• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Calculation and Analysis of Acoustic Characteristics of Straight-Through Perforated Pipe Muffler Based on Multilayer Sound Absorbing Material

    2023-10-29 11:41:40LIURongji劉镕基ZHUCongyun朱從云DINGGuofang丁國(guó)芳YUANLei

    LIU Rongji(劉镕基), ZHU Congyun(朱從云), DING Guofang(丁國(guó)芳), YUAN Lei(院 蕾)

    School of Mechatronics Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China

    Abstract:Using the multi-physical field simulation software COMSOL, the acoustic characteristics of the multilayer sound absorbing material straight-through perforated pipe muffler are studied by the finite element method. The results show that the finite element calculation of the multilayer sound absorbing material straight-through the perforated pipe muffler agrees well with the experimental measurement results. The reliability of the finite element method for studying the acoustic performance of the straight-through perforated pipe muffler with multilayer sound absorbing materials is shown. Furthermore, the influence of some structural parameters of porous sound absorbing material and micro-perforated plate on the acoustic performance of the multilayer sound absorbing material straight-through perforated pipe muffler is analyzed. The muffler based on multilayer sound absorbing material is different from the traditional muffler. After applying the multilayer sound absorbing material to the straight-through perforated pipe muffler, the transmission loss value greatly increases, which provides new ideas and directions for future research on the muffler.

    Key words:porous sound absorbing material; perforated tube; finite element method; muffler; acoustic characteristics

    0 Introduction

    Straight-through perforated tube muffler is often applied to the import and export of automobile engine to reduce the noise of automobile intake and exhausts[1]. At present, most of the research on straight-through perforated tube muffler is based on single-layer micro-perforated pipes, and it is rare to see the straight-through perforated pipe mufflers based on the combination of multi-layer micro-perforated pipes and porous sound-absorbing materials (porous medium). And although there are one-dimensional frequency domain and time domain methods for predicting the silencer performance of perforated pipe silencers, they are only applicable to the calculation of low-frequency acoustic characteristics of silencers[2-5]. In order to effectively predict high-frequency acoustic characteristics, three-dimensional numerical methods are needed[6]. Seybertetal.[7]applied the boundary element method for noise attenuation characteristics of resistant mufflers and sound absorption pipes, but they did not consider the existence of perforated pipes. Considering the influence of perforated pipes, Xuetal.[8]used the finite element method to predict and analyze the acoustic performance of circular straight perforated pipe mufflers, and the calculated results were in good agreement with the experimental results.

    But their analysis was based on a single layer of sound-absorbing material and perforated pipes. The multilayer sound-absorbing material and perforated pipes are not calculated and analyzed.

    In this paper, the Galerkin weighted parameter method is used to derive the finite element equation in the presence of perforated structures[9]. COMSOL has additional functional modules(such as acoustic module) and extended software functions,which are widely used in numerical simulation[10-11]. Therefore, the multi-physical field simulation software COMSOL is used to conduct simulation calculation and compare the experimental results. The influences of porous sound-absorbing materials on the multilayer sound-absorbing material straight-through perforated pipe muffler (including filling density, thickness and air cavity) and some structural parameters of the micro-perforated plate (including the effect of aperture and thickness) on the acoustic performance of multilayer sound absorbing material straight-through perforated pipe muffler are studied.

    1 Three-Dimensional Finite Element Calculation

    The muffler composed of multilayer sound absorbing materials as shown in Fig.1 is divided into four areas which are respectively represented byA1,A2(porous medium 1),A3(cavity) andA4(porous medium 2). At the same time, the boundary is divided into inlet, outlet, perforated tube surface 1, perforated tube surface 2, perforated tube surface 3 and rigid wall surface. They are respectively represented bySi,So,Sp11,Sp12,Sp21,Sp22,Sp31,Sp32andSw, as shown in Fig.1.His the external diameter of the muffler.Lis the length of the muffler.D1andD2are the diameters of the inlet and the outlet, respectively. The governing equations of 3D sound propagation in areasA1,A2,A3,andA4[12]are respectively as

    (1)

    (2)

    (3)

    (4)

    whereP1,P2,P3andP4represent the sound pressures in four areas.k1,k2,k3andk4represent the wave numbers of the medium in each region.

    Fig.1 Multilayer sound absorbing material straight-through perforated pipe muffler

    In the acoustic finite element calculation, the interpolation function is used to represent the sound pressure

    Pi={N}T{Pi},

    (5)

    where {Pi} (i=1, 2, …, 4) is the column vector of sound pressure of each node in regionAi(i=1, 2, …, 4); and {N} is the column vector of the shape function.

    There are four types of boundary conditions for perforated pipe mufflers[13-14].

