• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Secure and Efficient Information Authentication Scheme for E-Healthcare System

    2023-10-26 13:15:38NaveedKhanJianbiaoZhangGhulamAliMallahandShehzadAshrafChaudhry
    Computers Materials&Continua 2023年9期

    Naveed Khan ,Jianbiao Zhang,? ,Ghulam Ali Mallah and Shehzad Ashraf Chaudhry

    1Faculty of Information Technology,Beijing University of Technology,Beijing,100124,China

    2Department of Computer Science,Shah Abdul Latif University,Khairpur,66111,Pakistan

    3Department of Computer Engineering,Faculty of Engineering Architecture,Nisantasi University,Istanbul,34398,Turkey

    ABSTRACT The mobile cellular network provides internet connectivity for heterogeneous Internet of Things (IoT) devices.The cellular network consists of several towers installed at appropriate locations within a smart city.These cellular towers can be utilized for various tasks,such as e-healthcare systems,smart city surveillance,traffic monitoring,infrastructure surveillance,or sidewalk checking.Security is a primary concern in data broadcasting,particularly authentication,because the strength of a cellular network’s signal is much higher frequency than the associated one,and their frequencies can sometimes be aligned,posing a significant challenge.As a result,that requires attention,and without information authentication,such a barrier cannot be removed.So,we design a secure and efficient information authentication scheme for IoT-enabled devices to mitigate the flaws in the e-healthcare system.The proposed protocol security shall check formally using the Real-or-Random (ROR) model,simulated using ProVerif2.03,and informally using pragmatic discussion.In comparison,the performance phenomenon shall tackle by the already result available in the MIRACL cryptographic lab.

    KEYWORDS IoT-enable device;e-healthcare;authentication;edge computing

    1 Introduction

    The IoT-enabled devices can be found in various domains,such as the healthcare system,cities,factories,homes,the Internet of Drones (IoD),and many more [1,2].By 2025,IoT devices usages will have increased,and about 75 billion devices will be connected to the internet [3].As a result,the e-healthcare market will expand by 16 percent between 2020 to 2027,while the current volume is 143.6 billion USD [4].In an e-healthcare system,medical signals are used to monitor patients’health activities.These signals are one-dimensional(1D)and two-dimensional(2D)signals,such as blood pressure,electrocardiograms,electromyograms,electroglottograph,body temperature,and electroencephalograms.Although,traditional hospital management monitors patient activities manually.Therefore,it is inefficient and can lead to medication errors.The medication error can be fatal and lead to patient harm.Furthermore,according to World Health Organization (WHO),medication error costs humans around 42 billion USD annually[5].

    In contrast,edge computing plays a crucial role in medical emergencies and communication delays.Therefore,edge computing benefits the e-healthcare system in terms of real-time data collection,processing,and analyzation.Moreover,the edge architecture provides reliability and low latency in distributive applications such as IoT-enable sensors in e-healthcare.Although,the initial goal of edge computing was to reduce bandwidth costs.However,with the advancement of wireless networks such as 5G and even researchers working on 6G networks,edge computing will be able to support real-time applications such as self-driving cars,robotics,video processing,and medical enable IoT devices,to name a few.Edge computing is a distributed computing topology in which data storage and computation are located close to the devices in order to reduce latency.Latency is critical in the ehealthcare system because high latency can harm a patient’s life.In contrast,low latency can sometimes save their lives[6].

    Furthermore,IoT-enabled devices facilitate communication between doctors and patients.Doctors place these IoT-enabled devices on patients’bodies to monitor their health activities.However,IoT-enabled devices improve doctor-patient interaction but generate massive amounts of data that must be carefully stored and processed at edge computing.Therefore,using IoT-enabled devices in the medical field is advantageous because it eliminates the need for medical personnel to manually manage patient data.Although,these IoT-enabled devices are vulnerable to security threats due to their resource and energy limitations.Because of this,it is impossible to eliminate these vulnerabilities without strong authentication.Therefore,several different e-healthcare authentications and key agreement schemes have been implemented.However,these schemes[7–9]suffer from eavesdropping and forgery attacks.Furthermore,we identified security flaws in the scheme[10]and found out that the scheme suffers from different attacks such as spoofing,masquerading,and impersonation.

    1.1 Motivation and Contribution

    For academics,e-healthcare is a sensitive research area.Furthermore,any flaws in the protocol could result in the patients’fatal accidents.As a result,we take advantage of the opportunity to propose a secure and efficient authentication scheme for e-healthcare that reduces complexity while improving security over existing schemes.Our protocol is efficient and lightweight for IoTenabled devices because we only use the XOR and hash functions.Recently author [10] proposed an authentication scheme for the healthcare system.According to [10],the scheme achieves mutual authentication,untraceability,forward secrecy,and resistance to replay and desynchronization attacks.However,careful examination reveals that the scheme is vulnerable to spoofing,masquerading,and impersonation attacks.In the scheme[10],when the attacker copiesM4={X,An}and transmits it again later,the adversary (A) can easily spoof the reader’s radio frequency identification (RFID) because for each session,the same message is transmitted over the public network channel.Furthermore,an attacker may also modify it to masquerade as a legitimate peer.Similarly,forM5={Y,AR1,X,An},the attacker can easily impersonate the server for a wrong decision due to its static nature.Therefore,the scheme suffers from spoofing,impersonation,and masquerading attacks.The following is our primary contribution:

    ? We identified security vulnerabilities in [10] and rectified them using our proposed scheme,which is lightweight and efficient because it utilizes only XOR and a hash function.

    ? Despite achieving some security objectives,the protocol [10] came at a high cost in terms of communication and computation.Since communication and computation costs are rising,we proposed a low-cost solution to address this issue.

    ? The security of our proposed protocol is formally analyzed through the ROR model [11]and ProVerif2.03 [12].Using ProVerif and ROR model,we demonstrated that our proposed scheme is secure against replay and man in the middle attacks while securely providing mutual authentication and session key security.

    ? In the informal security analysis section,our proposed scheme demonstrates that our protocol is secure against various attacks.

    ? Our proposed protocol outperforms existing state-of-the-art schemes regarding communication,computation costs,and security.Among many other applications,the scheme can realize a smart city environment.

    1.2 Threat Model

    We extended the famous threat model developed by Dolev and Yao (DY),also called the DY model [13].We are adopting a solid adversaryA.According to the DY model,any danger to the system must be examined and analyzed before operationalizing it in real-world environments.We also consider the adversary model of Cannetti and Knawezk(CK)model[14]and utilized[15]for a more solid adversary.The CK model is the most used in authentication and key exchange protocols.In the DY model,theAdelivers the message,while in the CK model,theAcan also compromise the session key and secret key.

