• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CNN Based Features Extraction and Selection Using EPO Optimizer for Cotton Leaf Diseases Classification

    2023-10-26 13:13:14MehwishZafarJaveriaAminMuhammadSharifMuhammadAlmasAnjumSeifedineKadryandJungeunKim
    Computers Materials&Continua 2023年9期

    Mehwish Zafar ,Javeria Amin ,Muhammad Sharif ,Muhammad Almas Anjum ,Seifedine Kadry and Jungeun Kim

    1Department of Computer Science,COMSATS University Islamabad,Wah Campus,Wah Cantt,47040,Pakistan

    2Department of Computer Science,University of Wah,Wah Cantt,47040,Pakistan

    3National University of Technology(NUTECH),Islamabad,44000,Pakistan

    4Department of Applied Data Science,NoroffUniversity College,Kristiansand,Norway

    5Artificial Intelligence Research Center(AIRC),College of Engineering and Information Technology,Ajman University,Ajman,United Arab Emirates

    6Department of Electrical and Computer Engineering,Lebanese American University,Byblos,Lebanon

    7Department of Software,Kongju National University,Cheonan,31080,Korea

    ABSTRACT Worldwide cotton is the most profitable cash crop.Each year the production of this crop suffers because of several diseases.At an early stage,computerized methods are used for disease detection that may reduce the loss in the production of cotton.Although several methods are proposed for the detection of cotton diseases,however,still there are limitations because of low-quality images,size,shape,variations in orientation,and complex background.Due to these factors,there is a need for novel methods for features extraction/selection for the accurate cotton disease classification.Therefore in this research,an optimized features fusion-based model is proposed,in which two pre-trained architectures called EfficientNet-b0 and Inception-v3 are utilized to extract features,each model extracts the feature vector of length N×1000.After that,the extracted features are serially concatenated having a feature vector length N×2000.The most prominent features are selected using Emperor Penguin Optimizer(EPO)method.The method is evaluated on two publically available datasets,such as Kaggle cotton disease dataset-I,and Kaggle cotton-leaf-infection-II.The EPO method returns the feature vector of length 1×755,and 1×824 using dataset-I,and dataset-II,respectively.The classification is performed using 5,7,and 10 folds cross-validation.The Quadratic Discriminant Analysis(QDA)classifier provides an accuracy of 98.9% on 5 fold,98.96% on 7 fold,and 99.07% on 10 fold using Kaggle cotton disease dataset-I while the Ensemble Subspace K Nearest Neighbor(KNN)provides 99.16% on 5 fold,98.99% on 7 fold,and 99.27% on 10 fold using Kaggle cotton-leaf-infection dataset-II.

    KEYWORDS Deep learning;cotton disease detection;features selection;classification;efficientnet-b0;inception-v3;quadratic discriminant analysis;subspace KNN

    1 Introduction

    Cotton is called“White Gold”and“King of Fibers”,among cash crops as it utilized a superior status and it is the main raw substance for the textile enterprise.It is also a considerable agricultural asset all around the globe which provides a beneficial amount to the number of farmers[1].Cotton is the ultimate essential cash crop in Pakistan as the country earns 55% of foreign exchange from it.65% of cotton in Pakistan is grown up in Punjab and the rest is in Sindh[2].Several diseases creates a pessimistic impact on the production of cotton crops in recent decades [3].Cotton gets effect by diseases at any phase[4].All over the globe day by day,agricultural land is getting reduced because of many hazards like lack of water resources,increase in population,and diseases in plant leaves[5,6].The crops get affected by various abnormalities that are available in the environment like water deficiencies,insects,weeds and fungi,etc.,hence the early detection of diseases and the health of crop yield are the strategies for better agriculture production [7].The recognition of plant pathology at an early stage is difficult because there is no symptom appears at an initial stage [8,9].Smart farming has several applications in weather forecasting,precise farming,data analysis,collection,etc.regarding these crop diseases detection is also a subset of smart farming.Disease detection through the bare eye is inaccurate and time-taking [10].So accurate,timely,and authentic advice is required at a low cost[11].Therefore it is very important to move towards advanced strategies for the controlling and automatic diagnosis of the disease.There are several pesticides available that are efficient to cure the disease and boost crop cultivation but it is a difficult task to find out the most suitable pesticides for a particular disease,it also requires expert advice that’s costly and also time taking.So there is a demand for an accurate,efficient,and affordable machine-supported manner for the awareness of cotton leaf disorders[12,13].Several challenges degrade the classification results such as low-quality images,variation in orientation and complex backgrounds,etc.To overcome such limitations the method is proposed having the following contributions:

    1.The relevant feature extraction and optimized feature selection are challenging tasks for accurate classification.Therefore two pre-trained EfficientNet-b0 and Inception-v3 models are selected after extensive experimentation to get features.

