• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quasi-synchronous control of uncertain multiple electrohydraulic systems with prescribed performance constraint and input saturation

    2023-10-25 12:13:14ShuiLIQingGUOYnSHIYoYANDnJIANG
    CHINESE JOURNAL OF AERONAUTICS 2023年9期

    Shui LI, Qing GUO,*, Yn SHI, Yo YAN, Dn JIANG

    a School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu 611731, China

    b School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China

    c School of Mechanical and Electrical Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China

    KEYWORDS

    Abstract This article focuses on the high accuracy quasi-synchronous control issue of multiple electrohydraulic systems (MEHS).In order to overcome the negative effects of parameter uncertainty and external load interference of MEHS,a kind of finite-time disturbance observer(FTDO)via terminal sliding mode method is constructed based on the MEHS model to achieve fast and accuracy estimation and compensation ability.To avoid the differential explosion in backstepping iteration, the dynamic surface control is used in this paper to guarantee the follower electrohydraulic nodes synchronize to the leader motion with a better performance.Furthermore, a timevarying barrier Lyapunov function(tvBLF)is adopted during the controller design process to constraint the output tracking error of MEHS in a prescribed performance with time-varying exponential function.As the initial state condition is relax by tvBLF, the input saturation law is also adopted during the controller design process in this paper to restrain the surges of input signals,which can avoid the circuit and mechanical structure damage caused by the volatile input signal.An MEHS experimental bench is constructed to verify the effectiveness of the theoretical conclusions proposed in this paper and the advantages of the proposed conclusions in this paper are illustrated by a series of contradistinctive experimental results.

    1.Introduction

    Electro-hydraulic servo system(EHS) is a typical mechatronic motion system,which has been widely used in mechanical engineering.The EHS integrates the advantages of both hydraulic transmission and electric driving, which has high energy density, high control accuracy and low delay.Thus, EHS has been widely used in engineering practice such as: aeroengine afterburner system1and high-speed actuator.2Meanwhile,multiple electrohydraulic systems (MEHS) are often used for cooperative transmission task, such as shaking table,3spatial electrohydraulic robot4and crane.5Hence, the synchronous control performance is an important evaluation index of MEHS in cooperative transmission task.In previous work,lots of nonlinear control methods have been proposed to overcome the nonlinearity of EHS, such as robust controller,6backstepping controller,7sliding mode controller,8fault diagnosis and fault-tolerant control9and feedback linearization controller.10Actually, backstepping method is the general technique in different controller design for EHS.However, a repeated iteration is conducted and several virtual control variables emerge to increases the complicated calculation of controller, which leads to output violent oscillation.This phenomenon is called differential explosion in backstepping iteration.To avoid this phenomenon to maintain the control performance,Swaroop et al.proposed a dynamic surface control method,11which essentially smoothes the virtual control variables.Then this design has been applied in engineering12–13and also in the EHS by Duraiswamy and Chiu,14which improve the control performance of EHS.

    In the past decade, the cooperative control of nonlinear multi-agent systems has attracted much attention.Firstly,multiple agent system(MAS)with nonlinear dynamics under directional communication and delay has been investigated to obtain the consensus condition.15Then the distributed consensus problems of MAS under Lipschitz nonlinear dynamics have been addressed by adaptive relative state consensus protocols.16To realize the fast synchronization control of nonlinear MAS,Du et al.17proposed a nonlinear multi-agent output feedback synchronous controller based on finite-time convergence law.Subsequently, Zuo et al.18presented an adaptive fault-tolerant tracking control of nonlinear MAS with Lipschitz dynamics.Hence, lots of cooperative control results on nonlinear MAS with adaptive control techniques have been proposed19–23as reference researches in different application field.

    Due to some uncertainties such as parametric uncertainty and external load disturbance existed in mechatronic system,many disturbance observers are presented to estimate them and be compensated in control design, which include adaptive observer,24extended state observer,25and center-based transfer feature learning.26These disturbance observers can effectively suppress uncertainty negative effects and improve the control robustness of EHS.However,these disturbance observers just focus on the estimation accuracy rather convergence speed.Hence, recently a disturbance novel observer called terminal sliding mode observer27has been proposed to improve both the estimation accuracy and convergence speed for many uncertain systems.

    To further improve the dynamic and steady performance of EHS, the barrier Lyapunov function28is adopted to restrict the output tracking error.However, the barrier Lyapunov function often requires the initial position condition of EHS,which is also limited in a specified range.Fortunately, the tvBLF29–30is used to relax the initial EHS condition.In fact,if the initial condition of EHS can be moderately easy,the control input signal might be sharply oscillated during the transient response.To address this problem, an input saturation strategy31–32has been presented to guarantee the stability margin as the input saturation emerges in dynamic response.