    (a) Rigid wall boundary conditions, in which the vibration velocity of the normal particle is zero,

    (6)

    (b) The perforated tube exists at the interface between air and sound-absorbing material. In this case, the velocity of the normal particle is continuous and the normal pressure gradient on both sides is in direct proportion to the density ratio:

    ua·na=-ub·nb,

    (7)

    (8)

    whereuais particle vibration velocity on the air side;ubis the particle vibration velocity on the side of sound absorbing material;ρa(bǔ)is air density;ρbis the density of sound absorbing material;nais the unit external normal force on the air side of the perforated pipe wall;nbis the unit external normal force on the sound-absorbing material side. Therefore, the relationship between the sound pressure difference on both sides of the perforated wall and the vibration velocity of the normal particleuncan be established through the characteristic acoustic impedance of the perforated pipe.

    (i) If the sound first passes through the air layer and enters the sound-absorbing material through the perforated element,

    (9)

    (ii) If the sound first passes through the sound absorbing material and enters the air layer through the perforated element,

    (10)

    whereζpis the characteristic acoustic impedance of the perforated pipe;Ppais the sound pressure of the perforated tube on both sides of the air side;Ppbis the sound pressure of the sound-absorbing material on either side of the perforated pipe. The perforated tube is a thin-walled structure with a high perforation rate and uniform distribution of holes. The momentum equation is used to obtain,

    (11)

    (12)

    (c) If the boundary condition of the inlet is known, then

    (13)

    (d) If the outlet is set to a non-reflective boundary condition, then

    (14)

    Using the Galerkin weighted parameter method[15]in regionA1, it can be

    (15)

    From the transformation of Green's formula, we can obtain

    (16)

    Using the same method in areasA2,A3andA4, respectively, we can obtain

    (17)

    (18)

    (19)

    According to Fig.1, Eqs. (6)- (7), Eqs. (11)- (14) are substituted into Eqs. (16)-(19)by using applicable conditions, the following rearranged formulaA1,A2,A3, andA4can be obtained

    (20)

    (21)

    (22)

    (23)

    Add Eqs. (20)-(23) and substitute Eq. (5) into the formula:

    (24)

    In the above formula:

    (25)

    (26)

    (27)

    (28)

    (29)

    (30)

    (31)

    (32)

    (33)

    (34)

    (35)

    (36)

    (37)

    (38)

    (39)

    (40)

    The sound pressure at each node can be obtained by solving Eq.(24), and then the transmission loss of the muffler can be calculated according to Eq. (41). The expression of the transmission loss (L) is[16]

    (41)

    whereS1is the cross-sectional area of the muffler inlet;S2is the muffler outlet cross-sectional area;Piis the muffler inlet incident sound pressure;Pois the muffler outlet transmission sound pressure.

    2 Acoustic Characteristics of Sound Absorbing Material and Perforation Acoustic Impedance

    The sound absorbing material inside the muffler is ideal status to be uniform adiabatic and equivalent to a fluid with complex sound velocity and density. The internal structure of the sound-absorbing material is complex, and its acoustic characteristics are not easy to be obtained and are generally obtained through experimental measurement[17]. The expressions of complex impedance and complex wave number of sound absorbing materials used in this paper are[18]

    Z′/Z0=[1+0.085 5(f/R)-0.754]+
    j[-0.076 5(f/R)-0.732],

    (42)

    k′/k0=[1-0.147 2(f/R)-0.577]+
    j[-0.173 4(f/R)-0.595],

    (43)

    wherefis the frequency;Z' is the complex impedance of sound-absorbing material;k′ is the complex wave number of the sound-absorbing material;Z0=ρ0c0is air characteristic acoustic impedance;k0=2πf/c0is the wave number in the air (air densityρ0=1.156 kg/m3and sound speedc0=340 m/s);Ris the flow resistance rate of the sound-absorbing materials (fiberglass silk cotton). When the filling density of sound-absorbing material is 100 kg/m3, the flow resistance rate is 5 000 N/m2, and when it is 200 kg/m3, the flow resistance rate of this material is 15 000 N/m2. The flow resistance rate of the sound-absorbing material is measured with the standing wave tube[19]. The complex sound velocity and density of the sound-absorbing materials are

    (44)

    (45)

    Because the media on both sides of the perforated tube are different, air on one side and the sound-absorbing material on the other side, the modified acoustic impedance expression of perforated characteristicsξp[20]is

    ξp=(0.006+jka[t+0.375dh(1+Zbka)]),

    (46)

    wheredhrepresents the thickness of the cavity.

    3 Discussion and Analysis

    Figure 2 is the three-dimensional picture of the multilayer sound absorbing material straight-through perforated pipe muffler.Its specific dimensions are the expansion cavity lengthL=500 mm, the expansion cavity heightH=140 mm, three layers of the micro-perforated pipe, the distance between each layer of micro-perforated tube is 10 mm, the areasA2andA4are porous sound absorbing materials, the areaA3is the cavity (the cavity set after the micro-perforated plate can form a resonance cavity), the inner diameterD1=D2=50 mm, the sound speedc0=340 m/s. The basic parameters of sound absorbing materials (including micro-perforated plates and porous sound-absorbing materials) are set as shown in Table 1.