    2.The features are serially concatenated after that,the best/optimum features are selected using the EPO method that is further passed to the classifiers for binary and multiclass classification of cotton diseases.

    The article’s organization is as: Section 2 confers the literature,the proposed method define in Section 3,the results and discussion are shown in Sections 4,and 5 describe the conclusion.

    2 Related Work

    There are many machine-supported methods utilized including detection [14–18],optimization[19] fusion [20–25],and Convolutional Neural Network (CNN) [26] to obtain effectiveness.The Mask R (Region) based CNN object detection algorithm is applied by researchers that are focused on instance segmentation and recognizing the diseases as well as pests on the cotton leaves [27].A Meta deep learning-based model is utilized by the researchers to correctly discover various cotton leaf diseases,the methodology proposed to gain generalization as well as good accuracy [28].Machine learning in the agricultural sector performs a major role,the researchers utilized transfer learning with the Mask RCNN object detection algorithm to find the effectiveness while using it in the practical situation to discover cotton leaf diseases[29].To find out the status of cotton plant diseases using realtime samples of plants and leaves,the conception of deep learning is utilized.The model consists of deep learning packages including TensorFlow,Keras,and Googlecolab[30].To boost the recognition process of pests the researchers utilized CNN[31].To recognize cotton leaf disorders and pests CNN is utilized[32].The researcher proposed a framework to recognize leaf diseases using cotton plant leaves.In preprocessing,noise removal and image reconstruction are performed after that threshold-based segmentation,and Gray Level Co-Occurrence Matrix(GLCM)attributes are derived to perform by a Euclidean distance classifier [33].The segmentation of cotton leaf samples was performed using an improved factorization-based model.The number of texture and color attributes drawn out from the segmented image and classified using various machine learning algorithms[34].A metric learning approach-based framework is developed by the researchers for cotton leaf diseases.The S-DenseNet is constructed to perform classification on a small sample [35].The bilateral filtering is used for the removal of noise after the Chan vese approach is combined along the level set method beyond re-initialization [36].The researchers introduced simple linear iterative clustering and roughness measures-based approaches to detect cotton leaf disorder.The GLCM extract features and the Support Vector Machine (SVM) performed classification [37].To discover and classify cotton leaf diseases initial captured RGB samples are changed into another color space,then the segmentation is done by Otsu’s global thresholding.The various features are gained with the help and GLCM and multi-SVM[38].The researchers define a mechanism in which,firstly the samples get preprocessed using histogram equalization,segmented using k-means clustering,and at last categorization of disorder is done using a neural network [39].The local information and an active gradient-based automatic segmentation model are used for the segmentation of cotton leaves[40].The neuro-fuzzy-based methodology was introduced by the researchers to find out cotton leaf diseases.The Graph cat procedure is utilized an adaptive fuzzy inference approach for segmentation[41].CNN model is utilized for the detection of cotton leaf disorders [42].The researchers proposed the employment of deep learning and other approaches for the detection process[43–46].

    The limitations that occur in the classification of cotton diseases are mentioned in Table 1.

    Table 1:Limitations in existing techniques

    Hence,there are some limitations the dataset is not enough so the need to perform augmentation,to classify the type of disease only color features is not enough hence the need to extract texture features and improvement in classification accuracy,etc.To overcome the existing limitation,in this study improved features extraction,selection,fusion,and optimization model is proposed.

    The pre-trained model EffficientNet has various architectures but in this presented research EfficeintNet with B0,architecture is utilized which provides preferable accuracy as compared to the other pre-trained models,similarly,Inception-v3 is utilized because it diminishes the error rate as compared to its foregoing models[47].

    3 Proposed Methodology

    In the presented work,cotton images are supplied to the EfficientNet-b0 and Inception-v3 models to get the feature vector.Moreover,the feature vectors,are concatenated/fused serially.After fusion,the most significant features are chosen with the help of EPO,and at last,classification is done using machine learning classifiers.The whole architecture is depicted in Fig.1.

    3.1 Features Extraction

    In the proposed approach the deep learning framework is used for the classification of cotton into diseased and healthy.Pre-trained model EfficientNet[48,49]contains 290 layers such as 1 input,65,65,65 convolutions,sigmoid,element-wise multiplication respectively,49 batch-normalization(bn),9 addition,6 convolution-grouped,17 average global pooling,1 FC,softmax,and output classification.

    The Inception-v3 [50,51] model contains 315 layers in which 1 input,94 convolution,94 bn,94 ReLU,12 pooling,17 depth concatenation,prediction,softmax,and output classification.

    In this research features vector with the dimension of 1×1000 is retrieved from the fully connected layer of EfficientNet-b0 and 1×1000 features are obtained from the prediction layer of Inceptionv3.The features are serially concatenated with the dimension of 1×2000.