    Inspired by the references aforementioned,this paper plans to design a control algorithm combining tvBLF and input saturation law and hopes that the tracking performance of the system can be guaranteed under this control algorithm while the control input signal can be better limited.Different from the synchronization controller designed in,10this paper considers the MEHS under a stationary communication topology and the controller of third-order MEHS nonlinear system is designed directly based on backstepping iteration process instead of feedback linearization method.The main contributions are listed as follows:

    (i) To address the lumped uncertainty in MEHS, a FTDO via terminal sliding mode is designed to guarantee the uncertainty estimation error with fast convergence speed.Then a quasi-synchronous controller is designed by dynamic surface technique to avoid the differential explosion in backstepping iteration.

    (ii) A tvBLF is constructed in the controller design process to constrain the output synchronous error of MEHS in a prescribed performance.Meanwhile, since the initial state condition of MEHS is relax by tvBLF, an input saturation law is designed to guarantee the output stability of EHS under the limited control voltage of servo valve and initial large state bias from the demand.

    The remainder of this paper is organized as follows.The MEHS model with lumped uncertainty is constructed and the basic graph theory is introduced in Section 2.Then FTDO is designed for MEHS in section 3.Subsequently, a quasisynchronous controller is proposed in Section 4 with timevarying outputs constraint and input saturation.The comparative experimental results are given in Section 5.Finally, the conclusion is drawn in Section 6.

    2.Preliminaries

    2.1.Multiple electrohydraulic system model

    The MEHS is composed by N(N ≥2) isomorphic EHSs,which has the composition and control mechanism as shown in Fig.1.Since the cylinder motion frequency is far less than the cutoff frequency of servo valve, the dynamics of servo valve is neglected in this study.Hence, a state vector for i-th node is defined asand then a three-orders dynamic model of i-th MEHS node is given by

    where i ? {1 ,2,???,N}, K denotes the spring stiffness coefficient of the cylinder,b denotes the viscous damping coefficient,FLidenotes the external load of i-th node,βedenotes the effective bulk modulus,Apdenotes the annulus area of the cylinder chamber, Vtdenotes the total volume of the hydraulic power mechanism, Ctldenotes the coefficient of the total leakage of the cylinder, Cddenotes the discharge coefficient, w denotes the area gradient of the servo valve,Ksvdenotes the gain voltage of the servo valve,ρ denotes the density of hydraulic oil,psdenotes the supply pressure from bench, sgn(?) is the signum function, i.e., sgn(?)=1 for ui>0, sgn(?)=0 for ui=0 sgn(?)<0 for ui<0.

    Fig.1 Composition of each isomorphic EHS node and its control mechanism.

    Remark 2.1.The hydraulic parameters Cd, ρ, K, b, βeand Ctlare all unknown positive constants.

    Assumption 2.1.The external load FLiis bounded as|FLi(t )|≤FLmaxwhere FLmaxis an uncertain constant.

    To avoid the violent control during the transient process,an input saturation law for the control variable uiis designed as

    According to Remark 2.1 and Assumption 2.1, together with Eq.(2), the MEHS model Eq.(1) is rewritten as follow

    where the nominal model functions of Eq.(3) are

    and the two lumped uncertainties are

    Assumption 2.2.33The uncertain items Δi2and Δi3are bounded such that.

    2.2.Basic graph theory

    3.FTDO design

    Inspired by the disturbance observer designed in,27a rapidly disturbance observers are designed in this paper to estimate two lumped uncertainties Δi2, Δi3of MEHS.To guarantee the estimation error with fast convergence speed in a finite time, two terminal sliding mode surfaces are defined such that

    The two auxiliary variables vi2and vi3in Eq.(4) yield that

    Lemma 3.1.36If there exists a continuous positive definite function V(t ) such that.

    where a>0, b>0 and 0

    Theorem 3.1.The estimation errors of the lumped uncertainties in Eq.(3) converge to zero in a finite-time, by using the disturbances observers Eq.(6).

    Proof.See Appendix A.

    4.Dynamic surface quasi-synchronization controller design

    Here a dynamic surface quasi-synchronous controller with input saturation for the MEHS to guarantee the follower electrohydraulic nodes synchronize to the leader motion.Firstly,the synchronous position error of i-th node is defined as

    where ydis the desired position trajectory of virtual leader.