    Fig.2 Three-dimensional model of multi-layer sound absorbing material straight-through perforated pipe muffler

    The multilayer sound-absorbing material straight-through perforated pipe muffler is divided into finite element meshes with the free quadrilateral body, and the meshes contain 51 524 domain elements, 19 074 boundary elements and 10 491 nodes. The meshing diagram is shown in Fig.3.

    Table 1 Basic parameters of sound absorbing materials

    Fig.3 Finite element mesh of multilayer sound-absorbing material straight-through perforated pipe muffler

    The experimental schematic of transfer loss is shown in Fig.4.

    Fig.4 Experimental schematic of transfer loss

    According to the experimental schematic diagram in Fig.4, the experimental block diagram of muffler transmission loss shown in Fig.5 can be designed.

    Fig.5 Experimental block diagram for measurement of transmission loss of multilayer sound-absorbing material straight-through perforated pipe muffler

    The experimental platform as shown in Fig.6 is built according to the experimental block diagram.

    Fig.6 Experimental platform for measurement of transmission loss of multi-layer sound absorbing material straight-through perforated pipe muffler

    3.1 Verification of numerical calculation results

    In order to verify the correctness of the finite element method used to study the multi-layer sound absorbing material straight-through perforated tube muffler, the finite element results are compared with the experimental results, as shown in Fig.7. It can be seen that the muffler with multi-layer sound-absorbing material straight-through perforated pipe muffler has much better muffler effect than that with the resistant muffler. The results of the finite element calculation and experimental measurement are in good agreement in the whole frequency range, which indicate that the finite element method can accurately predict the acoustic characteristics of the multilayer sound absorbing material straight-through the perforated pipe muffler. The viscous damping effect is the reason for the error between the experimental results and the simulation results at high frequency.

    Fig.7 Simulation results of transmission loss compared with experimental results

    3.2 Influence of flow resistance rate on transmission loss

    Flow resistance is one of the important parameters of porous sound absorbing materials. It affects the complex impedance and the complex wave number of porous sound absorbing material and perforated acoustic impedance, and ultimately affects the acoustic characteristics of the muffler[21]. The porous media with low flow resistance (1 500 N/m2) and high flow resistance (16 000 N/m2) were combined in pairs to conduct the research. The transmission loss is shown in Fig.8. It can be seen from Fig.8 that in the low-frequency regions, porous medium 1 and porous medium 2 have little influence on the transmission loss regardless of the low or high flow resistance; while in the high-frequency regions, porous medium 1 and porous medium 2 have better flow resistance, and the sound attenuation effect is better. When porous medium 1 has a low flow resistance rate and porous medium 2 has a high flow resistance rate, the noise frequency before 1 750 Hz has a good noise attenuation effect. When porous medium 1 has a high flow resistance rate and porous medium 2 has a low flow resistance rate, the noise frequency after 1 750 Hz has a good noise attenuation effect. In order to reduce the mass of the muffler, the bulk density of the porous media could be reduced, and the flow resistance of each layer of the porous media could be selected according to the noise reduction requirements.

    Fig.8 Influence of flow resistance rate on transmission loss

    3.3 Effect of micro-perforated pipe thickness on transmission loss

    The influence of thicknessestp1,tp2andtp3of micro-perforated pipe 1, perforated pipe 2 and perforated pipe 3 on the transmission loss is shown in Fig.10.

    As can be seen from Fig.9(a), at the noise frequency lower than 1 500 Hz, the transmission loss is the largest when the thickness of perforated pipe 1tp1=1 mm; at the moise frequency higher than 1 500 Hz, the transmission loss is the largest whentp1=2 mm, followed by the transmission loss attp1=3 mm, and the transmission loss is the smallest attp1=4 mm is between 1 500 Hz and 2 300 Hz. At about 2 500 Hz, there is a sharp increase in the transmission loss whentp1=4 mm, because at about 2 500 Hz, perforated pipe 1 reaches the resonant frequency of noise and produces resonance, followed by a sharp decline. It can be seen from Fig.9(b) thattp2=1 mm has the largest transmission loss before 1 500 Hz, and there is almost no difference in transmission loss whentp2is 2, 3 and 4 mm, respectively. At the noise frequency about 1 550 Hz, the transfer loss attp2=4 mm reaches the resonant peak, following by a sharp decline. After the noise frequency of 1 550 Hz, the transmission loss oftp2=2 mm is the largest, the muffler frequency band is the widest, and the muffler effect is the best. It can be seen from Fig.9(c) that the thickness of perforated pipe 2 has little influence on the transmission loss before the noise frequency of 2 200 Hz, but at about 1 500 Hz, the transmission loss oftp3=4 mm reaches the resonance peak. After the noise frequency of 2 200 Hz, the larger the thickness of micro-perforated pipe 3, the smaller the transmission loss.