    Figure 1:Proposed methodology for cotton disease detection

    3.2 Fusion of Deep Learning Features

    In several machine learning algorithms,data fusion is performed.It is an essential task that combines more than one feature vector into a single vector.In this presented work we have gained a total of two feature vectors from deep learning models(EfficienetNet-b0 and Inception-v3)which are serially concatenated.Eqs.(1)and(2)describe the initial feature vectors mathematically.

    Hence,the single fused vector is presented in Eq.(3).

    Here,the fused vector has(1×2000)features which is the single fused count of two feature vectors in each dataset.

    3.3 Feature Selection Using Emperor Penguin Optimizer

    After the fusion of the features vectors,the selection of optimal features is done using EPO optimizer as presented in Fig.2.

    Vector ω combined with ?for complex potential generation where i is imaginary constant and F is an analytical operation.

    Figure 2:Features extraction,fusion,and selection approach of presented work

    In the next step,the temperature T′is calculated using Eq.(6).

    whereyis current iterations,S is the radius[0 1],T is the time utilized to discover the optimal ideal solution in a given space and Maxiterationis a maximum number of iterations.

    Now the distance that occurs between the penguins is calculated by Eqs.(7)to(11).

    N is the movement variable to maintain the gap to avoid collision and its value is set to 2,Pgrid(Accuracy)shows the accuracy of the polygon grid moreover,Rand()is a random operation.The function S()computed in the equation below:

    g=2 andk=3 are the control parameters for fine searching and their value lay between[2,3]and[1.5,2].

    after that,the positions of search agents get updated by Eq.(12).

    Table 2:Chosen parameters of EPO

    Table 1 depicts the selected parameters of EPO which are finalized after experimentation that reduced the classification error rate.The convergence plot of the EPO framework is visualized in Fig.3.

    Fig.3 presents the ratio among the total iterations across fitness values,in this experiment after the twenty iterations error rate is consistent.

    3.4 Classification

    To perform classification machine learning classifiers are utilized.The input samples are labeled to perform supervised learning and divided into testing and training phases.On the cotton disease detection dataset,the QDA[54–56]is utilized to classify the cotton samples in the relevant class and the Ensemble Subspace KNN[57–59]classifier is utilized to classify the cotton-leaf-infection dataset.

    Figure 3:Convergence plot of EPO model

    4 Results and Discussions

    In this presented work two publically available datasets are utilized.The cotton disease dataset[60]is downloaded from Kaggle.The dataset consists of two classes of diseased and healthy moreover the dataset is augmented using translation and flip techniques.The cotton-leaf-infection dataset[61]is also downloaded from Kaggle.The dataset consists of four classes which are Bacterial-Blight(BB),Curl-Virus(CV),Fusarium-Wilt(HW),and Healthy(H),moreover,all images get resized.The evaluation is conducted on cotton datasets using the system Core i5 gen 6th,using MATLAB.Fig.4 shows the Confusion matrixes and Receiver Operating Curves(ROC)of both datasets on 5,7,and 10 folds.

    Figure 4:Results of presented work(a)Confusion matrix,(b)ROC curves

    The results of the proposed methodology on Kaggle cotton disease dataset-I are taken using 5,7 and 10 folds.The QDA classifier classifies the two classes and provides the overall accuracy of 98.9%on 5 fold,98.96% on 7 fold,and 99.07% on 10 fold,moreover,the detailed results of each class are presented in Table 3.

    Table 3:Results of the presented methodology using the cotton disease dataset

    The proposed method outcomes on Kaggle cotton-leaf-infection-II dataset are also taken using 5,7,and 10 folds with the help of Ensemble Subspace KNN.The overall accuracy of 99.16%,98.99%,and 99.27% is gained using 5,7,and 10 folds,respectively,further detailed results of each class are delivered in Table 4.

    Table 4:Results of the proposed methodology using the cotton leaf infection dataset

    The classification outcomes are calculated on benchmark datasets regarding as mean and standard deviations presented in Table 5.

    The graphical presentation of the proposed approaches outcomes regarding the standard deviation and mean of ROC is depicted in Fig.5.

    Table 5:Classification outcomes in terms of mean and standard deviations on a 10-fold crossvalidation

    In Fig.5a,the 10 folds ROC shows the result on Kaggle cotton disease dataset-I,concerning mean and standard deviation,similarly,the second ROC in(b)shows the same specification,and results are taken using Kaggle cotton-leaf-infection dataset-II.

    The performance of the proposed method is compared to the existing approaches to authenticate the model’s effectiveness.Table 6 reveals the comparison between the proposed methodology and other techniques.