    Then the system state errors for i-th EHS node are given by

    where αi1and αi2for i ? {1 ,2,???,N} are virtual control variables in the backstepping iteration.

    Together Eq.(9) with Eq.(10), the synchronous position error of i-th node is rewritten as

    To guarantee the output stability of EHS under the limited control voltage of serv valve and initial large state bias from the demand, an auxiliary variable ν is design as follow

    where kνand νcare positive constants, and Δu=? (u )-u.

    To realize the prescribed performance constraint purpose of the synthesized synchronous error, a time-varying exponential function is given by

    where a is the convergence rate constant of the synthesized synchronous error,φ0and φ∞are positive initial and terminal constraints.

    Then, the prescribed performance constraint of the synthesized synchronous error is described as:

    Theorem 4.1.If the initial condition of the synthesized synchronous error Eq.(12) satisfies that eT(0 )e(0 )≤φ0+φ∞,and the control parameters meet the following inequalities:

    Then the output synchronous error of MEHS is constrained in a prescribed performance with time-varying exponential function such that eT(t )e(t )

    Proof.See Appendix B.

    The proposed quasi-synchronization control diagram Eq.(18) for MEHS is shown in Fig.2, which includes dynamics surface Eq.(17)and the FTDO Eq.(6)with the input saturation law Eq.(2).The prescribed performance constraint of the synthesized synchronous error e is restricted in the time-varying exponential function Eq.(16).

    5.Experimental results

    Fig.2 The proposed quasi-synchronization control diagram for MEHS.

    Fig.3 Experimental platform of MEHS.

    In this section, a MEHS experimental bench has been constructed to verify the effectiveness of the proposed controller.The main components of the MEHS bench are shown in Fig.3, which includes a pump station (HY-36CC-01/11kw),a servo valve with nozzle flappers (D633-R04K01M0NSM2),three cylinders (UG1511R25/16–100) and a computer (Intel Core i7-12700 K).Furthermore, the positions of three cylinders are measured by three displacement sensors (JHQ-GA-50),the cylinder load pressures are measured by three pressure sensors (BD-sensors-DMP-331).The nominal hydraulic parameters of the MEHS in experiment are shown in Table 1.Considering the range of hydraulic cylinders is ±50 mm, the demand trajectory is selected asmm.The cylinders initial conditions are selected as the maximum negative value.Furthermore, the communication relationship between the virtual leader and following EHS nodes are given by Fig.4, and the corresponding matrix H is

    Fig.5 shows the cylinder position responses of 3 follower EHS nodes by using the proposed controller, which illustratesthat all the follower electrohydraulic nodes synchronize to the virtual leader trajectory.Fig.6 shows the corresponding tracking errors of each nodes yi-ydfor i ? {1,2,3}.Furthermore,the experimental results by using the dynamic surface controller (DSC) without prescribed performance constraint are also provided.Comparing with these two methods, we can see that the proposed controller has the higher tracking accuracy of the MEHS.Then Fig.7 shows the comparative result between the synthesized synchronous error of MEHS and the corresponding time-varying constraint boundary Fφwhere a=10, φ0=60 and φ∞=10.Furthermore, the uncertainty estimations by the FTDO and the corresponding estimation errors are shown in Figs.8 and 9, which demonstrate the estimation errors converge to 0 with fast speed.Fig.10 shows the estimation errors during the transient response.According to the estimation parameters of the FTDO, it can be calculated that the estimation instants=0?012 and=0?015 for i ? {1 ,2,3}.Hence, the estimation errors converge to 0 before these instants.Fig.11 shows the dynamic surface Sij(i ? {1,2,3} and j ? {1,2 }) of the proposed controller.Finally, the control input uiwith the input saturation law are given in Fig.12.Since the control voltage saturation is umax=5 V, the control input uiare all constrained in [-5,5].Hence, the output stability of the MEHS is guaranteed under the limited control voltage of servo valve and initial large state bias from the demand.

    Fig.4 Communication relationship between a virtual leader and following EHS nodes.

    Fig.5 Cylinder position responses of following EHS nodes and expected trajectory.

    Fig.6 Output tracking errors of following EHS nodes with correlation data under dynamic surface controller (DSC).

    Fig.7 Compositive Output Error (COE) of MEHS and corresponding time-varying constraint.

    Fig.8 Estimation values and corresponding estimated errors of FTDO.

    Fig.9 Estimation values and corresponding estimated errors of FTDO.

    Fig.10 Estimated errors during transient process.

    Fig.11 Dynamic surface values of proposed control strategy.

    Fig.12 Control input signals and corresponding saturated boundaries.