    Furthermore,IoT-enabled devices or sensor nodes can be accessed by theAphysically.Thus,theAwill try to extract secret information from it.Further,the communication between IoT-enable devices or sensor nodes and edge computing can be intercepted by theA.Sensor nodes are connected to the edge node using a wireless network;therefore,theAcan access open channel data and modify,delete,or insert it.TheAcan monitor the data between the IoT-enable sensor node and the user.TheAcan pretend to be a legal user to the edge server and launch Man-In-The-Middle(MITM)to masquerade and impersonate attacks.

    1.3 System Model

    Our system model consists of patients with IoT-enable sensor nodes,medical staff,edge server,and registration server,as shown in Fig.1.First,the IoT-enable sensor nodes and users need to register themself with the registration server.After that,medical staff can monitor patients’activities in realtime using these IoT-enabled devices,whereas the edge server reduces latency.The registration server and edge server are the trusted authorities in our proposed scheme.The registration server is in charge of registering users and IoT-enabled devices.Finally,our system model detailed explanation is given in the proposed scheme.

    1.4 Paper Organization

    The rest of the article is structured as follows: Section 2 describes the literature review in detail.Additionally,Section 3 contains the proposed scenario.Then,in Section 4,we examine the proposed framework’s security,Section 5 discusses informal security analysis,and Section 6 conducts a performance analysis.Finally,Section 7 concludes the paper.

    Figure 1:System model

    2 Related Work

    There are numerous advantages to having an e-healthcare system.Despite the benefits,there are multiple concerns,the most noteworthy of which is outsourcing data storage.As a result,it creates the possibility of unlawful physical access.However,encryption is the most effective method for preventing unauthorized access to outsourced data.Encrypting and storing data in the cloud can prevent malicious users or cloud service providers from accessing it[16].These encryption techniques,however,could be improved.If an attacker obtains access to a secret key,the data must be protected from unauthorized access.

    However,IoT-enabled devices have resource and energy limitations.As a result,these devices are susceptible to a wide range of security risks.In addition,traditional cryptographic protocols do not perform well on IoT-enabled devices due to resource and energy constraints.These devices are vulnerable to both passive and active security threats,and the attacks can be launched from inside or outside the network.These security breaches impede communication.As a result,Denialof-Service(DoS)and Sybil attacks are potentially more dangerous because they deplete the device’s resources and network bandwidth.Many researchers attempt to create security protocols that address authentication,confidentiality,and integrity.Authentication is one of the most visible aspects that ensures user identity and verifies it in order to protect data from malicious users.This section provides a brief overview and analysis of the existing schemes in e-healthcare systems.

    The authors [7] proposed an authentication scheme for RFID-based IoT devices to prevent replay and data disclosure attacks.Their scheme also provides anonymity.However,their scheme has security flaws,such as the scheme cannot be resilient to impersonation,eavesdropping,and forgery attacks.Further,the authors [17] proposed an authentication scheme based on Chaotic-Map and Chebyshev.However,it provides better anonymity but suffers from offline password guessing,password disclosure,and impersonation attacks.Finally,in 2018,the authors[18]proposed a lightweight privacy preservation scheme using Physically Unclonable Functions(PUFs).However,their scheme also has security flaws such as perfect forward secrecy and heave storage and computation cost.Moreover,the schemes[8,9]cannot resist DoS,eavesdropping,and forgery attacks.

    The authors [19] proposed an Elliptic Curve Cryptography (ECC) authentication protocol for the healthcare system.Nevertheless,their scheme suffers from password guessing and impersonation attacks.However,An authentication scheme based on Hash-based RFID was proposed[20].Unfortunately,the scheme cannot resist forgery,privileged insiders,and Denial of Service (DoS) attacks.Furthermore,the scheme[21]cannot provide resistance against insider,MITM,session key security,and session-specific temporary information attacks.While the scheme[22]also cannot resist insider,offline password guessing,stolen smartcard,and session key security attacks.Furthermore,The scheme[23]cannot provide anonymity,insider,replay,and MITM attacks.The paper[24]proposed a high optimal path channel triggering scheme that offers data preservation and privacy with minimal network resources.

    Elliptic Curve Cryptography (ECC) and integrated with a biometric authentication scheme were proposed by [25].However,the scheme is vulnerable to machine learning [26] attacks and cannot provide perfect forward secrecy and perfect backward secrecy.The authors [27] proposed a certificateless authentication protocol,but their scheme cannot resist modification and impersonation attacks [28].Another scheme was proposed in [29],which does not provide message integrity and physical security.An Intrusion Detection System (IDS) scheme was proposed in [30–32] to detect Botnet,DoS,distributed denial of service(DDoS),Wireless Body Area Networks(WBAN),and many more attacks,but these methods consume time and the accuracy rate is also low.The scheme[33]failed to resist insider attacks and could not provide session key security and untraceability.

    On the other hand,the approach[34]did not provide traceability or mutual authentication,as the name suggests.As a result,researchers[23,35]presented a three-factor authentication technique based on ECC to ensure perfect forward secrecy.However,these systems do not guarantee absolute forward secrecy,user anonymity,or the ability to withstand replay attacks.Over the cost of computation,the protocol [36] provides a security feature that is advantageous.The authors proposed a lightweight authentication technique in [37],but the key generation time was highly elongated.As a result,it is in conflict with the characteristic of a lightweight scenario.Blockchain technology has recently garnered the interest of healthcare researchers.However,the blockchain has issues with accessing medical records[38].

    Furthermore,a scheme [39] was proposed using symmetric en/decryption,hash function,and chaotic maps that provide authentication and key agreements for multi-server environments.However,according to[40],the scheme is prone to offline password guessing attacks and biometric and smart card leaks.Moreover,the scheme [41] is vulnerable to DoS attacks.Furthermore,it cannot provide perfect forward secrecy and provision of smartcard revocation.In contrast,the scheme cannot resist anonymity,user impersonation,mutual authentication,and server impersonation attacks.Therefore,we propose a secure and efficient authentication protocol for e-healthcare in edge computing to improve the security vulnerabilities of the existing scheme and especially the protocol proposed in[10].

    3 Proposed Scheme

    We proposed a secure and efficient information authentication protocol for an IoT-enable device in an e-healthcare system to improve the flaws in the protocol[10].Our proposed approach is divided into four phases: setup,registration,login and authentication,and password changing.Detailed notation and their description are shown in Table 1.

    Table 1:Notations and description

    3.1 Setup Phase

    The registration server generates the secret key SKrs in our proposed protocol.The edge server and IoT-enable sensor node both have their own unique identities,IDeand IDw,and a secret user key,PKu.