    Fig.9 Effect of different thicknesses of micro-perforated pipe on transmission loss: (a) perforated pipe 1; (b) perforated pipe 2; (c) perforated pipe 3

    3.4 Influence of perforation rate of micro-perforated pipe on transmission loss

    The effect of perforation ratesδ1,δ2andδ3of micro-perforated pipes 1, 2 and 3 on the transfer loss is shown in Fig.10.

    Fig.10 Effect of perforation rate of different micro-perforated pipes on transfer loss: (a) perforated pipe 1; (b) perforated pipe 2; (c) perforated pipe 3

    As can be seen from Fig.10, when the perforation rate of micro-perforated pipes 1, 2 and 3 is 10%, the transmission loss is the greatest and the noise attenuation effect is the best.At the noise frequency lower than 1 500 Hz, when the perforation rate of the three pipes is equal to 5%, the transmission loss reaches the resonance peak and then decline sharply around 1 550 Hz. When the perforation rate of the three micro-perforated tubes is 20%, the transmission loss is the largest, and the sound attenuation effect is good. The reason is that in the high-frequency stage, the larger the perforation rate of the micro-perforated pipe, the more high-frequency noise passes through the micro-perforation. The more high-frequency noise is absorbed by the porous sound absorbing material, the sound attenuation effect is better.

    3.5 Influence of center distance of inlet and outlet pipe on transmission loss

    In order to study the influence of distance between the axes inlet and outlet on the transmission loss, the distance of the inlet and outlet was set as 0, 50, 100 and 150 mm, respectively. Its plane diagram is shown in Fig.11, where the center distance of inlet and outlet pipes isl. The results are shown in Fig.12.

    Fig.11 Layout diagram of distance between the axes inlet and outlet

    Fig.12 Influence of center distance of inlet and outlet pipes on transmission loss

    It can be seen from Fig.12 that in the low-frequency band, at the noise frequency lower than 1 400 Hz, the transmission loss is the largest whenl=0 mm. The noise frequency is 1 400-1 600 Hz, the transmission loss is almost the same atl=50 mm andl=100 mm. In the high-frequency band higher than 1 600 Hz, the distance between the axes of inlet and outlet for the transmission loss is biggest atl= 150 mm. Because this arrangement makes the propagation path longer, the high-frequency noise is absorbed more by the absorbing porous medium.The better noise reduction effect can be achieved. Therefore, in order to design a muffler with a better effect, the center distance between the axes of inlet and outlet pipe can be properly deviated.

    4 Conclusions

    The finite element method is used to calculate the acoustic characteristics of the muffler based on multilayer sound absorbing materials. The finite element calculation results of the muffler based on multilayer sound absorbing material straight-through perforated pipe agree well with the experimental measurement results, which indicates the reliability of the finite element method used to study the acoustic performance of the muffler based on multi-layer sound absorbing material straight-through perforated pipe muffler. Through the influence of racetrack cross section multi-layer sound absorbing material directly through the perforated pipe muffler, some structural parameters of the perforated plate and the center distance between the inlet and outlet of the pipe on the acoustic performance of the muffler, the following conclusions are drawn.

    1) Among the above parameters, the aperture of perforated pipe 1 and the thickness of perforated pipe 3 have little influence on the acoustic performance of the muffler at low frequencies. The other parameters are the basic parameters in Table 1. The muffler has a good noise attenuation characteristic in the low-frequency bands.

    2) In the high-frequency bands, the smaller the aperture of the perforated pipe, the greater the transmission loss of the muffler. With the increase of the perforation rate and the distance between the inlet and outlet of the perforated pipe, the high-frequency transmission loss in the muffler increases. The thicknesses of perforated pipes 1, 2 and 3 do not show strong regularity in middle and high-frequency bands, so it is necessary to select appropriate values to achieve large transmission loss.

    3) Different from the traditional straight-through perforated pipe muffler, this paper applies the multilayer sound absorbing material to the straight-through perforated pipe muffler. The new type muffler increases the transmission loss and improves the sound attenuation effect of the straight-through perforated pipe muffler, which has strong guiding significance and application value for the future research of such mufflers.