    6.Conclusion

    This study proposed a quasi-synchronous control algorithm of MEHS with prescribed performance constraint and input saturation.The FTDO is designed for MEHS model to rapidly estimate the lumped uncertainties of the MEHS, which are compensated in the proposed controller.The dynamic surface controller is designed to avoid the differential explosion in backstepping iteration and guarantee the follower electrohydraulic nodes synchronize to the leader position with a better performance.By using the tvBLF method, the output synchronous error of MEHS is constrained in a prescribed performance and thus realize a better tracking performance.Furthermore, the input saturation law is designed to address the limited control voltage of servo valve and initial large state bias from the demand, especially the output stability of the MEHS is guaranteed.Finally,the effectiveness of the proposed controller is verified on the MEHS experimental bench.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China (Nos.52175046, 51975024, and 12072068), Sichuan Science and Technology Program (Nos.2022JDRC0018 and 2022YFG0341).

    Appendix A.Proof of Theorem 3.1:

    For the lumped uncertainties Δi2,a group of candidate Lyapunov functions are selected as follows

    and then the time derivative of VSi2is given by

    Based on Assumption 2.1, Eq.(A2) yields that

    By using Lemma 3.1, the terminal sliding mode surface si2converges to zero in a finite time t

    i2such that

    Meanwhile, the disturbance estimation error is given by

    Similarly, the estimation errors→0 before the finite time, i.e.,→Δi3.

    Appendix B.Proof of Theorem 4.1.

    The candidate tvBLF for the MEHS Eq.(3) is constructed as follow

    which indicates that the MEHS (3) reaches the uniformly ultimate boundedness (UUB).Hence, the synchronous error e is bounded as t →∞, and can be restricted by the control gainsto a zero neighborhood with arbitrarily small size σ/.