    3.2 Registration Phase

    Our proposed scheme registration phase comprises of two-part.In the first portion,we will register the IoT-enable sensor node with the registration server,while in the second phase,we will register the user with the registration server.The process is under:

    3.2.1 IoT-Enable Sensor Node Registration Phase

    i.In this step,the IoT-enable sensor node selects identity IDuand generates a random number rwto calculate Xw=h(IDu||rw).The IoT-enable sensor node sends RM1={Xw,rw}toward the registration server.

    ii.Upon receiving RM1={Xw,rw}from IoT-enable sensor node,the registration server generates random number rrsto computes V=h(Xw||rrs||SKrs) and store {Xw,V,rrs} in edge server database.After that the registration server send RM2={V} to IoT-enable sensor node over secure channel.

    iii.The IoT-enable sensor node further calculates S1=h(IDw||SKw) ⊕ rw,S2=h(rw||SKw) ⊕ V and Store{Xw,S1,S2}in memory and the procedure as shown in Table 2.

    Table 2:IoT-enable sensor node registration

    3.2.2 User Registration Phase

    In this section,the user registers with the registration server in our proposed protocol.

    i.The user selects identity IDu,generates a random number ruand computes Xu=h(IDu||ru),and sends RM3={Xu}toward the registration server over a secure channel.

    ii.After receiving RM3={Xw}from user,the registration server calculates V1=h(Xu||SKrs||rrs),XIDu=h (Xu||V1) and store {Xu,XIDu,V1} in edge server database.After computation the registration server send RM4={V1,XIDu}to user over secure channel.

    iii.The user chooses a password PWuand computes HPWu=h(PWu||ru),B1=h(IDu||PWu) ⊕ru,B2=h(IDu||PWu||ru||HPWu),B3=h(HPWu||ru) ⊕ XIDu,B4=h(HPWu||XIDu) ⊕ V1and Store{Xu,B1,B2,B3,B4}and the procedure is illustrated in Table 2.

    3.3 Login and Authentication Phase

    i.The user input identity IDuand password PWuand computes,ru=h(IDu||PWu)⊕B1,HPWu=h(PWu||ru),B2?=h(IDu||PWu||ru||HPWu).The user check B2??=B2and if it corrects then proceed further otherwise terminate connection.The user generates random number ru1and calculates XIDu=h(HPWu||ru) ⊕B3,V1=h(HPWu||XIDu) ⊕B4,N=h(Xu||XIDu||V1) ⊕(Xu||ru1),D=h(IDu||ru) ⊕ h(V1||ru1),Fu=h(Xu||XIDu||ru1||Xw||V1).After calculations the user sends M1={N,D,Fe,Xu}towards edge server.

    ii.The edge server extracts XIDuand V1as per the Xuand calculates(Xw?||ru1?)=h(Xu||XIDu||V1),Fu?=h(Xu||XIDu||ru1?||Xw?||V1)and Check Fu??=Fu,if edge authenticate user then proceed further otherwise terminate connection.The edge server selects random number reand further calculates N2=h(re||ru1),N3=h(Xw||V||rw) ⊕ N2,h(IDu||ru1)=E1⊕h(V1||ru1),E2=(h(IDu||ru1)||h(IDe||re)) ⊕h(V||rw),and Fe=h(Xu||N2||V).After computation the edge server send M2={Xw,N1,E2?Fe}to IoT-enable sensor node.

    iii.The IoT-enable sensor node calculates rw=h(IDw||PKw),V=h(rw||PKw) ⊕S2,N2?=h(Xw||V||rw) ⊕ N3,Fe?=h(Xu||N2?||V).The IoT-enable sensor node authenticates edge server through Fe??=Fe,if correct then proceed further otherwise terminate connection.The IoTenable sensor node generates random number ru1and computes(h(IDu||ru1)||h(IDe||re))=E2⊕h(V||rw),SK=h(h(IDu||ru1)||h(IDe||re)||h(IDw||re),N4=h(Xw||V||rw)⊕h(IDw||rw1),Fw=h(Xu||Xw||N2?||h(IDw||rw1)||V)and send M3={Fw,N4}to edge server back.

    iv.The edge server calculates h(IDw||rw1)=h(Xw||V||rw)⊕N4,Fw?=h(Xu||Xw||N2||h(IDw||rw1||V)and check Fw??=Fw.If it corrects the proceed further otherwise terminate connection.The edge server further calculates SK=h(h(IDu||ru1)||h(IDe||re)||h(IDw||rw1),Xunew=h(Xu||ru1),XIDunew=h (Xunew||V),N5=h (XIDu||ru1) ⊕(h(IDe||re)||h(IDw||rw1)||Xunew,and Fec=h(Xu||ru1)||h(IDe||re)||h(IDw||rw1)||Xunew||V).The edge server store{Xunew,XIDunew}and send M4={Fec,N5}towards user.

    v.The user calculates Xunew=h(Xu||ru1),(h(IDe||re)||h(IDw||rw1)||Xunew=h(XIDu||ru1)⊕N5,and Fec?=h (Xu ||ru1)||h(IDe||re) ||h(IDw||rw1)||Xunew||V).The user Check Fec??=Fecand if it is correct then proceed further otherwise terminate connection.The user further calculates SK=h(h(IDu||ru)||h(IDe||re)||h(IDw||rw1),XIDunew=h(Xunew||V),B3new=h(XIDunew||HPWu) ⊕XIDunew,and B4new=h (XIDunew||HPWu) ⊕ V1.The user update {B3new,B4new,Xunew} and compute N6=h(SK||Xunew).The user sends M5={N6}towards edge server.

    vi.The edge server N6?=h(SK||Xunew) and check N6??=N6.After calculations,the edge server deletes{XIDu,Xu}Table 3.Further details are given in Table 4.

    Table 3:User registration

    3.4 Password Change Phase

    i.The user enters their identity IDuand password PWu.

    ii.After input IDuand PWu,the device computes HPWu=h(PWu||ru),B1=h(IDu||PWu) ⊕ru,B2=h(IDu||PWu||ru||HPWu),B3=h(HPWu||ru)⊕ XIDu,B4=h(HPWu||XIDu)⊕ V1,ru=h(IDu||PWu) ⊕ B1,and B2?=h(IDu||PWu||ru||HPWu).Then check B2??=B2and proceed further if correct otherwise terminate connection.

    iii.The user inputs a new password PWunew.

    iv.After input new password then update the values of HPWu?=h(PWunew||ru),B1?=h (IDu||PWunew) ⊕ ru,B2??=h(IDu||PWunew||ru||HPWu?),B3?=h(HPWu?||ru) ⊕ XIDu,B4?=h(HPWu?||XIDu)⊕ V1,ru?=h(IDu||PWunew)⊕ B1?,B2???=h(IDu||PWunew||ru||HPWu?)and update{HPWu?,B1?,B2??,B3?,B4?B2???}.

    4 Security Analysis

    This section analyzed and critiqued the proposed scheme’s security using two distinct methodologies.Firstly,we utilized Real-or-Random(ROR)model to determine the security of our session key SK.Furthermore,we used the ProVerif simulation toolkit to demonstrate that the session secret is secure.Finally,further details are given below.