    Table 6:Comparison of the presented approach with different existing approaches on various datasets

    As shown in Table 6,the researchers in [28] show that Custom CNN,ResNet50,and VGG16 obtained an accuracy of 95.37%,98.32%,and 98.10% and their proposed strategy of meta deep learning achieved an accuracy of 98.53% respectively.Utilizing the transfer learning with Mask RCNN while decreasing the loss value due to increased optimized iterations,achieved an accuracy of 94%[29].The researcher proposed a CNN framework that is encouraged by the AlexNet framework for the sake of the classification of healthy and diseased cotton plants and leaves with an accuracy of 97.98% [30].For cotton disease detection and pest recognition,the researchers utilized CNN deep learning technique is utilized which gives an accuracy of 96.4% [32].The researchers utilized the concept of simple linear iterative clustering and roughness measures.Using GLCM features taken and supervised learning using SVM delivers an accuracy of 94%[37].The CNN architecture is utilized for the detection of cotton leaf disorders providing an accuracy of 97.13%[42].

    At last,the proposed work gets the feature vector using two CNN pre-trained models EFFicientNet-b0 and Inception-v3 and serially concatenated.The most important task of significant features selection is performed for better classification using EPO algorithm last supervised learning using QDA on cotton disease dataset is performed on 5,7,and 10 holds out with the accuracy of 98.9%,98.96%,and 99.07%respectively and on cotton-leaf-infection Ensemble Subspace KNN perform the accuracy of 99.16%,98.99%,and 99.27%,respectively.

    5 Conclusion

    The classification of cotton leaf disorders is a challenging assessment because of low-quality images,complex backgrounds,and differences in the size,color,and shape of leaves.The detection of disorder in leaves helps the farmers to take precautions to save the crop from heavy loss in the early phase.Therefore this research presents a methodology in which two pre-trained frameworks are utilized for features extraction such as EfficientNet-b0 and Inception-v3.The extracted features are fused by serial concatenation.After that,the optimizer EPO returns the considerable features and removes redundant and irrelevant features.That helps to provide better results.Finally,QDA and Ensemble Subspace KNN classifiers are utilized for classification.The proposed framework achieves an accuracy of 99.27% on the multi-classification of the cotton leaf infection dataset-I and 99.07%on the cotton disease dataset-II using 10-fold cross-validation.

    This study is conducted on a maximum of four classes,moreover,the study may expand by covering more classes in the future.Furthermore,this methodology will be deployed in the mobile application that provides help in real-time detection.The researchers may conduct a study on remote access to high-resolution satellite image samples to obtain better achievements with optimization.

    Acknowledgement:This work is supported by Department of Computer Science,COMSATS University Islamabad,Wah Campus Pakistan.We are thankful to COMSATS for providing a strong research platform,fully equipped labs and other research facilities to make this work possible.

    Funding Statement:This research was partly supported by the Technology Development Program of MSS[No.S3033853]and by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.2021R1A4A1031509).

    Author Contributions:Mehwish Zafar: Conceptualization,Implementation.Javeria Amin: Methodology,Data Curation.Muhammad Sharif: Visualization,Supervision.Muhammad Almas Anjum:Proofreading,Paper Administration.Seifedine Kadry:Investigation,Formal Analysis.Jungeun Kim:Validation,Funding Acquisition.