    午夜免费激情av| 精品久久久久久久久久免费视频 | 在线永久观看黄色视频| 亚洲av第一区精品v没综合| 两性夫妻黄色片| 久久久国产成人精品二区 | 交换朋友夫妻互换小说| 久久久久国产一级毛片高清牌| 中文字幕高清在线视频| ponron亚洲| 国产成年人精品一区二区 | 欧美亚洲日本最大视频资源| 久久精品国产亚洲av香蕉五月| 国产亚洲精品久久久久5区| 欧美日韩一级在线毛片| 久久人人爽av亚洲精品天堂| 身体一侧抽搐| 国产三级黄色录像| 欧美日韩福利视频一区二区| 久久国产精品人妻蜜桃| 亚洲欧美激情在线| 亚洲成av片中文字幕在线观看| 久久人妻熟女aⅴ| 欧美日韩一级在线毛片| 中文字幕av电影在线播放| 热re99久久精品国产66热6| 丰满的人妻完整版| 国产成人精品久久二区二区91| 国产亚洲欧美98| 日日爽夜夜爽网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲成av片中文字幕在线观看| 18禁裸乳无遮挡免费网站照片 | 夜夜爽天天搞| 国产激情久久老熟女| 国产免费男女视频| 人人妻,人人澡人人爽秒播| 成人免费观看视频高清| 国产亚洲欧美98| 真人做人爱边吃奶动态| 午夜影院日韩av| 成人亚洲精品一区在线观看| 欧美黄色淫秽网站| 女性被躁到高潮视频| 午夜影院日韩av| 丝袜美腿诱惑在线| 免费不卡黄色视频| 亚洲专区字幕在线| 男人舔女人下体高潮全视频| 丝袜人妻中文字幕| 夫妻午夜视频| 国产一区二区三区视频了| 亚洲男人天堂网一区| 午夜免费激情av| 天堂影院成人在线观看| 成人特级黄色片久久久久久久| 久久精品国产清高在天天线| 一区在线观看完整版| 夜夜躁狠狠躁天天躁| 国产99白浆流出| 岛国视频午夜一区免费看| 久久九九热精品免费| 丰满迷人的少妇在线观看| 在线观看66精品国产| 日本 av在线| 51午夜福利影视在线观看| 老司机午夜十八禁免费视频| 亚洲午夜理论影院| 国产精品香港三级国产av潘金莲| 男人的好看免费观看在线视频 | 久久精品人人爽人人爽视色| 夜夜夜夜夜久久久久| 久久人妻av系列| 亚洲午夜理论影院| 久久精品亚洲熟妇少妇任你| 欧美乱色亚洲激情| 午夜激情av网站| 男女之事视频高清在线观看| 在线观看午夜福利视频| 一区在线观看完整版| 亚洲欧美精品综合久久99| 国产在线精品亚洲第一网站| netflix在线观看网站| 国产精品98久久久久久宅男小说| 黑人巨大精品欧美一区二区蜜桃| 久久精品国产亚洲av香蕉五月| 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| 成人精品一区二区免费| 丁香欧美五月| a在线观看视频网站| 国产aⅴ精品一区二区三区波| 国产亚洲av高清不卡| 欧美黄色片欧美黄色片| 免费在线观看亚洲国产| 国产乱人伦免费视频| 精品国产美女av久久久久小说| 麻豆av在线久日| 黑人猛操日本美女一级片| 亚洲精品一卡2卡三卡4卡5卡| 夜夜看夜夜爽夜夜摸 | 大香蕉久久成人网| 成熟少妇高潮喷水视频| 久久精品91蜜桃| 天堂√8在线中文| 国产欧美日韩综合在线一区二区| 美国免费a级毛片| 国产真人三级小视频在线观看| av网站免费在线观看视频| 久久久久精品国产欧美久久久| 亚洲人成网站在线播放欧美日韩| 久久香蕉国产精品| 成熟少妇高潮喷水视频| 欧美亚洲日本最大视频资源| 亚洲av电影在线进入| 国产区一区二久久| 777久久人妻少妇嫩草av网站| 欧美午夜高清在线| 91国产中文字幕| 国产99久久九九免费精品| 欧美+亚洲+日韩+国产| 叶爱在线成人免费视频播放| 欧美日韩亚洲国产一区二区在线观看| 国产视频一区二区在线看| 老汉色av国产亚洲站长工具| 亚洲一区高清亚洲精品| 亚洲熟女毛片儿| 天堂√8在线中文| 日韩一卡2卡3卡4卡2021年| 亚洲自偷自拍图片 自拍| 99re在线观看精品视频| tocl精华| 国产熟女xx| 国产真人三级小视频在线观看| 色精品久久人妻99蜜桃| 在线观看免费高清a一片| 午夜影院日韩av| 大型av网站在线播放| 国产av一区在线观看免费| 久久久久久免费高清国产稀缺| 19禁男女啪啪无遮挡网站| 97超级碰碰碰精品色视频在线观看| 超碰成人久久| 国产成年人精品一区二区 | 国产精品久久久av美女十八| 大香蕉久久成人网| 又黄又粗又硬又大视频| 亚洲,欧美精品.