    老司机福利观看| av专区在线播放| 国产一级毛片在线| 免费人成在线观看视频色| 亚洲成人av在线免费| 黄片wwwwww| 亚洲无线在线观看| 精品人妻熟女av久视频| a级一级毛片免费在线观看| 国产一级毛片七仙女欲春2| 丰满的人妻完整版| 一个人免费在线观看电影| 青春草亚洲视频在线观看| 在线观看午夜福利视频| 99久国产av精品国产电影| 一级av片app| 亚洲国产日韩欧美精品在线观看| 在线观看av片永久免费下载| 欧美性猛交黑人性爽| 麻豆成人午夜福利视频| 国产精品电影一区二区三区| 国产亚洲精品久久久久久毛片| 日本色播在线视频| 我要看日韩黄色一级片| 久久人人爽人人片av| 国产精品电影一区二区三区| 亚洲精品亚洲一区二区| 色综合站精品国产| 久久久久性生活片| 国产伦一二天堂av在线观看| 哪个播放器可以免费观看大片| 国产一区二区激情短视频| 最近手机中文字幕大全| 亚洲在线观看片| 国产亚洲精品久久久久久毛片| 色综合亚洲欧美另类图片| 卡戴珊不雅视频在线播放| 国产v大片淫在线免费观看| 国产成人午夜福利电影在线观看| 国产av在哪里看| 亚洲18禁久久av| 亚洲四区av| 最近最新中文字幕大全电影3| 成人亚洲欧美一区二区av| 亚洲欧美成人综合另类久久久 | 嫩草影院新地址| 青春草国产在线视频 | 深夜a级毛片| 欧美一区二区亚洲| 成人美女网站在线观看视频| 久久久久国产网址| 久久这里只有精品中国| 午夜福利在线观看吧| 九九爱精品视频在线观看| 欧美激情久久久久久爽电影| 久久婷婷人人爽人人干人人爱| 亚洲aⅴ乱码一区二区在线播放| 女的被弄到高潮叫床怎么办| 国产精品一区二区在线观看99 | 国产成人午夜福利电影在线观看| 亚洲自拍偷在线| 综合色丁香网| 嘟嘟电影网在线观看| 搞女人的毛片| 婷婷六月久久综合丁香| 亚洲精品国产av成人精品| 乱码一卡2卡4卡精品| 插逼视频在线观看| 国产成人福利小说| 国产日本99.免费观看| 亚洲成av人片在线播放无| 亚洲精品亚洲一区二区| 日本爱情动作片www.在线观看| 免费看av在线观看网站| 少妇高潮的动态图| av免费在线看不卡| 久久久国产成人免费| 精品国内亚洲2022精品成人| 日韩av不卡免费在线播放| 久久久久久国产a免费观看| 国产成人aa在线观看| 国产激情偷乱视频一区二区| 黄片无遮挡物在线观看| 毛片一级片免费看久久久久| 精品久久久久久久久久免费视频| 日韩人妻高清精品专区| 国产精品女同一区二区软件| 欧美高清性xxxxhd video| 看十八女毛片水多多多| 黑人高潮一二区| 老司机影院成人| 国产探花在线观看一区二区| 国产爱豆传媒在线观看| 青青草视频在线视频观看| 如何舔出高潮| 亚洲国产高清在线一区二区三| 国产一区亚洲一区在线观看| 欧美色欧美亚洲另类二区| 中文资源天堂在线| 久久精品国产自在天天线| 欧美成人a在线观看| 级片在线观看| 22中文网久久字幕| 69人妻影院| 欧美高清性xxxxhd video| 人体艺术视频欧美日本| 97超视频在线观看视频| 久久人人爽人人片av| 特级一级黄色大片| 91麻豆精品激情在线观看国产| 高清毛片免费观看视频网站| 国产午夜精品一二区理论片| 国产不卡一卡二| 久久午夜福利片| 国产 一区 欧美 日韩| 不卡一级毛片| 国产视频首页在线观看| 成年av动漫网址| 小说图片视频综合网站| 国国产精品蜜臀av免费| 久久99热6这里只有精品| 搞女人的毛片| 黑人高潮一二区| 可以在线观看的亚洲视频| 91精品一卡2卡3卡4卡| 日韩欧美精品v在线| 嫩草影院新地址| 国产精品永久免费网站| 日韩人妻高清精品专区| 卡戴珊不雅视频在线播放| 最近最新中文字幕大全电影3| 日韩欧美 国产精品| 91久久精品国产一区二区三区| 国产69精品久久久久777片| 岛国毛片在线播放| 亚洲国产欧洲综合997久久,| 91精品国产九色| 欧美最新免费一区二区三区| 天堂√8在线中文| 人妻少妇偷人精品九色| 亚洲国产精品国产精品| 免费人成在线观看视频色| 国内精品一区二区在线观看| 国产精品综合久久久久久久免费| 我要搜黄色片| 真实男女啪啪啪动态图| 久久99精品国语久久久| 免费搜索国产男女视频| 99精品在免费线老司机午夜| 亚洲欧美日韩无卡精品| 亚洲最大成人手机在线| 亚洲在久久综合| 久久久成人免费电影| 久久久色成人| 色5月婷婷丁香| 