    4.1 Formal Security Analysis Using Real-or-Random(ROR)Model

    We used the ROR model[11]to demonstrate our proposed scheme’s session key securitySK.In our proposed scheme login and authentication phase,we have three participantsPt,userPtu,edge serverPte,and IoT-enable sensor nodePtw.TheAhas the ability to intercept,manipulate,and eavesdrop on data delivered across an unsecured connection.TheAmay attack actively or passively by executing various queries outlined in the ROR model,including CorruptedMD,Executive,Send,Reveal,and Test queries.The exact instructions for these queries are included below:

    ? CorruptedMD(Ptu):TheAcan obtain secret information stored on the user side.

    ? Executive(Ptu,Pte,Ptw):TheAcan capture transmitted data over an insecure channel among users,edge servers,and IoT-enable sensor nodes.

    ? Send(Pt,m):TheAsends message m toPt,andPtreplies toAaccording to the rule.

    ? Reveal(Pt):TheAreveals the session keySKbetweenPtuandPtw.If theAunable to revealSK,then it means that the session key is secure.

    ? Test (Pt): TheAtossed a coin,and the result was only known toA.TheAuses the result to decide on the Test query and ifSKis fresh,then return1or0.Otherwise,return null.

    Theorem 1:TheAcan access the session key security of our proposed scheme.The proof of Theorem 1 is similarly presented in[42].The polynomial-time ofAasAdv A.

    q2hdenoted the number of hash queries,qsendis the number of send queries,and|Hash|is the range of hash functionh(.)while c is a parameter from Zipf’s law[43].

    Proof:We prove the session key security in four-game“Gamei”wherei∈[0,3].TheAuseSA,ito win theGameiby guessing the random bit fc correctly.Pr[SA,Gamei]shows the advantage ofAto winGamei.The games are described below:

    i.Game0:In this game,we allow theAto launch an actual attack on our proposed scheme.TheAselect random bitfcat the start of the Game0.

    ii.Game1:TheAexecute the Executive(Ptu,Pte,Ptw)queries and eavesdrops transmitted message{N,D,Fu,Xu},{Xu,N3,E2,Fe},{Fw,N4}and{Fec,N5}.TheArun Reveal and Test queries to check whether the derived session key is real or not.Our proposed scheme session key is constructed asSK=h(h(IDu||ru1)||h(IDe||re)||h(IDw||rw)).TheAneeds random numbers and identities of a user,edge server,and IoT-enable sensor node.Therefore,the probability forAis non to win the Game0and Game1.As a result of the paradox[44],we get the following result:

    iii.Game2:TheAsend and perform Hash to obtain the SK.TheAmodify exchanged messages.However,our proposed scheme of exchange messages is constructed using a random number and secret keys and protected byh(.),a one-way hash function.Therefore,we get the following result:

    iv.Game3:In the last Game3,theAtries to use the CorruptedMD query in order to obtainSK.Using the CorruptedMD query,theAcan get {B1,B2,B3,B4} stored on the user side.These values are expressed asB1=h(IDu||PWu)⊕ru,B2=h(IDu||PWu||ru||HPWu),B3=h(HPWu||ru)⊕XIDuandB4=h(HPWu||XIDu)⊕V1.TheAcannot extractIDu,PWu,ru,andV1values.Therefore,we obtain

    By running these games,theAmust guess the bit in order to win the game.Thus,we obtain

    From Eqs.(1)and(2),we get

    By using Eqs.(5)and(6).

    With Eqs.(4),(5),and(7)and using triangular inequality,we obtain

    By multiplying both sides of Eq.(8)by 2,we get

    As we obtain in Eq.(9),we proved Theorem 1.

    4.2 Formal Security Analysis Using ProVerif

    ProVerif2.03 verification software toolkit[12]is used to determine if the session secret is secure if it is computed confidentially,if it is exchanged securely among peers,and if an attacker may acquire it during a starting session.It is a popular simulation verification toolkit.Fig.2 depicts ProVerif’s results.

    Figure 2:ProVerif result

    5 Informal Security Analysis

    This section shows how our proposed scheme defends against various threats and incorporates security features such as mutual authentication and perfect forward secrecy to protect users’data.

    5.1 Offline Password Guessing Attack

    In our proposed scheme theAcannot getB1=h(IDu||PWu)⊕ru,B2=h(IDu||PWu||ru||HPWu),B3=h(HPWu||ru)⊕XIDu,B4=h(HPWu||XIDu)⊕V1,Xu=h(IDu||ru).The values of B1,B2,B3,B4,and Xuwere constructed using IDu,PWu,and random number ru.Therefore,theAcannot construct B1,B2,B3,B4,and Xu.Thus,our proposed scheme resists offline password guessing attacks.

    5.2 Mutual Authentication

    The user,edge server,and IoT-enable sensor node check the message’s validity in the login and authentication phase.The user,edge server,and IoT-enable node checksFu?=Fu,Fe?=Fe,Fw?=Fw,Fec?=Fec,andN6?=N6.If these values are correct,then the entities authenticate each other.Therefore,our proposed scheme provides mutual authentication property.

    5.3 Insider Attack

    In registration phase,theAmight obtain Xu=h(IDu||ru).TheAtry to construct{B1,B2,B3,B4,Xu} store on the user side.However,theAcannot obtain actual IDu,PWu,and ru.Therefore,theAcannot construct SK.Thus,our proposed scheme resists insider attacks.

    5.4 Desynchronization

    TheAtrying to modify and block the transmitted messages to the user,edge server,and IoTenable sensor node cannot authenticate each other.However,theAcannot do it because,according to our protocol,theAcannot obtain IDu,PWu,ru,and Sk.Thus,user and edge servers always have synchronized values.Therefore,in our proposed scheme,a desynchronization attack is not possible.

    5.5 Anonymity

    TheAcannot obtain the actual identities ofIDu,PWu,IDe,IDw,to constructXu=h(IDu||ru),Xw=h(IDw||rw).Therefore,our proposed scheme provides anonymity.

    5.6 Untraceability

    In our proposed protocol for every session,the edge server and user updateXunew=h(Xu||ru1).Therefore,our protocol provides untraceability.

    5.7 Perfect Forward Secrecy

    TheAobtains secret key SKrsand tries to create a session key SK.Although,theAneeds a random number{ru,ru1,re,rw,rw1}because the SKis composed of a random number for every session.Therefore,our proposed protocol;provides perfect forward secrecy.

    5.8 Known Session Attack

    TheAattempts to obtain random numbers and construct the session key in accordance with the CK-adversary model.However,theAneeds the identities of a user,edge server,and IoT-enable sensor node.Because in our proposed scheme,the session key was constructed using the identities of the user,edge server,and IoT-enable sensor node.Thus,our proposed scheme resists known session attacks.