| 欧美日韩福利视频一区二区| 精品福利观看| 日本黄色日本黄色录像| 色综合欧美亚洲国产小说| 侵犯人妻中文字幕一二三四区| 亚洲男人天堂网一区| 精品一区二区三区四区五区乱码| 少妇 在线观看| 国产欧美日韩精品亚洲av| 性少妇av在线| 在线观看www视频免费| 国产免费现黄频在线看| 国产高清videossex| 久久久久久人人人人人| cao死你这个sao货| 国产在线精品亚洲第一网站| 日本欧美视频一区| 桃红色精品国产亚洲av| 高清欧美精品videossex| 国产精品久久久人人做人人爽| 男人操女人黄网站| 国产精品乱码一区二三区的特点 | 亚洲五月婷婷丁香| 午夜福利影视在线免费观看| 男女床上黄色一级片免费看| 国产亚洲欧美精品永久| 亚洲全国av大片| 亚洲av第一区精品v没综合| 精品第一国产精品| 精品久久久久久,| 亚洲人成电影观看| 两性午夜刺激爽爽歪歪视频在线观看 | 在线看a的网站| 精品第一国产精品| 国产野战对白在线观看| 国产熟女午夜一区二区三区| 欧美乱色亚洲激情| 国产精品九九99| 精品午夜福利视频在线观看一区| 久久久久久人人人人人| 这个男人来自地球电影免费观看| 久久久久久久久中文| av欧美777| 成年人黄色毛片网站| 欧美乱色亚洲激情| 国产一区二区在线av高清观看| 中出人妻视频一区二区| 老熟妇仑乱视频hdxx| 国产成人精品久久二区二区91| 黄色怎么调成土黄色| 天天影视国产精品| 国产成人av教育| 手机成人av网站| 在线天堂中文资源库| 狂野欧美激情性xxxx| 丰满饥渴人妻一区二区三| 叶爱在线成人免费视频播放| 亚洲情色 制服丝袜| 日本五十路高清| 十八禁人妻一区二区| 搡老熟女国产l中国老女人| 在线永久观看黄色视频| 91麻豆av在线| 99久久人妻综合| 日韩高清综合在线| 伦理电影免费视频| 在线观看免费视频日本深夜| 成人三级黄色视频| 亚洲男人天堂网一区| 男人的好看免费观看在线视频 | 国产成人精品无人区| 中出人妻视频一区二区| 美国免费a级毛片| 亚洲成人精品中文字幕电影 | 美女扒开内裤让男人捅视频| 老司机亚洲免费影院| 村上凉子中文字幕在线| 黄频高清免费视频| 性欧美人与动物交配| 久久香蕉精品热| 国内毛片毛片毛片毛片毛片| 真人做人爱边吃奶动态| 91麻豆精品激情在线观看国产 | 亚洲视频免费观看视频| 成人亚洲精品av一区二区 | 高清av免费在线| 少妇粗大呻吟视频| 一区二区三区精品91| 超碰成人久久| 大陆偷拍与自拍| 久久影院123| 国产精品久久久av美女十八| 日本vs欧美在线观看视频| 亚洲 欧美 日韩 在线 免费| 久久人妻熟女aⅴ| 国产激情欧美一区二区| 欧美激情 高清一区二区三区| 两人在一起打扑克的视频| 国产无遮挡羞羞视频在线观看| 亚洲七黄色美女视频| 可以在线观看毛片的网站| 日韩 欧美 亚洲 中文字幕| 黄色片一级片一级黄色片| 亚洲精品一卡2卡三卡4卡5卡| 黑丝袜美女国产一区| 国产成人av激情在线播放| 精品国产一区二区三区四区第35| 国产精品美女特级片免费视频播放器 | 999久久久精品免费观看国产| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区久久| 美女高潮到喷水免费观看| 久久久久精品国产欧美久久久| 欧美日本亚洲视频在线播放| 国产成人一区二区三区免费视频网站| 亚洲精品中文字幕在线视频| a在线观看视频网站| 热99国产精品久久久久久7| 国产精品九九99| av天堂久久9| 国产真人三级小视频在线观看| 黄色片一级片一级黄色片| 黄网站色视频无遮挡免费观看| 满18在线观看网站| 国产成+人综合+亚洲专区| 十八禁网站免费在线| 国产激情久久老熟女| 国产三级在线视频| 一区在线观看完整版| 麻豆成人av在线观看| 亚洲欧美一区二区三区黑人| 亚洲av片天天在线观看| 久久久国产精品麻豆| 久久久久久久久免费视频了| 亚洲第一青青草原| 成人18禁在线播放| 久久国产精品男人的天堂亚洲| 黄色片一级片一级黄色片| 在线观看www视频免费| 母亲3免费完整高清在线观看| 日韩免费高清中文字幕av| av有码第一页| 黄色毛片三级朝国网站| 深夜精品福利| 国产日韩一区二区三区精品不卡| 日本 av在线| 国产精品亚洲av一区麻豆| 自线自在国产av| 两性夫妻黄色片| 一级黄色大片毛片| 老鸭窝网址在线观看| 中文字幕精品免费在线观看视频| 大陆偷拍与自拍| 看片在线看免费视频| 国产精品免费一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 在线观看一区二区三区激情| 国产单亲对白刺激| 