精品国产三级普通话版| 日韩 亚洲 欧美在线| 不卡一级毛片| 深爱激情五月婷婷| 中文在线观看免费www的网站| 成人毛片a级毛片在线播放| 99九九线精品视频在线观看视频| 观看免费一级毛片| 久久人人精品亚洲av| 六月丁香七月| 国产精品不卡视频一区二区| 国产成人91sexporn| 国产片特级美女逼逼视频| 国产伦在线观看视频一区| 男女做爰动态图高潮gif福利片| 久久午夜亚洲精品久久| 日本熟妇午夜| 男女边吃奶边做爰视频| 欧洲精品卡2卡3卡4卡5卡区| 男的添女的下面高潮视频| 偷拍熟女少妇极品色| 在线播放国产精品三级| 只有这里有精品99| 亚洲最大成人手机在线| 国产精品国产高清国产av| 亚洲18禁久久av| 欧美3d第一页| 成人毛片60女人毛片免费| 超碰av人人做人人爽久久| 国产精品永久免费网站| 自拍偷自拍亚洲精品老妇| 嫩草影院入口| 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看 | 午夜精品国产一区二区电影 | 长腿黑丝高跟| 国产精品久久视频播放| 91精品国产九色| 大又大粗又爽又黄少妇毛片口| 国产在线男女| 欧美一级a爱片免费观看看| 亚洲电影在线观看av| 国产精品免费一区二区三区在线| 国产亚洲av嫩草精品影院| 免费观看精品视频网站| 亚洲一区二区三区色噜噜| 国国产精品蜜臀av免费| 三级毛片av免费| 国产精品人妻久久久久久| 国产三级在线视频| 97超视频在线观看视频| 欧美性感艳星| 欧美丝袜亚洲另类| 一个人看视频在线观看www免费| av免费观看日本| 中国美女看黄片| 级片在线观看| 寂寞人妻少妇视频99o| 久久久久久久久久黄片| 亚洲av熟女| 一本久久精品| 啦啦啦啦在线视频资源| 国产久久久一区二区三区| 欧美变态另类bdsm刘玥| 国产亚洲精品av在线| 国产精品一区二区三区四区免费观看| 人人妻人人澡欧美一区二区| 男女边吃奶边做爰视频| 亚洲高清免费不卡视频| av女优亚洲男人天堂| 熟女人妻精品中文字幕| 日本欧美国产在线视频| 中国美女看黄片| 亚洲无线在线观看| av在线天堂中文字幕| 嫩草影院新地址| 好男人视频免费观看在线| 亚洲人与动物交配视频| 亚洲成人久久爱视频| 国产精品久久久久久精品电影小说 | 免费av毛片视频| 欧美一区二区国产精品久久精品| 欧美成人a在线观看| 国产亚洲av嫩草精品影院| 最近的中文字幕免费完整| 亚洲图色成人| 九九在线视频观看精品| 九九久久精品国产亚洲av麻豆| 国产精品久久视频播放| 国产精品永久免费网站| 成人亚洲欧美一区二区av| 久久精品人妻少妇| 变态另类丝袜制服| 精品无人区乱码1区二区| 欧美激情国产日韩精品一区| 国产精品久久久久久亚洲av鲁大| 舔av片在线| 国产片特级美女逼逼视频| 欧美高清性xxxxhd video| 亚洲国产精品合色在线| 精华霜和精华液先用哪个| 综合色av麻豆| 十八禁国产超污无遮挡网站| 午夜a级毛片| 三级毛片av免费| 你懂的网址亚洲精品在线观看 | 人妻系列 视频| 亚洲第一区二区三区不卡| 校园人妻丝袜中文字幕| av在线亚洲专区| АⅤ资源中文在线天堂| 国产 一区 欧美 日韩| 日本色播在线视频| 麻豆乱淫一区二区| 成年女人看的毛片在线观看| 午夜老司机福利剧场| 熟妇人妻久久中文字幕3abv| 我要看日韩黄色一级片| 国产午夜精品一二区理论片| 国产一区二区在线av高清观看| 中文在线观看免费www的网站| 国产 一区精品| 能在线免费观看的黄片| 身体一侧抽搐| 国产亚洲精品久久久com| 99久久九九国产精品国产免费| 最近视频中文字幕2019在线8| 国产成人精品一,二区 | 欧美日本视频| 久久久精品94久久精品| 精品国内亚洲2022精品成人| 亚洲熟妇中文字幕五十中出| 男女那种视频在线观看| 国产精品国产三级国产av玫瑰| 欧美极品一区二区三区四区| 哪个播放器可以免费观看大片| 中文字幕精品亚洲无线码一区| 国产一级毛片七仙女欲春2| 亚洲精品影视一区二区三区av| 日日摸夜夜添夜夜添av毛片| 激情 狠狠 欧美| 成人综合一区亚洲| 欧美精品国产亚洲| 亚洲在线自拍视频| 亚洲一级一片aⅴ在线观看| 精品久久久久久成人av| 婷婷色综合大香蕉| 成人二区视频| 亚洲成人精品中文字幕电影| 麻豆精品久久久久久蜜桃| 我的老师免费观看完整版| 18禁在线无遮挡免费观看视频| 