    5.9 MITM Attack

    Let us suppose theAgets a previous authentication request between the user and edge server.Further,theAtries to send it again to the edge server.However,the edge server checks the freshness of the random number and rejects the request ofA.Thus,our scheme resists the MITM attack.

    5.10 Session Key Leakage Attack

    TheAmight get {B1,B2,B3,B4,Xu} and {S1,S1,Xu} of the user and IoT-enable sensor node to calculate the SK.However,theAneed actual identities(IDu,IDw,IDe}and random numbers{ru,ru1,re,rw,rw1}.The identities and random numbers cannot obtain from transmitted messages because these values are encrypted.Thus,our proposed scheme resists session key leakage attacks.

    5.11 Replay Attack

    Let us suppose theAtries to modify the authentication request and pretend to be a user or edge server.However,theAcannot change{N,E1,Fu}and{Fec,N6}without the knowledge ofIDu,PWu,ru,IDe IDw.Therefore,the proposed scheme resists replay attacks.

    5.12 User Impersonation Attack

    Let us suppose theAextract secret values {Xu,B1,B2,B3,B4}.TheAtries to impersonate the user using these values.However,theAcannot send authentication messages towards the edge server because theAneeds IDu,PWu,ru,and HPWuto construct {N,D,Fu,Xu}.Therefore,our proposed scheme resists user impersonation attacks.

    5.13 IoT-Enable Sensor Node Impersonation Attack

    TheAfound a lost IoT-enable sensor node to impersonate the IoT-enable sensor node.However,theAcannot construct{Fu,ru}because theAneedsIDw,rw,and rw1to construct{Fw,N4}.Therefore,our proposed scheme resists IoT-enable sensor node impersonation attacks.

    5.14 Stolen IoT-Enable Sensor Node Attack

    Let suppose theAget stolen IoT-enable sensor node and obtain secret{S1,S2,Xw}stored in the memory of IoT-enable sensor node.However,theAcannot get IDw,rw,and rw1.Thus,our proposed scheme resists stolen IoT-enable sensor node attacks.

    6 Performance and Security Analysis

    This section compared our proposed scheme to similar protocols in terms of security characteristics,communication,and computation cost comparisons,among other things.

    6.1 Security Features

    In this section,we compare our protocol with [10,21–23,33,45–47] in terms of security features.Table 5 shows that our scheme achieved all security features and provided mutual authentication,anonymity,and untraceability.

    6.2 Communication Cost

    In this section,we first calculate our proposed scheme communication cost and then compare it with recent related protocols [10,21–23,33,45–48] in Table 6.The value of a hash function is (160 bits),the ECC point of multiplication is (320 bits),the symmetric key is (256 bits) timestamp is (32 bits),while the random number is(128 bits),and identities are(160 bits)[49].Our proposed scheme exchange messages are{N,D,Fu,Xu}is{640 bits},{Xu,N3,E2,Fe}is{640 bits},{Fw,N4}is{320 bits},{Fec,N5} is {320 bits} and {N6} is {160}.As a result,our suggested scheme’s overall communication cost is equivalent to 2080 bits.The scheme[45]has a lower communication cost,but the computation cost is high,and the scheme is vulnerable to offline password guessing attacks and unable to provide perfect forward secrecy.

    6.3 Computation Cost

    We compared our proposed scheme computation cost with other related schemes[10,21–23,33,45–48].First,we calculated our proposed scheme computation cost.According to[50],the ECC point of multiplication TMis(7.3529 ms),hash function This(0.0004 ms),symmetric key TSis(0.1303 ms),and fuzzy extractor TRis (7.3529 ms).Therefore,our scheme total computation cost is 66This equal to 0.264 ms.Detail comparison of our proposed scheme computation and communication cost is shown in Fig.3.The scheme [22] has a lower computation cost.However,the communication cost of the scheme[22]is very high.In contrast,Table 5 shows that the scheme is vulnerable to offline password guessing attacks,insider attacks,and known session attacks.

    Figure 3:Computation cost comparison

    6.4 Storage Cost

    In this portion of our research article,we consider the work [49].The hash function is 160,multiplication point is 320,identity is 160,symmetric key 256,timestamp is 32,and random numbers are 128 bits.Keep view this in mind,our proposed scheme storage cost calculation is Xw=160,S1=160+128,S2=160+160,Xu=160,B1=160+128,B2=160,B3=160+160,B4=160+160.Hence total storage cost is 2016 bits.Table 7 shows the comparison with other state-of-the-art schemes.

    Table 7:Storage cost

    7 Conclusion

    In this research article,we proposed a secure and efficient authentication scheme.Our proposed scheme guarantees secure and efficient communication among the IoT-enable device,user,and edge server.E-healthcare is a prominent research area for researchers because any flaw in the protocol can lead to fatal damage to the patient.Therefore,we cryptanalysis the scheme of Zhu and find out that their scheme suffers from spoofing,impersonation,and masquerading attacks.To overcome the flaws of Zhu’s scheme,we proposed a secure and efficient information authentication scheme for IoTenabled devices in an e-healthcare system.

    We choose edge computing to reduce latency for e-healthcare systems because latency is an essential factor.We performed the ROR model and ProVerif to demonstrate that our protocol provided session key security and resisted MITM.In the end,our proposed protocol achieved security features and lower computation costs than recent existing schemes.Therefore,we concluded that our scheme provides lower computation costs and better security.

    Acknowledgement:The authors are thankful to the Natural Science Foundation of Beijing Municipality and Beijing University of Technology for funding this work under Grant M21039.

    Funding Statement:This work was supported by the Natural Science Foundation of Beijing Municipality under Grant M21039.

    Author Contributions:The authors confirm contribution to the paper as follows: study conception and design:Naveed Khan,Shehzad Ashraf Chaudhry and Jianbiao Zhang;security analysis:Naveed Khan;performance analysis: Naveed Khan,Ghulam Ali Mallah,and Shehzad Ashraf Chaudhry;draft manuscript preparation: Naveed Khan,and Shehzad Ashraf Chaudhry.All authors reviewed the results and approved the final version of the manuscript.