亚洲国产精品999在线| 很黄的视频免费| 女人被躁到高潮嗷嗷叫费观| 久久久久国内视频| 国产亚洲av高清不卡| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区不卡视频| 国产有黄有色有爽视频| 无限看片的www在线观看| 久久久久久大精品| 亚洲中文日韩欧美视频| 国产午夜精品久久久久久| xxx96com| 欧美黑人欧美精品刺激| 两个人看的免费小视频| 午夜免费观看网址| 国产精品永久免费网站| 国产免费av片在线观看野外av| 老司机福利观看| 免费看a级黄色片| 午夜老司机福利片| 亚洲av成人不卡在线观看播放网| 热99re8久久精品国产| 午夜视频精品福利| 在线观看日韩欧美| 亚洲全国av大片| 99香蕉大伊视频| 身体一侧抽搐| 精品熟女少妇八av免费久了| 大型黄色视频在线免费观看| 真人一进一出gif抽搐免费| 精品少妇一区二区三区视频日本电影| 69av精品久久久久久| 国产成人精品久久二区二区免费| videosex国产| 91在线观看av| 久久人妻福利社区极品人妻图片| 老司机深夜福利视频在线观看| 免费高清在线观看日韩| 热re99久久国产66热| 在线天堂中文资源库| 亚洲精品久久午夜乱码| 天堂√8在线中文| 亚洲欧美日韩高清在线视频| 一二三四社区在线视频社区8| 国产在线精品亚洲第一网站| 国产欧美日韩精品亚洲av| 国产成人av激情在线播放| 亚洲av美国av| 国产99久久九九免费精品| 国产精品二区激情视频| 国产激情欧美一区二区| 女生性感内裤真人,穿戴方法视频| 高潮久久久久久久久久久不卡| 免费在线观看完整版高清| 国产片内射在线| 免费av毛片视频| 国产精品 欧美亚洲| 久久精品国产亚洲av香蕉五月| 国产成人啪精品午夜网站| 精品一品国产午夜福利视频| www.精华液| 日韩欧美一区视频在线观看| 男女高潮啪啪啪动态图| 久久中文看片网| 制服人妻中文乱码| 88av欧美| 日日爽夜夜爽网站| 亚洲人成77777在线视频| 国产精品野战在线观看 | 午夜日韩欧美国产| 成在线人永久免费视频| 韩国av一区二区三区四区| 99精国产麻豆久久婷婷| 在线十欧美十亚洲十日本专区| 亚洲精品中文字幕一二三四区| 热99国产精品久久久久久7| 欧美日韩亚洲综合一区二区三区_| 精品一区二区三区av网在线观看| 在线观看一区二区三区激情| 久9热在线精品视频| 中文字幕精品免费在线观看视频| 亚洲激情在线av| 操美女的视频在线观看| 成人特级黄色片久久久久久久| 中文字幕人妻丝袜制服| 亚洲avbb在线观看| 麻豆久久精品国产亚洲av | 好看av亚洲va欧美ⅴa在| 久久中文看片网| 久久草成人影院| 18禁观看日本| 国产成人影院久久av| 超碰成人久久| av有码第一页| 两个人看的免费小视频| 美女午夜性视频免费| 国产成人欧美在线观看| avwww免费| 色尼玛亚洲综合影院| 1024香蕉在线观看| av国产精品久久久久影院| 国产精品日韩av在线免费观看 | 老汉色∧v一级毛片| 99香蕉大伊视频| 97碰自拍视频| 大码成人一级视频| 亚洲国产看品久久| 亚洲欧洲精品一区二区精品久久久| 国产精品免费一区二区三区在线| 99精品在免费线老司机午夜| 黄色视频,在线免费观看| 美国免费a级毛片| 最近最新中文字幕大全免费视频| 在线观看免费视频日本深夜| 99在线视频只有这里精品首页| 国产高清视频在线播放一区| 很黄的视频免费| 成人三级黄色视频| 在线播放国产精品三级| 天堂动漫精品| 美女福利国产在线| 久久人妻熟女aⅴ| 欧美日韩av久久| 日韩大码丰满熟妇| 国产精品综合久久久久久久免费 | 亚洲avbb在线观看| 精品久久久久久,| 极品人妻少妇av视频| 一级毛片精品| 国产伦一二天堂av在线观看| 色综合站精品国产| 一级毛片精品| 亚洲精品美女久久av网站| 国产aⅴ精品一区二区三区波| 一a级毛片在线观看| 日本wwww免费看| 纯流量卡能插随身wifi吗| 久久天躁狠狠躁夜夜2o2o| 91成年电影在线观看| 99精品久久久久人妻精品| 亚洲 欧美 日韩 在线 免费| 色精品久久人妻99蜜桃| 手机成人av网站| 满18在线观看网站| 午夜福利影视在线免费观看| 少妇裸体淫交视频免费看高清 | 国产精品电影一区二区三区| 精品乱码久久久久久99久播| 成人影院久久| 久久久久久人人人人人| 制服诱惑二区| 亚洲精品成人av观看孕妇| 亚洲七黄色美女视频| 午夜福利影视在线免费观看| 成人亚洲精品一区在线观看| 