日韩国内少妇激情av| 我要看日韩黄色一级片| 亚洲精华国产精华液的使用体验 | 成人高潮视频无遮挡免费网站| 我要看日韩黄色一级片| 亚洲欧美成人精品一区二区| 一级毛片电影观看 | 两性午夜刺激爽爽歪歪视频在线观看| 欧美一区二区亚洲| 亚洲,欧美,日韩| 九九热线精品视视频播放| 精品久久久噜噜| 99热网站在线观看| 老女人水多毛片| 久久这里只有精品中国| 直男gayav资源| 国产不卡一卡二| 国产精品伦人一区二区| 国产精品无大码| 欧美色欧美亚洲另类二区| 大型黄色视频在线免费观看| 三级毛片av免费| 国产亚洲av嫩草精品影院| 国产探花极品一区二区| 日本av手机在线免费观看| 亚洲精华国产精华液的使用体验 | 日本熟妇午夜| av视频在线观看入口| 亚洲精华国产精华液的使用体验 | 99久久九九国产精品国产免费| 精品免费久久久久久久清纯| 免费看光身美女| 黄色视频,在线免费观看| 波多野结衣巨乳人妻| 麻豆国产97在线/欧美| 日韩视频在线欧美| 精品久久国产蜜桃| 国产在线精品亚洲第一网站| 亚洲自偷自拍三级| 国产探花在线观看一区二区| 国产一区二区激情短视频| 联通29元200g的流量卡| 精品久久久久久久久av| 一级毛片aaaaaa免费看小| 国产男人的电影天堂91| 99精品在免费线老司机午夜| 久久精品综合一区二区三区| 在线国产一区二区在线| 激情 狠狠 欧美| 国产精品人妻久久久久久| 一级毛片电影观看 | 三级经典国产精品| 久久午夜福利片| 波野结衣二区三区在线| 亚洲va在线va天堂va国产| 婷婷精品国产亚洲av| 天天躁日日操中文字幕| 成人亚洲欧美一区二区av| 中国美女看黄片| 国产高清不卡午夜福利| 国产亚洲精品久久久com| 日本黄色视频三级网站网址| 亚洲av免费高清在线观看| 亚洲中文字幕一区二区三区有码在线看| 男人的好看免费观看在线视频| 欧美区成人在线视频| 好男人视频免费观看在线| av天堂中文字幕网| 毛片女人毛片| 久久热精品热| 成年免费大片在线观看| 精品久久久久久久久亚洲| 91精品国产九色| 婷婷色综合大香蕉| 色尼玛亚洲综合影院| 丰满的人妻完整版| 天堂网av新在线| 哪里可以看免费的av片| 精品久久久久久久人妻蜜臀av| 久久久精品94久久精品| 亚洲性久久影院| av在线天堂中文字幕| 国产伦一二天堂av在线观看| 岛国在线免费视频观看| 成人亚洲欧美一区二区av| 亚洲va在线va天堂va国产| 成人特级黄色片久久久久久久| 亚洲最大成人手机在线| 日韩av不卡免费在线播放| 精品无人区乱码1区二区| 久久99精品国语久久久| 特大巨黑吊av在线直播| www.色视频.com| 观看免费一级毛片| 国产精品三级大全| 91精品一卡2卡3卡4卡| 青青草视频在线视频观看| 免费看光身美女| 免费搜索国产男女视频| 日本黄色视频三级网站网址| 久99久视频精品免费| 久久久午夜欧美精品| 美女高潮的动态| 18禁黄网站禁片免费观看直播| 国产精品蜜桃在线观看 | 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 天堂影院成人在线观看| 国产男人的电影天堂91| 亚洲成av人片在线播放无| 午夜亚洲福利在线播放| av福利片在线观看| 国产精品嫩草影院av在线观看| 亚洲成人久久性| 午夜爱爱视频在线播放| 国产亚洲5aaaaa淫片| 国产单亲对白刺激| 日韩欧美一区二区三区在线观看| 国产日韩欧美在线精品| 狂野欧美激情性xxxx在线观看| 亚洲无线观看免费| av卡一久久| 久久精品91蜜桃| 乱系列少妇在线播放| 2022亚洲国产成人精品| 校园春色视频在线观看| 在线免费观看的www视频| 大又大粗又爽又黄少妇毛片口| 亚洲无线在线观看| 国产精品乱码一区二三区的特点| 精品久久久久久久末码| 国产女主播在线喷水免费视频网站 | 国产成年人精品一区二区| 一级毛片aaaaaa免费看小| 久久久精品欧美日韩精品| 日本熟妇午夜| 亚洲精品国产av成人精品| 一区二区三区高清视频在线| 国产精品一二三区在线看| 欧美bdsm另类| 国产在线精品亚洲第一网站| or卡值多少钱| 看十八女毛片水多多多| 国产精品嫩草影院av在线观看| 此物有八面人人有两片| 国产精品久久久久久久久免| 亚洲av男天堂| 美女被艹到高潮喷水动态| 听说在线观看完整版免费高清| 岛国毛片在线播放| 