    Availability of Data and Materials:The first author will provide the supporting data for this work upon reasonable request.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    免费久久久久久久精品成人欧美视频| 久久久国产欧美日韩av| 国产91精品成人一区二区三区| 变态另类丝袜制服| 亚洲精品粉嫩美女一区| 亚洲激情在线av| 欧美午夜高清在线| 久久中文看片网| 久久精品国产清高在天天线| 国产精品免费一区二区三区在线| 亚洲av成人av| 亚洲狠狠婷婷综合久久图片| 精品久久久久久久毛片微露脸| 久久人妻福利社区极品人妻图片| 男女下面插进去视频免费观看| 久久久久九九精品影院| 这个男人来自地球电影免费观看| www国产在线视频色| 国内久久婷婷六月综合欲色啪| 欧美一级a爱片免费观看看 | 天天添夜夜摸| bbb黄色大片| 亚洲欧美日韩高清在线视频| 男人舔女人的私密视频| 女性生殖器流出的白浆| 国产精品美女特级片免费视频播放器 | 波多野结衣巨乳人妻| 日韩中文字幕欧美一区二区| 国产精品一区二区三区四区久久 | videosex国产| 亚洲人成伊人成综合网2020| 中文字幕精品免费在线观看视频| 国产精品久久久av美女十八| 大型av网站在线播放| 亚洲成a人片在线一区二区| 久久国产亚洲av麻豆专区| 身体一侧抽搐| 变态另类丝袜制服| 久久这里只有精品19| 成人欧美大片| 涩涩av久久男人的天堂| 18禁美女被吸乳视频| 97超级碰碰碰精品色视频在线观看| 一区二区三区国产精品乱码| 国产精品影院久久| 久久久精品欧美日韩精品| 国产成人一区二区三区免费视频网站| 咕卡用的链子| 午夜福利欧美成人| 国产成人影院久久av| www.熟女人妻精品国产| 久久精品91蜜桃| 亚洲激情在线av| 国产成人影院久久av| 最新美女视频免费是黄的| 变态另类成人亚洲欧美熟女 | 看片在线看免费视频| 亚洲国产欧美日韩在线播放| 国产一区二区三区在线臀色熟女| 国产精品秋霞免费鲁丝片| 亚洲精品av麻豆狂野| 欧美一区二区精品小视频在线| 天堂√8在线中文| 男人的好看免费观看在线视频 | 精品日产1卡2卡| 亚洲自偷自拍图片 自拍| 亚洲美女黄片视频| 男女下面插进去视频免费观看| 熟女少妇亚洲综合色aaa.| 女性被躁到高潮视频| 国产在线观看jvid| 欧美成人一区二区免费高清观看 | 麻豆久久精品国产亚洲av| 黑人巨大精品欧美一区二区蜜桃| 18禁国产床啪视频网站| 亚洲五月婷婷丁香| 日日摸夜夜添夜夜添小说| 欧美+亚洲+日韩+国产| 成人免费观看视频高清| 两人在一起打扑克的视频| 韩国av一区二区三区四区| 人人妻,人人澡人人爽秒播| 一个人免费在线观看的高清视频| 中出人妻视频一区二区| 精品福利观看| 国产精品,欧美在线| 一区二区三区精品91| 91老司机精品| 嫩草影视91久久| 91成年电影在线观看| 日本撒尿小便嘘嘘汇集6| 91在线观看av| 男女做爰动态图高潮gif福利片 | 久久国产精品影院| 国产精品一区二区三区四区久久 | 成熟少妇高潮喷水视频| 国产亚洲av高清不卡| 精品乱码久久久久久99久播| 无人区码免费观看不卡| 少妇熟女aⅴ在线视频| 免费少妇av软件| 国产成人精品无人区| 精品久久久久久成人av| 亚洲国产高清在线一区二区三 | 99国产综合亚洲精品| 中出人妻视频一区二区| 国产午夜福利久久久久久| 十八禁网站免费在线| 欧美日韩一级在线毛片| 国产免费男女视频| 欧美黑人精品巨大| 99精品久久久久人妻精品| 中文字幕av电影在线播放| 午夜免费成人在线视频| а√天堂www在线а√下载| 欧美中文综合在线视频| 欧美成人午夜精品| 99在线人妻在线中文字幕| 国产国语露脸激情在线看| 亚洲国产欧美网| 亚洲av成人不卡在线观看播放网| 免费av毛片视频| 亚洲激情在线av| 他把我摸到了高潮在线观看| 精品久久久久久久毛片微露脸| 两性夫妻黄色片| 亚洲国产精品久久男人天堂| 91在线观看av| 伊人久久大香线蕉亚洲五| 他把我摸到了高潮在线观看| 日本a在线网址| 亚洲人成伊人成综合网2020| 国产精品电影一区二区三区| 亚洲五月色婷婷综合| 中文字幕人成人乱码亚洲影| 久久精品人人爽人人爽视色| 午夜福利一区二区在线看| 成在线人永久免费视频| 亚洲av电影不卡..在线观看| 身体一侧抽搐| 国产成人精品无人区| 精品第一国产精品| 在线视频色国产色| 午夜福利视频1000在线观看 | 精品国产乱码久久久久久男人| 色av中文字幕| 久久婷婷成人综合色麻豆| 精品久久久久久久毛片微露脸| 欧美一级毛片孕妇| 一进一出抽搐gif免费好疼| 嫩草影院精品99| 十分钟在线观看高清视频www| 色综合婷婷激情| 国产精品久久久av美女十八| 人成视频在线观看免费观看| 亚洲人成伊人成综合网2020| 久久伊人香网站| 日日夜夜操网爽| 亚洲专区字幕在线| 亚洲一区二区三区色噜噜| 国产主播在线观看一区二区| 日韩欧美免费精品| 国产高清有码在线观看视频 | 亚洲第一电影网av| 窝窝影院91人妻| 一边摸一边做爽爽视频免费| av欧美777| 亚洲aⅴ乱码一区二区在线播放 | 亚洲av美国av| 老鸭窝网址在线观看| 欧美中文日本在线观看视频| 欧美日本视频| 自线自在国产av| 国产亚洲欧美在线一区二区| 日本一区二区免费在线视频| 中文字幕高清在线视频| 欧美一区二区精品小视频在线| 亚洲精品美女久久久久99蜜臀| 精品国产一区二区久久| 亚洲五月色婷婷综合| 琪琪午夜伦伦电影理论片6080| 狂野欧美激情性xxxx| 少妇 在线观看| 亚洲无线在线观看| 黑人欧美特级aaaaaa片| 亚洲第一av免费看| 一区在线观看完整版| 美国免费a级毛片| 国产欧美日韩一区二区三| 99精品久久久久人妻精品| 欧美国产精品va在线观看不卡| 久久中文看片网| 97超级碰碰碰精品色视频在线观看| 亚洲欧美精品综合一区二区三区| 国产三级黄色录像| 国产成人啪精品午夜网站| 变态另类成人亚洲欧美熟女 | 欧美激情久久久久久爽电影 | 黑人操中国人逼视频| 久热这里只有精品99| bbb黄色大片| 欧美精品亚洲一区二区| 国产精品自产拍在线观看55亚洲| 