    Availability of Data and Materials:https://www.kaggle.com/datasets/janmejaybhoi/cotton-diseasedataset,https://www.kaggle.com/datasets/raaavan/cottonleafinfection.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    久久毛片免费看一区二区三区| 国产在线精品亚洲第一网站| 成人黄色视频免费在线看| 国产成人影院久久av| 国产男女超爽视频在线观看| 免费高清在线观看日韩| 欧美精品人与动牲交sv欧美| 午夜福利免费观看在线| 亚洲精品国产精品久久久不卡| 在线永久观看黄色视频| 精品人妻在线不人妻| 久久国产精品男人的天堂亚洲| 国产精品久久久av美女十八| 涩涩av久久男人的天堂| 午夜视频精品福利| 欧美在线黄色| 午夜福利乱码中文字幕| 岛国在线观看网站| 黄色a级毛片大全视频| 久久久国产成人免费| 丝袜人妻中文字幕| 国产福利在线免费观看视频| 久久久国产精品麻豆| 99在线人妻在线中文字幕 | 男男h啪啪无遮挡| 黄色毛片三级朝国网站| 成人精品一区二区免费| 十八禁高潮呻吟视频| 十八禁网站网址无遮挡| 汤姆久久久久久久影院中文字幕| www.精华液| 在线十欧美十亚洲十日本专区| 丝袜喷水一区| 亚洲av日韩在线播放| e午夜精品久久久久久久| 日日摸夜夜添夜夜添小说| 热re99久久精品国产66热6| 丁香欧美五月| 国产免费福利视频在线观看| 桃花免费在线播放| 色播在线永久视频| 丝瓜视频免费看黄片| 少妇被粗大的猛进出69影院| 亚洲av日韩在线播放| 大码成人一级视频| 欧美日韩av久久| 国产又爽黄色视频| 男女下面插进去视频免费观看| 在线av久久热| 久久精品国产综合久久久| 午夜免费成人在线视频| 久久国产精品大桥未久av| 精品熟女少妇八av免费久了| 亚洲精品久久午夜乱码| 国产高清视频在线播放一区| 捣出白浆h1v1| 两性夫妻黄色片| 国产高清videossex| 老司机在亚洲福利影院| 国产精品国产av在线观看| 午夜福利在线免费观看网站| 久久人妻熟女aⅴ| 99香蕉大伊视频| 国产又爽黄色视频| 国产亚洲精品第一综合不卡| 啦啦啦免费观看视频1| 丝袜喷水一区| 捣出白浆h1v1| 国产xxxxx性猛交| 九色亚洲精品在线播放| 久久影院123| 欧美国产精品一级二级三级| 亚洲欧洲日产国产| 最近最新中文字幕大全电影3 | 精品人妻1区二区| 纯流量卡能插随身wifi吗| 自线自在国产av| 久久国产精品影院| 亚洲中文字幕日韩| 另类精品久久| 每晚都被弄得嗷嗷叫到高潮| 国产男靠女视频免费网站| 精品一品国产午夜福利视频| 波多野结衣一区麻豆| 黑丝袜美女国产一区| 叶爱在线成人免费视频播放| 天堂中文最新版在线下载| 亚洲欧美一区二区三区黑人| 久久亚洲真实| 国产福利在线免费观看视频| 亚洲一区二区三区欧美精品| 国产精品国产av在线观看| 国产精品影院久久| 97在线人人人人妻| 亚洲av成人不卡在线观看播放网| 欧美性长视频在线观看| 99久久99久久久精品蜜桃| 极品少妇高潮喷水抽搐| 久久久国产欧美日韩av| 亚洲中文av在线| 国产av又大| 法律面前人人平等表现在哪些方面| 国产亚洲精品一区二区www | 欧美精品亚洲一区二区| 国产精品亚洲一级av第二区| 国产精品麻豆人妻色哟哟久久| 极品教师在线免费播放| 欧美成狂野欧美在线观看| 亚洲国产中文字幕在线视频| 丰满迷人的少妇在线观看| 亚洲专区国产一区二区| 在线永久观看黄色视频| 中亚洲国语对白在线视频| 欧美一级毛片孕妇| 又黄又粗又硬又大视频| 男女午夜视频在线观看| 亚洲中文av在线| 欧美精品一区二区免费开放| 国产人伦9x9x在线观看| 亚洲五月色婷婷综合| 激情视频va一区二区三区| 国产精品免费视频内射| 十八禁高潮呻吟视频| 欧美黄色片欧美黄色片| 免费高清在线观看日韩| 国产免费福利视频在线观看| 欧美人与性动交α欧美精品济南到| 久久香蕉激情| 国产成人欧美在线观看 | 国产精品 欧美亚洲| 久久热在线av| 日日摸夜夜添夜夜添小说| 无限看片的www在线观看| 精品福利观看| 亚洲国产欧美日韩在线播放| 精品亚洲成a人片在线观看| 欧美激情 高清一区二区三区| 51午夜福利影视在线观看| 国产成人一区二区三区免费视频网站| 中文字幕色久视频| 大片电影免费在线观看免费| 日本黄色日本黄色录像| 一区二区三区精品91| 久久久久精品国产欧美久久久| 欧美 亚洲 国产 日韩一| 99久久人妻综合| 美女高潮到喷水免费观看| 欧美精品一区二区大全| www.