日本欧美国产在线视频| 久久99精品国语久久久| 成年免费大片在线观看| 久久99精品国语久久久| 欧美丝袜亚洲另类| 久久久成人免费电影| 亚洲精品乱码久久久v下载方式| 亚洲欧美日韩卡通动漫| 国产老妇女一区| 午夜爱爱视频在线播放| 哪个播放器可以免费观看大片| 国产精品久久电影中文字幕| 又粗又硬又长又爽又黄的视频 | 变态另类丝袜制服| 国产免费男女视频| 99riav亚洲国产免费| 日韩一本色道免费dvd| 啦啦啦啦在线视频资源| 日日撸夜夜添| 在线国产一区二区在线| 男女视频在线观看网站免费| 国产免费一级a男人的天堂| 色视频www国产| 久久婷婷人人爽人人干人人爱| 中文字幕久久专区| 校园人妻丝袜中文字幕| 亚洲电影在线观看av| 一级黄片播放器| 成人国产麻豆网| 亚洲三级黄色毛片| 亚洲av第一区精品v没综合| 熟女电影av网| 麻豆精品久久久久久蜜桃| 国产高清激情床上av| 国产色婷婷99| 嫩草影院新地址| 夜夜看夜夜爽夜夜摸| 久久人人爽人人片av| 国内揄拍国产精品人妻在线| 国产精品电影一区二区三区| 国产高清有码在线观看视频| 身体一侧抽搐| 蜜桃亚洲精品一区二区三区| 五月玫瑰六月丁香| 久久精品国产亚洲av涩爱 | 午夜福利在线在线| 如何舔出高潮| 又粗又硬又长又爽又黄的视频 | 国产视频首页在线观看| 亚洲av二区三区四区| 国产精品久久久久久精品电影小说 | 久久久久久久久大av| 小蜜桃在线观看免费完整版高清| 夜夜爽天天搞| 大型黄色视频在线免费观看| 精品久久久久久成人av| 色哟哟·www| 日本熟妇午夜| 久久久国产成人免费| 亚洲成人中文字幕在线播放| 99热这里只有是精品50| 99九九线精品视频在线观看视频| 熟女电影av网| 欧美丝袜亚洲另类| 久久中文看片网| 你懂的网址亚洲精品在线观看 | 国产午夜精品论理片| 69av精品久久久久久| 亚洲成人久久性| 欧美成人免费av一区二区三区| 波多野结衣高清作品| 特级一级黄色大片| 日韩亚洲欧美综合| 日韩中字成人| 国产高清三级在线| 乱人视频在线观看| 亚洲国产高清在线一区二区三| 麻豆av噜噜一区二区三区| 国产精品免费一区二区三区在线| 国产伦一二天堂av在线观看| 毛片女人毛片| 婷婷色综合大香蕉| 可以在线观看毛片的网站| 亚洲av一区综合| 亚洲欧美精品自产自拍| 中出人妻视频一区二区| 又粗又硬又长又爽又黄的视频 | 99九九线精品视频在线观看视频| 全区人妻精品视频| 一级av片app| 亚洲18禁久久av| 免费看光身美女| 亚洲国产色片| 国产精品av视频在线免费观看| 精品久久久久久久人妻蜜臀av| 亚洲高清免费不卡视频| av天堂在线播放| 国产 一区 欧美 日韩| 综合色丁香网| 国产女主播在线喷水免费视频网站 | 亚洲aⅴ乱码一区二区在线播放| 国产爱豆传媒在线观看| 成年av动漫网址| a级毛片a级免费在线| 亚洲成人av在线免费| 麻豆精品久久久久久蜜桃| 亚洲一级一片aⅴ在线观看| 久久久久久久久久成人| 麻豆国产av国片精品| 日韩精品有码人妻一区| 赤兔流量卡办理| 一区二区三区免费毛片| 亚洲av中文av极速乱| 一本精品99久久精品77| 我要搜黄色片| 日韩欧美 国产精品| 高清毛片免费看| 最近视频中文字幕2019在线8| av.在线天堂| 男人狂女人下面高潮的视频| 国产成人福利小说| 变态另类成人亚洲欧美熟女| 久久精品久久久久久久性| 精品午夜福利在线看| 黄色一级大片看看| 99热6这里只有精品| 国产精品av视频在线免费观看| 欧美日本视频| 好男人在线观看高清免费视频| 3wmmmm亚洲av在线观看| 久久久久久久久中文| 美女cb高潮喷水在线观看| 3wmmmm亚洲av在线观看| 在线国产一区二区在线| 给我免费播放毛片高清在线观看| 男女下面进入的视频免费午夜| 18+在线观看网站| 亚洲欧美清纯卡通| 国产一区二区在线观看日韩| 中文字幕av在线有码专区| 美女cb高潮喷水在线观看| 少妇被粗大猛烈的视频| 午夜免费男女啪啪视频观看| 毛片女人毛片| 热99在线观看视频| 国产伦一二天堂av在线观看| 简卡轻食公司| av免费在线看不卡| 九草在线视频观看| 99热全是精品| 国产成人精品婷婷| 在线a可以看的网站| 久久草成人影院| 欧美性猛交黑人性爽| 国产极品精品免费视频能看的| 国产精品久久电影中文字幕| 深爱激情五月婷婷| 国产爱豆传媒在线观看|