幕色久视频| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 老司机影院毛片| 久久久久精品久久久久真实原创| 啦啦啦在线免费观看视频4| 美女视频免费永久观看网站| 午夜福利,免费看| 欧美精品一区二区免费开放| 激情五月婷婷亚洲| a 毛片基地| 午夜免费观看性视频| 丝袜美腿诱惑在线| 美女大奶头黄色视频| 日韩大片免费观看网站| 又黄又粗又硬又大视频| 在线观看www视频免费| 日韩在线高清观看一区二区三区| 高清黄色对白视频在线免费看| 菩萨蛮人人尽说江南好唐韦庄| 欧美日韩视频高清一区二区三区二| 老司机亚洲免费影院| 国产成人精品一,二区| 美女脱内裤让男人舔精品视频| 免费播放大片免费观看视频在线观看| 日本爱情动作片www.在线观看| 美女视频免费永久观看网站| 久久亚洲国产成人精品v| 男女边摸边吃奶| 激情五月婷婷亚洲| 精品卡一卡二卡四卡免费| 欧美 日韩 精品 国产| 91精品三级在线观看| 久久99蜜桃精品久久| 国产精品一区二区在线不卡| 天堂8中文在线网| 热re99久久精品国产66热6| 赤兔流量卡办理| 男的添女的下面高潮视频| www.精华液| 国产精品嫩草影院av在线观看| 国产免费又黄又爽又色| 欧美日韩一区二区视频在线观看视频在线| 99久久中文字幕三级久久日本| 有码 亚洲区| 一本大道久久a久久精品| 自线自在国产av| 黑丝袜美女国产一区| 18在线观看网站| 久久ye,这里只有精品| 超碰97精品在线观看| 成年人免费黄色播放视频| 久久99精品国语久久久| 午夜免费鲁丝| 精品99又大又爽又粗少妇毛片| 美女高潮到喷水免费观看| 哪个播放器可以免费观看大片| 毛片一级片免费看久久久久| 久久精品国产鲁丝片午夜精品| 色94色欧美一区二区| 女人精品久久久久毛片| 9191精品国产免费久久| 91成人精品电影| 大陆偷拍与自拍| 亚洲天堂av无毛| 最近中文字幕高清免费大全6| 纯流量卡能插随身wifi吗| 五月开心婷婷网| 国产成人免费观看mmmm| 我要看黄色一级片免费的| 国产黄色视频一区二区在线观看| 日韩电影二区| 一级片免费观看大全| 在线观看国产h片| 啦啦啦啦在线视频资源| 欧美变态另类bdsm刘玥| 视频在线观看一区二区三区| 久久综合国产亚洲精品| 一边摸一边做爽爽视频免费| 亚洲精品美女久久av网站| av福利片在线| xxxhd国产人妻xxx| 18禁观看日本| 秋霞伦理黄片| 最新的欧美精品一区二区| 亚洲情色 制服丝袜| 国产日韩欧美视频二区| 午夜福利,免费看| 国产极品粉嫩免费观看在线| 一二三四中文在线观看免费高清| 女的被弄到高潮叫床怎么办| 国产又色又爽无遮挡免| 国产一区二区三区av在线| av国产精品久久久久影院| 亚洲精品一区蜜桃| 你懂的网址亚洲精品在线观看| 亚洲国产欧美在线一区| 一边摸一边做爽爽视频免费| 午夜日本视频在线| 精品一区在线观看国产| 伊人久久大香线蕉亚洲五| 国产av码专区亚洲av| 免费观看性生交大片5| 久热这里只有精品99| 99热网站在线观看| 青春草国产在线视频| 亚洲一码二码三码区别大吗| 午夜福利视频精品| 免费看不卡的av| 精品久久蜜臀av无| 久久人人97超碰香蕉20202| 只有这里有精品99| 久久久久精品性色| 美女脱内裤让男人舔精品视频| 日本av手机在线免费观看| 久久久精品免费免费高清| 一本—道久久a久久精品蜜桃钙片| 999精品在线视频| 一级,二级,三级黄色视频| 亚洲欧美清纯卡通| 国产在线免费精品| 国产日韩一区二区三区精品不卡| 国产xxxxx性猛交| 亚洲伊人久久精品综合| 超碰97精品在线观看| 男女边摸边吃奶| av不卡在线播放| 波野结衣二区三区在线| 我的亚洲天堂| 赤兔流量卡办理| xxx大片免费视频| 亚洲国产精品国产精品| 哪个播放器可以免费观看大片| 亚洲精品第二区| 