精华液| 一边摸一边做爽爽视频免费| 亚洲国产看品久久| 日本a在线网址| 一本—道久久a久久精品蜜桃钙片| 亚洲av片天天在线观看| 亚洲欧美精品综合一区二区三区| 国产淫语在线视频| 免费女性裸体啪啪无遮挡网站| 首页视频小说图片口味搜索| 欧美人与性动交α欧美软件| 精品国产一区二区三区四区第35| 性色av乱码一区二区三区2| 国产97色在线日韩免费| 国产av国产精品国产| 亚洲国产欧美网| 少妇粗大呻吟视频| 国产一区二区三区综合在线观看| 国产欧美日韩一区二区精品| 一级毛片精品| 久久久久久免费高清国产稀缺| 午夜福利,免费看| 母亲3免费完整高清在线观看| 无人区码免费观看不卡 | netflix在线观看网站| 热99国产精品久久久久久7| 777久久人妻少妇嫩草av网站| 精品亚洲乱码少妇综合久久| 午夜福利一区二区在线看| 91av网站免费观看| 亚洲国产av新网站| 成人影院久久| 久久精品亚洲精品国产色婷小说| 亚洲欧美精品综合一区二区三区| 午夜视频精品福利| 蜜桃在线观看..| 91av网站免费观看| 无人区码免费观看不卡 | 九色亚洲精品在线播放| 亚洲精品国产区一区二| 色在线成人网| 精品视频人人做人人爽| 国产不卡av网站在线观看| 国产欧美日韩精品亚洲av| 宅男免费午夜| 丝袜美腿诱惑在线| 电影成人av| 三级毛片av免费| 国产人伦9x9x在线观看| 色综合婷婷激情| 少妇 在线观看| 久久婷婷成人综合色麻豆| 麻豆成人av在线观看| 日韩一区二区三区影片| 天天躁狠狠躁夜夜躁狠狠躁| 老熟妇乱子伦视频在线观看| 999久久久国产精品视频| 一进一出好大好爽视频| 色精品久久人妻99蜜桃| 亚洲精品一二三| 51午夜福利影视在线观看| 亚洲人成电影观看| 亚洲国产av影院在线观看| 免费在线观看日本一区| 欧美 亚洲 国产 日韩一| 一区二区日韩欧美中文字幕| 久久免费观看电影| 国产高清国产精品国产三级| 久久久久久免费高清国产稀缺| 人妻一区二区av| 一级,二级,三级黄色视频| 国产成人av激情在线播放| 国产高清视频在线播放一区| videosex国产| 欧美黄色淫秽网站| 不卡av一区二区三区| avwww免费| 桃红色精品国产亚洲av| svipshipincom国产片| 欧美日韩国产mv在线观看视频| 日本黄色视频三级网站网址 | 成人三级做爰电影| 国产成人免费观看mmmm| 波多野结衣一区麻豆| 亚洲天堂av无毛| 国产av又大| 一级,二级,三级黄色视频| 99riav亚洲国产免费| 亚洲精品国产精品久久久不卡| 国产欧美日韩一区二区三区在线| 999久久久国产精品视频| 亚洲美女黄片视频| 国产无遮挡羞羞视频在线观看| 777久久人妻少妇嫩草av网站| 老司机亚洲免费影院| 高清欧美精品videossex| 亚洲午夜理论影院| 久久 成人 亚洲| 精品卡一卡二卡四卡免费| 我要看黄色一级片免费的| 国产精品一区二区免费欧美| 亚洲第一青青草原| 一个人免费在线观看的高清视频| 亚洲色图 男人天堂 中文字幕| 色视频在线一区二区三区| 一区二区三区激情视频| 久久精品国产亚洲av香蕉五月 | 色94色欧美一区二区| 高清av免费在线| 欧美亚洲日本最大视频资源| 免费在线观看完整版高清| 无人区码免费观看不卡 | 久久免费观看电影| 日韩中文字幕视频在线看片| 欧美 亚洲 国产 日韩一| 蜜桃在线观看..| 午夜老司机福利片| 欧美日韩精品网址| 99re6热这里在线精品视频| 99久久精品国产亚洲精品| 激情在线观看视频在线高清 | 99国产综合亚洲精品| 亚洲国产中文字幕在线视频| 久久久精品区二区三区| 国产欧美亚洲国产| 大片电影免费在线观看免费| 久久久精品区二区三区| 成在线人永久免费视频| 欧美国产精品一级二级三级| 亚洲 国产 在线| 51午夜福利影视在线观看| 黑人欧美特级aaaaaa片| 好男人电影高清在线观看| 啪啪无遮挡十八禁网站| 制服人妻中文乱码| 老司机靠b影院| 国产av精品麻豆| 国产精品欧美亚洲77777| 亚洲欧美激情在线| 色94色欧美一区二区| 黄色片一级片一级黄色片| 国产精品熟女久久久久浪| 国产av一区二区精品久久| 一个人免费在线观看的高清视频| 精品国产一区二区三区久久久樱花| 一个人免费在线观看的高清视频| 首页视频小说图片口味搜索| 男男h啪啪无遮挡| 黄网站色视频无遮挡免费观看| 久久精品国产亚洲av香蕉五月 | 久久中文字幕一级| 18禁黄网站禁片午夜丰满| 成人国产av品久久久| 国产老妇伦熟女老妇高清| 亚洲精品国产区一区二| 久久毛片免费看一区二区三区| 久久精品成人免费网站| 