首页视频小说图片口味搜索| 在线观看舔阴道视频| 男女做爰动态图高潮gif福利片 | 国产欧美日韩一区二区三区在线| 欧美成人一区二区免费高清观看 | 亚洲aⅴ乱码一区二区在线播放 | 国产1区2区3区精品| 欧美在线黄色| 极品人妻少妇av视频| 国产精品98久久久久久宅男小说| 国内毛片毛片毛片毛片毛片| 精品国产乱子伦一区二区三区| 美女免费视频网站| 18禁黄网站禁片午夜丰满| 国产精品98久久久久久宅男小说| 国产精品爽爽va在线观看网站 | 一级毛片精品| 久久中文看片网| 最新在线观看一区二区三区| 亚洲国产高清在线一区二区三 | 黄片大片在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲色图av天堂| 国产一区二区在线av高清观看| 欧美日韩亚洲国产一区二区在线观看| 此物有八面人人有两片| 国产av又大| 成人国产综合亚洲| 亚洲性夜色夜夜综合| 亚洲天堂国产精品一区在线| 日韩 欧美 亚洲 中文字幕| 久久香蕉激情| 国产精品亚洲一级av第二区| 精品国产乱码久久久久久男人| 精品一区二区三区av网在线观看| 一级a爱片免费观看的视频| tocl精华| 少妇 在线观看| 久久中文字幕一级| 久久 成人 亚洲| 久久亚洲精品不卡| 免费在线观看亚洲国产| 日本黄色视频三级网站网址| 麻豆av在线久日| 香蕉久久夜色| 在线天堂中文资源库| 欧美成人免费av一区二区三区| 天天躁夜夜躁狠狠躁躁| 好男人在线观看高清免费视频 | 亚洲人成网站在线播放欧美日韩| 免费少妇av软件| 久久久久久久午夜电影| 香蕉国产在线看| 精品国产乱子伦一区二区三区| 亚洲专区中文字幕在线| 国产精品爽爽va在线观看网站 | 亚洲五月婷婷丁香| 丁香六月欧美| 午夜免费成人在线视频| 狠狠狠狠99中文字幕| 国产av一区在线观看免费| 亚洲中文字幕一区二区三区有码在线看 | 欧美成人一区二区免费高清观看 | 色综合婷婷激情| 午夜福利高清视频| 久久天躁狠狠躁夜夜2o2o| 国产熟女xx| 欧美日本中文国产一区发布| 黄色a级毛片大全视频| 国产不卡一卡二| 日本撒尿小便嘘嘘汇集6| 老汉色∧v一级毛片| 国产精品久久视频播放| 欧美日韩瑟瑟在线播放| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av五月六月丁香网| 国产高清有码在线观看视频 | 十分钟在线观看高清视频www| 12—13女人毛片做爰片一| 久久久久国内视频| 亚洲色图av天堂| 精品国产乱码久久久久久男人| 丁香六月欧美| 日韩三级视频一区二区三区| 天堂影院成人在线观看| 日韩欧美一区二区三区在线观看| www.精华液| 在线视频色国产色| 女人精品久久久久毛片| 日韩欧美国产一区二区入口| 无人区码免费观看不卡| 999精品在线视频| 又大又爽又粗| 亚洲欧美精品综合一区二区三区| 啪啪无遮挡十八禁网站| 日韩精品中文字幕看吧| 满18在线观看网站| 成人永久免费在线观看视频| 免费看美女性在线毛片视频| 国产亚洲精品综合一区在线观看 | 午夜免费观看网址| 午夜成年电影在线免费观看| 精品国产一区二区三区四区第35| 99久久综合精品五月天人人| 久久久国产欧美日韩av| 久久久精品国产亚洲av高清涩受| 久久久久久人人人人人| 男人操女人黄网站| 亚洲三区欧美一区| 色精品久久人妻99蜜桃| 一级a爱视频在线免费观看| 黄频高清免费视频| 免费在线观看视频国产中文字幕亚洲| av在线天堂中文字幕| 级片在线观看| 日本五十路高清| 18禁美女被吸乳视频| 丰满人妻熟妇乱又伦精品不卡| 一级a爱视频在线免费观看| 99精品欧美一区二区三区四区| 99久久国产精品久久久| 久久久久国产精品人妻aⅴ院| 免费av毛片视频| 亚洲欧美激情综合另类| 午夜激情av网站| 亚洲精品国产精品久久久不卡| 精品日产1卡2卡| 999精品在线视频| 高清黄色对白视频在线免费看| 高潮久久久久久久久久久不卡| 国产三级在线视频| 黄片大片在线免费观看| 在线观看舔阴道视频| 欧美激情 高清一区二区三区| 97超级碰碰碰精品色视频在线观看| 精品不卡国产一区二区三区| 国产精品自产拍在线观看55亚洲| av天堂久久9| 亚洲美女黄片视频| 久久午夜亚洲精品久久| 国产精品乱码一区二三区的特点 | 亚洲天堂国产精品一区在线| 精品国产美女av久久久久小说| 久久久国产成人精品二区| 人人妻人人澡欧美一区二区 | 国产av一区二区精品久久| 亚洲第一欧美日韩一区二区三区| 欧美在线黄色| 欧洲精品卡2卡3卡4卡5卡区| 亚洲片人在线观看| 法律面前人人平等表现在哪些方面| 日本欧美视频一区| 人妻久久中文字幕网| 搡老岳熟女国产| 美女 人体艺术 gogo| 一级a爱视频在线免费观看| 亚洲精品美女久久av网站| 无人区码免费观看不卡| 少妇熟女aⅴ在线视频| 国产欧美日韩精品亚洲av| 99久久综合精品五月天人人| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品中文字幕一二三四区| 脱女人内裤的视频| 一a级毛片在线观看| 女警被强在线播放| 成年版毛片免费区| 视频区欧美日本亚洲| 级片在线观看| 波多野结衣av一区二区av| 91国产中文字幕| 欧美精品啪啪一区二区三区| 免费高清视频大片| 欧美日韩亚洲国产一区二区在线观看| 老熟妇仑乱视频hdxx| 久久天躁狠狠躁夜夜2o2o| 一本综合久久免费| 免费高清视频大片| 美女扒开内裤让男人捅视频| www.