国产成人精品久久二区二区免费| 久久久国产精品麻豆| 精品国产国语对白av| 精品久久久久久久毛片微露脸| 日日摸夜夜添夜夜添小说| 精品国产美女av久久久久小说| av天堂久久9| 黄色女人牲交| 色综合欧美亚洲国产小说| 亚洲自拍偷在线| 午夜老司机福利片| 国产成人欧美| 中国美女看黄片| 少妇 在线观看| 在线观看午夜福利视频| 亚洲人成网站在线播放欧美日韩| 免费看十八禁软件| 日韩中文字幕欧美一区二区| 这个男人来自地球电影免费观看| 少妇 在线观看| 国产成人影院久久av| 日本黄色视频三级网站网址| 国产精品成人在线| 欧美精品亚洲一区二区| 视频在线观看一区二区三区| 国产精品免费视频内射| 老鸭窝网址在线观看| 欧美精品亚洲一区二区| 精品福利永久在线观看| 国产乱人伦免费视频| 18美女黄网站色大片免费观看| 国产精品一区二区精品视频观看| 亚洲欧美一区二区三区黑人| 亚洲一区二区三区不卡视频| 午夜福利在线免费观看网站| 精品高清国产在线一区| 国产精品日韩av在线免费观看 | 丝袜美足系列| 国产亚洲欧美在线一区二区| 男男h啪啪无遮挡| 日本黄色日本黄色录像| 亚洲欧美日韩高清在线视频| 亚洲成av片中文字幕在线观看| 精品久久久久久久久久免费视频 | 香蕉国产在线看| 欧美日韩黄片免| 午夜精品久久久久久毛片777| 亚洲国产欧美日韩在线播放| 制服诱惑二区| 丝袜在线中文字幕| 波多野结衣一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲,欧美精品.| 午夜91福利影院| 免费人成视频x8x8入口观看| 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美精品永久| 黄色视频不卡| 亚洲国产精品合色在线| 别揉我奶头~嗯~啊~动态视频| 在线观看一区二区三区激情| 人妻丰满熟妇av一区二区三区| 性色av乱码一区二区三区2| 日韩中文字幕欧美一区二区| 亚洲一区高清亚洲精品| 深夜精品福利| 国产精品乱码一区二三区的特点 | 可以在线观看毛片的网站| а√天堂www在线а√下载| 亚洲精品在线美女| 精品久久蜜臀av无| 亚洲精品美女久久av网站| 在线十欧美十亚洲十日本专区| 男人操女人黄网站| 日韩 欧美 亚洲 中文字幕| 欧美最黄视频在线播放免费 | 精品久久久精品久久久| 亚洲五月婷婷丁香| 国产在线观看jvid| 亚洲 欧美一区二区三区| 男女下面插进去视频免费观看| 女人被躁到高潮嗷嗷叫费观| 亚洲国产中文字幕在线视频| 亚洲av日韩精品久久久久久密| 欧美精品亚洲一区二区| 亚洲人成伊人成综合网2020| 久久精品国产清高在天天线| 欧美乱码精品一区二区三区| 青草久久国产| 亚洲国产毛片av蜜桃av| 淫妇啪啪啪对白视频| 黄频高清免费视频| 少妇粗大呻吟视频| 国产精品 欧美亚洲| 亚洲av电影在线进入| 午夜两性在线视频| 老司机午夜福利在线观看视频| 日本黄色日本黄色录像| 欧美日韩精品网址| 极品人妻少妇av视频| 欧美激情 高清一区二区三区| 久久久久久久久中文| 欧美激情高清一区二区三区| 岛国在线观看网站| 国产不卡一卡二| 在线观看午夜福利视频| 久久香蕉精品热| 国产熟女午夜一区二区三区| 国产深夜福利视频在线观看| 97超级碰碰碰精品色视频在线观看| 国产野战对白在线观看| 少妇的丰满在线观看| 久久天躁狠狠躁夜夜2o2o| 变态另类成人亚洲欧美熟女 | 夜夜爽天天搞| 亚洲 欧美 日韩 在线 免费| 国产精品美女特级片免费视频播放器 | 国产成人欧美在线观看| 久久亚洲精品不卡| 黄片播放在线免费| 视频区欧美日本亚洲| 色婷婷久久久亚洲欧美| www.www免费av| 999久久久国产精品视频| 桃色一区二区三区在线观看| 国产野战对白在线观看| 成人18禁高潮啪啪吃奶动态图| 香蕉丝袜av| 欧美亚洲日本最大视频资源| √禁漫天堂资源中文www| 国产精品av久久久久免费| 老司机靠b影院| 黑人猛操日本美女一级片| 国产精品自产拍在线观看55亚洲| 夜夜看夜夜爽夜夜摸 | 亚洲少妇的诱惑av| 国产精品一区二区免费欧美| 69av精品久久久久久| 婷婷精品国产亚洲av在线| 人人澡人人妻人| 亚洲av熟女| 亚洲伊人色综图| 黄色怎么调成土黄色| 日韩人妻精品一区2区三区| 无遮挡黄片免费观看| 免费一级毛片在线播放高清视频 | 国产成人av激情在线播放| 久久久久久久久久久久大奶| 久久人人精品亚洲av| 可以在线观看毛片的网站| 亚洲人成电影观看| 国产不卡一卡二|