美女扒开内裤让男人捅视频| 国产一区二区三区视频了| 肉色欧美久久久久久久蜜桃| 欧美国产精品一级二级三级| 午夜视频精品福利| 欧美激情高清一区二区三区| 午夜久久久在线观看| 色婷婷久久久亚洲欧美| 免费一级毛片在线播放高清视频 | 欧美中文综合在线视频| 午夜两性在线视频| 欧美黑人欧美精品刺激| 国产区一区二久久| 精品国产超薄肉色丝袜足j| 少妇裸体淫交视频免费看高清 | 1024视频免费在线观看| 久久人妻av系列| 精品少妇内射三级| 午夜精品国产一区二区电影| 国产伦人伦偷精品视频| 国产人伦9x9x在线观看| 在线观看免费视频日本深夜| 老熟妇仑乱视频hdxx| 国产免费av片在线观看野外av| 王馨瑶露胸无遮挡在线观看| 法律面前人人平等表现在哪些方面| 成人精品一区二区免费| 亚洲精品一卡2卡三卡4卡5卡| 国产在线视频一区二区| 日本一区二区免费在线视频| 9热在线视频观看99| 久久久久精品人妻al黑| 国产极品粉嫩免费观看在线| www日本在线高清视频| 99re在线观看精品视频| 一级片免费观看大全| 99久久国产精品久久久| 久久久久久久久免费视频了| 午夜福利视频在线观看免费| av网站免费在线观看视频| 久久久久视频综合| 亚洲精品av麻豆狂野| 国产野战对白在线观看| 这个男人来自地球电影免费观看| 国产一区二区 视频在线| 亚洲精品在线观看二区| 欧美精品一区二区大全| 久久热在线av| 在线观看免费视频日本深夜| 他把我摸到了高潮在线观看 | 国产成人欧美在线观看 | 久久久久网色| 热99久久久久精品小说推荐| 黄色视频不卡| 色婷婷av一区二区三区视频| 国产精品1区2区在线观看. | 免费看a级黄色片| 国产精品 国内视频| 91老司机精品| 欧美精品高潮呻吟av久久| 亚洲人成电影观看| 在线观看舔阴道视频| 男女午夜视频在线观看| 丝袜人妻中文字幕| 天天躁日日躁夜夜躁夜夜| 1024香蕉在线观看| 久久久久久亚洲精品国产蜜桃av| 国产精品98久久久久久宅男小说| 在线天堂中文资源库| 一级毛片电影观看| 日本黄色视频三级网站网址 | 满18在线观看网站| 国产精品 欧美亚洲| 亚洲av成人不卡在线观看播放网| 久久99一区二区三区| 精品一区二区三区av网在线观看 | videos熟女内射| 中文字幕人妻丝袜制服| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久久国产电影| 国产三级黄色录像| 极品人妻少妇av视频| 岛国在线观看网站| 中文字幕人妻丝袜一区二区| 国产黄频视频在线观看| 亚洲av片天天在线观看| 80岁老熟妇乱子伦牲交| 人人妻人人澡人人看| 两性午夜刺激爽爽歪歪视频在线观看 | 女同久久另类99精品国产91| 女性生殖器流出的白浆| 国产成人免费观看mmmm| 在线观看免费视频日本深夜| 日韩欧美免费精品| 久久国产精品人妻蜜桃| 国产精品影院久久| 久久99一区二区三区| 精品国产乱子伦一区二区三区| 午夜福利视频在线观看免费| 人成视频在线观看免费观看| 久久热在线av| 99国产极品粉嫩在线观看| 久久久久久久久久久久大奶| 99国产精品99久久久久| 80岁老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 下体分泌物呈黄色| 天堂动漫精品| 成人国产av品久久久| 国产不卡av网站在线观看| 两人在一起打扑克的视频| 一级a爱视频在线免费观看| 欧美黑人欧美精品刺激| 国产男女内射视频| 国产无遮挡羞羞视频在线观看| 51午夜福利影视在线观看| 91大片在线观看| 精品福利观看| 国产一区二区三区综合在线观看| 777米奇影视久久| 午夜激情av网站| 99re6热这里在线精品视频| 成人黄色视频免费在线看| 精品少妇内射三级| 欧美黄色片欧美黄色片| 国产单亲对白刺激| 老汉色∧v一级毛片| av电影中文网址| 亚洲视频免费观看视频| 大码成人一级视频| 丝瓜视频免费看黄片| 久久九九热精品免费| 亚洲成人免费电影在线观看| av网站免费在线观看视频| 在线十欧美十亚洲十日本专区| 国产av精品麻豆| 99国产精品一区二区三区| 亚洲精品一二三| 如日韩欧美国产精品一区二区三区| 日日摸夜夜添夜夜添小说| 日韩欧美国产一区二区入口| 欧美亚洲 丝袜 人妻 在线| 久久国产亚洲av麻豆专区| 国产av一区二区精品久久| 欧美日韩一级在线毛片| www日本在线高清视频| 亚洲av日韩精品久久久久久密| 国产成人一区二区三区免费视频网站| 一边摸一边抽搐一进一出视频| 美女高潮到喷水免费观看| 亚洲黑人精品在线| 色综合婷婷激情| 亚洲熟妇熟女久久| 最近最新中文字幕大全电影3 | www.