自偷自拍.com| 免费看十八禁软件| 精品国产国语对白av| 国产激情久久老熟女| 一二三四在线观看免费中文在| 99精品欧美一区二区三区四区| e午夜精品久久久久久久| 亚洲色图av天堂| 女性生殖器流出的白浆| svipshipincom国产片| 97碰自拍视频| 一边摸一边抽搐一进一小说| 国产熟女xx| 亚洲熟妇熟女久久| 中出人妻视频一区二区| 亚洲专区中文字幕在线| 免费看十八禁软件| 欧美乱色亚洲激情| 十八禁网站免费在线| 欧美成人免费av一区二区三区| 在线观看www视频免费| 亚洲av第一区精品v没综合| 国产精品电影一区二区三区| 精品国内亚洲2022精品成人| 一二三四在线观看免费中文在| 十八禁网站免费在线| e午夜精品久久久久久久| 久久婷婷成人综合色麻豆| 国产精品av久久久久免费| 精品国内亚洲2022精品成人| 岛国视频午夜一区免费看| 精品日产1卡2卡| 嫩草影视91久久| 久久久国产成人免费| 久久久久国产精品人妻aⅴ院| 久久天堂一区二区三区四区| 亚洲人成电影免费在线| 欧美绝顶高潮抽搐喷水| 无遮挡黄片免费观看| 大型av网站在线播放| 午夜日韩欧美国产| 国产91精品成人一区二区三区| 1024香蕉在线观看| 日韩一卡2卡3卡4卡2021年| 亚洲精品一卡2卡三卡4卡5卡| 精品久久久久久久毛片微露脸| 九色国产91popny在线| av欧美777| 国产精品亚洲av一区麻豆| 久久婷婷成人综合色麻豆| 18美女黄网站色大片免费观看| av电影中文网址| av有码第一页| 国产精品野战在线观看| 亚洲第一欧美日韩一区二区三区| 国产男靠女视频免费网站| 99久久国产精品久久久| 免费看a级黄色片| 成人国语在线视频| 日韩欧美一区二区三区在线观看| 国产精品电影一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 国产av精品麻豆| 日本 av在线| 亚洲免费av在线视频| 18禁观看日本| tocl精华| 久久久久久人人人人人| 精品熟女少妇八av免费久了| 少妇粗大呻吟视频| 一进一出抽搐动态| 一区二区三区高清视频在线| 99riav亚洲国产免费| 又紧又爽又黄一区二区| 69av精品久久久久久| 曰老女人黄片| cao死你这个sao货| 国产精品1区2区在线观看.| 欧美成人一区二区免费高清观看 | 国产精品一区二区三区四区久久 | 欧美中文综合在线视频| 国产xxxxx性猛交| 成人三级做爰电影| 久久国产精品男人的天堂亚洲| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线美女| 日韩高清综合在线| 成年版毛片免费区| 最近最新中文字幕大全免费视频| av电影中文网址| 黄色视频,在线免费观看| 91精品国产国语对白视频| 国产黄a三级三级三级人| 黄色a级毛片大全视频| 午夜福利,免费看| 久久久久精品国产欧美久久久| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 中文字幕人成人乱码亚洲影| 久久久国产成人精品二区| 男女午夜视频在线观看| 国产精品亚洲美女久久久| or卡值多少钱| 亚洲中文日韩欧美视频| or卡值多少钱| 欧美日本视频| 叶爱在线成人免费视频播放| 国产亚洲精品av在线| 国产av精品麻豆| 亚洲自偷自拍图片 自拍| 99riav亚洲国产免费| 伊人久久大香线蕉亚洲五| 欧美日韩亚洲国产一区二区在线观看| 中文字幕人妻丝袜一区二区| 中文字幕精品免费在线观看视频| 午夜福利视频1000在线观看 | 国产亚洲欧美精品永久| 老汉色av国产亚洲站长工具| 熟妇人妻久久中文字幕3abv| 午夜福利视频1000在线观看 | 国产片内射在线| 99在线人妻在线中文字幕| 免费在线观看视频国产中文字幕亚洲| 国产精华一区二区三区| 午夜福利18| 成人18禁高潮啪啪吃奶动态图| or卡值多少钱| 一级黄色大片毛片| 免费在线观看亚洲国产| 一进一出好大好爽视频| 久久精品国产综合久久久| 久久亚洲真实| 伊人久久大香线蕉亚洲五| 午夜久久久在线观看| 一二三四社区在线视频社区8| 国产免费男女视频| tocl精华| 国产在线观看jvid| 国产精品一区二区在线不卡| 极品教师在线免费播放| 少妇 在线观看| 精品一区二区三区四区五区乱码| 国产精品久久久人人做人人爽| 50天的宝宝边吃奶边哭怎么回事| 18禁美女被吸乳视频| 欧美日韩黄片免| 可以免费在线观看a视频的电影网站| 午夜福利,免费看| 高潮久久久久久久久久久不卡| 啦啦啦 在线观看视频| 日本vs欧美在线观看视频| 亚洲在线自拍视频| 99re在线观看精品视频| 老司机福利观看| 999久久久国产精品视频| 国产麻豆成人av免费视频| www.自偷自拍.com| 亚洲欧美激情综合另类| 久久人人精品亚洲av| 人妻久久中文字幕网| 99国产精品99久久久久| 19禁男女啪啪无遮挡网站| 99精品在免费线老司机午夜| 女生性感内裤真人,穿戴方法视频| 91精品国产国语对白视频| 露出奶头的视频| 美国免费a级毛片| 欧美日韩乱码在线| 亚洲一区中文字幕在线| av网站免费在线观看视频| 久久香蕉精品热| 男人操女人黄网站| 午夜精品国产一区二区电影| 亚洲人成伊人成综合网2020| 欧美日本亚洲视频在线播放| 婷婷丁香在线五月| 久久精品aⅴ一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 99精品欧美一区二区三区四区| 丁香六月欧美| 久久中文字幕一级| 亚洲午夜精品一区,二区,三区| 日韩av在线大香蕉| 中文亚洲av片在线观看爽| 99精品久久久久人妻精品| 波多野结衣高清无吗| 亚洲第一欧美日韩一区二区三区| 精品人妻在线不人妻| 国产精品一区二区免费欧美| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 天天添夜夜摸| 成年版毛片免费区| 大香蕉久久成人网| 自线自在国产av| 中出人妻视频一区二区| 国产免费av片在线观看野外av| 我的亚洲天堂| 淫秽高清视频在线观看| 不卡av一区二区三区| 男女之事视频高清在线观看| 一二三四在线观看免费中文在| 如日韩欧美国产精品一区二区三区| 97碰自拍视频| 人妻久久中文字幕网| 欧美老熟妇乱子伦牲交| 中文字幕av电影在线播放| 久久人妻福利社区极品人妻图片| 亚洲av五月六月丁香网| 午夜免费激情av| 国产欧美日韩一区二区三区在线| x7x7x7水蜜桃| 国产在线观看jvid| svipshipincom国产片| 91精品三级在线观看| 99久久99久久久精品蜜桃| 免费人成视频x8x8入口观看| 变态另类成人亚洲欧美熟女 | 午夜成年电影在线免费观看| 97人妻精品一区二区三区麻豆 | 国产欧美日韩一区二区精品| 涩涩av久久男人的天堂| 国产高清videossex| 免费高清视频大片| 成人永久免费在线观看视频| 一边摸一边抽搐一进一小说| 亚洲全国av大片| 亚洲一区高清亚洲精品| 久热这里只有精品99| 国产精品电影一区二区三区| 久久精品国产亚洲av高清一级| 亚洲人成网站在线播放欧美日韩| 国产麻豆69|