高清黄色对白视频在线免费看| 美国免费a级毛片| 久久久国产精品麻豆| 日韩成人av中文字幕在线观看| 1024香蕉在线观看| 黑人猛操日本美女一级片| 亚洲国产看品久久| 国产成人欧美在线观看| av天堂在线播放| 精品无人区乱码1区二区| 日本黄色视频三级网站网址| 日韩人妻精品一区2区三区| 欧美 亚洲 国产 日韩一| 国产一区二区三区在线臀色熟女 | 国产真人三级小视频在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品综合久久久久久久免费 | 五月开心婷婷网| 人妻丰满熟妇av一区二区三区| 丰满的人妻完整版| 精品久久久久久成人av| 天天躁狠狠躁夜夜躁狠狠躁| 国产成人av教育| 久久久久久人人人人人| 国产欧美日韩一区二区精品| 国产亚洲av高清不卡| av网站免费在线观看视频| 不卡av一区二区三区| 少妇裸体淫交视频免费看高清 | svipshipincom国产片| 在线观看一区二区三区| 少妇的丰满在线观看| 日本五十路高清| 国产麻豆69| 韩国精品一区二区三区| 操出白浆在线播放| 一进一出抽搐gif免费好疼 | 久久精品91蜜桃| 高清毛片免费观看视频网站 | 久久中文看片网| 国产片内射在线| 国产欧美日韩一区二区三| 黄色丝袜av网址大全| 欧美午夜高清在线| 高清在线国产一区| 国产精品久久久人人做人人爽| av网站在线播放免费| 国产一区在线观看成人免费| 首页视频小说图片口味搜索| 天天躁狠狠躁夜夜躁狠狠躁| 两人在一起打扑克的视频| 最好的美女福利视频网| 桃色一区二区三区在线观看| 涩涩av久久男人的天堂| e午夜精品久久久久久久| 女人高潮潮喷娇喘18禁视频| aaaaa片日本免费| 乱人伦中国视频| 美女 人体艺术 gogo| 午夜精品国产一区二区电影| 成年人黄色毛片网站| 老汉色∧v一级毛片| 香蕉国产在线看| 身体一侧抽搐| 久久香蕉激情| 国产精品综合久久久久久久免费 | 五月开心婷婷网| 在线观看免费高清a一片| 亚洲精品美女久久av网站| 黄色毛片三级朝国网站| 亚洲熟妇熟女久久| av国产精品久久久久影院| 国产三级黄色录像| 亚洲 欧美一区二区三区| 男女床上黄色一级片免费看| 黄色a级毛片大全视频| 美女高潮喷水抽搐中文字幕| 久久青草综合色| 19禁男女啪啪无遮挡网站| 国产成人免费无遮挡视频| 久久久久久久午夜电影 | 国产午夜精品久久久久久| 亚洲精品久久午夜乱码| 亚洲精品粉嫩美女一区| 99国产精品99久久久久| 99精国产麻豆久久婷婷| 一本综合久久免费| 亚洲av熟女| 久久国产精品影院| 一区二区三区精品91| 国产99白浆流出| 国产欧美日韩综合在线一区二区| 国产深夜福利视频在线观看| 两人在一起打扑克的视频| 亚洲第一av免费看| 国产激情久久老熟女| 午夜免费观看网址| 91老司机精品| 久久精品影院6| 久久久久久久久中文| 叶爱在线成人免费视频播放| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 亚洲五月色婷婷综合| 午夜精品在线福利| 成人国产一区最新在线观看| 首页视频小说图片口味搜索| 97碰自拍视频| 中出人妻视频一区二区| 国产精品国产av在线观看| 久久人妻av系列| 长腿黑丝高跟| 亚洲av成人一区二区三| 18禁美女被吸乳视频| 一级a爱视频在线免费观看| 亚洲五月婷婷丁香| 精品电影一区二区在线| 亚洲成a人片在线一区二区| 一级a爱片免费观看的视频| √禁漫天堂资源中文www| 亚洲男人天堂网一区| 一区二区三区国产精品乱码| 免费观看人在逋| av免费在线观看网站| 香蕉国产在线看| 99久久人妻综合| av网站在线播放免费| 欧美老熟妇乱子伦牲交| 丁香六月欧美| 欧美日韩乱码在线| 九色亚洲精品在线播放| 后天国语完整版免费观看| 日韩精品青青久久久久久| 成人三级做爰电影|