自偷自拍.com| 亚洲av第一区精品v没综合| 久久影院123| 成年动漫av网址| 99热网站在线观看| 乱人伦中国视频| 男人操女人黄网站| 在线观看免费视频日本深夜| 精品久久久久久久毛片微露脸| xxxhd国产人妻xxx| 亚洲成av片中文字幕在线观看| 国产高清国产精品国产三级| 国产免费av片在线观看野外av| 国产成人啪精品午夜网站| 午夜福利视频在线观看免费| 女人精品久久久久毛片| 亚洲全国av大片| 一进一出抽搐动态| 12—13女人毛片做爰片一| 久久性视频一级片| 亚洲欧美日韩另类电影网站| 亚洲一区二区三区欧美精品| 少妇 在线观看| 亚洲精华国产精华精| 老熟妇乱子伦视频在线观看| 天天操日日干夜夜撸| 老熟妇乱子伦视频在线观看| 夜夜爽天天搞| 欧美激情久久久久久爽电影 | 一级片免费观看大全| 国产精品熟女久久久久浪| 精品国产乱码久久久久久男人| 9191精品国产免费久久| 性高湖久久久久久久久免费观看| 日本av手机在线免费观看| 99re在线观看精品视频| 久久精品国产99精品国产亚洲性色 | 91麻豆av在线| 丁香六月天网| 人人妻人人澡人人看| 999久久久国产精品视频| 亚洲天堂av无毛| 精品一区二区三区视频在线观看免费 | 国产一区二区三区在线臀色熟女 | 免费观看av网站的网址| 亚洲av片天天在线观看| 亚洲av美国av| 91麻豆av在线| 国产在线观看jvid| 最新在线观看一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久久国产成人免费| 麻豆成人av在线观看| 香蕉丝袜av| 亚洲七黄色美女视频| 久久影院123| 日韩视频在线欧美| 国产精品亚洲av一区麻豆| 久久久久久人人人人人| 久久性视频一级片| 亚洲中文字幕日韩| 这个男人来自地球电影免费观看| 久久精品亚洲熟妇少妇任你| 中文字幕人妻丝袜制服| 丝袜美足系列| 日韩精品免费视频一区二区三区| 午夜精品久久久久久毛片777| 亚洲精品国产区一区二| 免费女性裸体啪啪无遮挡网站| 国产激情久久老熟女| 天天躁狠狠躁夜夜躁狠狠躁| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成a人片在线观看| 欧美日韩一级在线毛片| 热re99久久精品国产66热6| 久久性视频一级片| 在线观看www视频免费| 国产色视频综合| 欧美亚洲日本最大视频资源| 久9热在线精品视频| 婷婷成人精品国产| 久久性视频一级片| 在线观看www视频免费| 欧美日韩视频精品一区| 亚洲国产成人一精品久久久| 别揉我奶头~嗯~啊~动态视频| 天天躁狠狠躁夜夜躁狠狠躁| 高潮久久久久久久久久久不卡| 国产有黄有色有爽视频| 在线观看www视频免费| 中文字幕色久视频| 欧美日本中文国产一区发布| 一本久久精品| 成人黄色视频免费在线看| 日韩 欧美 亚洲 中文字幕| 窝窝影院91人妻| 啪啪无遮挡十八禁网站| 国产深夜福利视频在线观看| 搡老乐熟女国产| 国产有黄有色有爽视频| 999精品在线视频| 成人三级做爰电影| av有码第一页| 又紧又爽又黄一区二区| 欧美日韩福利视频一区二区| 亚洲国产看品久久| 男男h啪啪无遮挡| 久久久久国内视频| 无遮挡黄片免费观看| 人人妻人人添人人爽欧美一区卜| 亚洲av日韩在线播放| 久久久久久免费高清国产稀缺| 777米奇影视久久| 国产精品九九99| 下体分泌物呈黄色| 精品久久久久久电影网| 精品乱码久久久久久99久播| 热99国产精品久久久久久7| 一本大道久久a久久精品| 两性夫妻黄色片| 精品国产一区二区三区四区第35| 国产1区2区3区精品| 日韩人妻精品一区2区三区| www.自偷自拍.com| 国产人伦9x9x在线观看| 久久人妻熟女aⅴ| 午夜视频精品福利| 一级毛片电影观看| 丝袜美腿诱惑在线| 欧美 日韩 精品 国产| 多毛熟女@视频| 亚洲九九香蕉| 亚洲精品在线美女| 亚洲精品国产一区二区精华液| 国产精品一区二区在线观看99| 日韩中文字幕欧美一区二区| 国产单亲对白刺激| 国产精品九九99| 国产视频一区二区在线看| 可以免费在线观看a视频的电影网站| 99在线人妻在线中文字幕 | 免费在线观看影片大全网站| 欧美中文综合在线视频| 99国产综合亚洲精品| 欧美日韩黄片免| e午夜精品久久久久久久| 人妻 亚洲 视频| 777米奇影视久久| 亚洲欧美一区二区三区久久| 国产成人精品久久二区二区91| 国产精品久久久久久精品古装| 精品久久久久久电影网| 国产主播在线观看一区二区| 黄色毛片三级朝国网站| 男女下面插进去视频免费观看| 黑人巨大精品欧美一区二区mp4|