• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Observer-based motion axis control for hydraulic actuation systems

    2023-10-25 12:13:12XiaoweiYANGYaowenGEWenxiangDENGJianyongYAO
    CHINESE JOURNAL OF AERONAUTICS 2023年9期

    Xiaowei YANG, Yaowen GE, Wenxiang DENG, Jianyong YAO

    School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

    KEYWORDS

    Abstract Unknown dynamics including mismatched mechanical dynamics(i.e.,parametric uncertainties, unmodeled friction and external disturbances) and matched actuator dynamics (i.e., pressure and flow characteristic uncertainties) broadly exist in hydraulic actuation systems (HASs),which can hinder the achievement of high-precision motion axis control.To surmount the practical issue, an observer-based control framework with a simple structure and low computation is developed for HASs.First, a simple observer is utilized to estimate mismatched and matched unknown dynamics for feedforward compensation.Then combining the backstepping design and adaptive control, an appropriate observer-based composite controller is provided, in which nonlinear feedback terms with updated gains are adopted to further improve the tracking accuracy.Moreover,a smooth nonlinear filter is introduced to shun the ‘‘explosion of complexity” and attenuate the impact of sensor noise on control performance.As a result,this synthesized controller is more suitable for practical use.Stability analysis uncovers that the developed controller assures the asymptotic convergence of the tracking error.The merits of the proposed approach are validated via comparative experiment results applied in an HAS with an inertial load as well.

    1.Introduction

    Hydraulic actuation systems(HASs)are broadly utilized in the aerospace industry and other fields.1-6This reason is that HASs have prominent merits of large force/torque output capability, small size-to-power ratio and high response.Nonetheless, given the highly nonlinear dynamics and unknown dynamics including mismatched mechanical dynamics (i.e., parametric uncertainties, unmodeled friction and external disturbances) and matched actuator dynamics (i.e.,pressure and flow characteristic uncertainties) existing in HASs, the attainment of high-performance motion axis control is hindered.Therefore, to figure out this practical issue,it is essential to investigate advanced control strategies.

    To date, plentiful efficient control approaches have been proposed to achieve high-precision tracking performance for HASs.Typically, feedback linearization control7was adopted to dispose of dynamic nonlinearities in a feedforward compensation way.To address parametric uncertainties,adaptive control was presented8, but could not restrain unmodeled dynamics9.Adaptive robust control9could dispose of both unmodeled dynamics and parametric uncertainties simultaneously by integrating the backstepping design and adaptive control,thus it is widely performed in the literature.10–12However,theoretical analysis of the control method8–12validates that only bounded convergence was pledged while time-variant uncertainties exist.Via combining an integral sliding mode control13and adaptive control, a composite adaptive position tracking controller was proposed for HASs,14,15where the asymptotic stability of the tracking error was attained while smooth enough disturbances exist.Moreover, owing to its strong robustness and simple structure, sliding mode control could be adopted to restrain strong disturbances and gain the improvement of tracking accuracy for hydraulic servomechanisms.16Unfortunately, as unknown dynamics increase heavily in HASs, a high-gain feedback way13–16will be utilized to assure the achievable tracking performance,which might arise high-frequency dynamics and let the system become unstable.

    To relieve the influence of both mismatched and matched unknown dynamics on control performance and avoid the high-gain feedback, lots of disturbance observers have been presented for HASs.In the literature,17an active disturbance rejection adaptive controller was investigated for hydraulic actuators, in which an extended state observer (ESO) was utilized to estimate mismatched and matched disturbances for feedforward compensation.Subsequently, a lot of ESO-based robust controllers18–21of hydraulic systems were presented.However, the asymptotic convergence performance of the ESO-based controllers was destroyed while time-variant disturbances exist.A novel sliding mode observer (SMO)22was recently utilized to cope with force dynamics and pressure dynamics in hydraulic systems.The asymptotic tracking performance could be attained.Nonetheless, the SMO22needed to assume that the first-order derivatives of disturbances are bounded.This assumption is a little strong and limits the applied range of SMO.Also, the neural network was taken as an estimator23–26to achieve the estimations and compensation of unknown dynamics in servo systems.Whereas, to obtain accurate estimations of unknown dynamics,lots of neural network nodes and training data were needed,which results in a long online learning time and high computation.As a result, how to effectively deal with unknown dynamics by using a simple structure and obtain the high-accuracy asymptotic convergence performance for HASs is still challenging.

    In this article,an observer-based robust tracking controller is developed for the motion axis of HASs with mechanical dynamics and actuator dynamics.Firstly, an observer with a simple structure is adopted to estimate mismatched and matched unknown dynamics for feedforward compensation.Then combining the backstepping design and unknown dynamics observers, a composite control framework is proposed, where nonlinear feedback terms with updated gains are utilized to further improve the tracking accuracy.Moreover, a smooth nonlinear filter is introduced to shun the ‘‘explosion of complexity” and attenuate the impact of sensor noise on control performance.Based on the stability analysis,the boundedness of all signals in the closed-loop system can be ensured and the tracking error can converge asymptotically.Contrastive experimental results of an HAS with an inertial load validate the preponderance of the proposed method.The main contributions of this article are summarized as: (1)An observer-based tracking control framework with a simple structure and low computation, is developed for HASs, which is more suitable for practical implementation.(2) Both the boundedness of all signals in the closed-loop system and asymptotic convergence of the tracking errors can be attained with the developed controller.(3) Compared to most existing approaches focusing on HASs, the presented observer does not need any prior assumption on unknown dynamics.This makes the applied range of the developed controller broadened considerably.

    2.System description and modeling

    The sketch of the considered hydraulic actuation system(HAS) is presented in Fig.1, in which a servo-valvecontrolled hydraulic cylinder actuates a load to move.Our objective is to design a controller to let the load well track the reference motion trajectory.

    As shown in Fig.1, by using Newton’s second law, the dynamics of the load are depicted as.17,18,27

    where m and y stand for the mass and displacement of the load;P1and P2stand for the pressure values of the two chambers; A stands for the effective piston area; B denotes the viscous friction coefficient; AfSfstands for the approximated Coulomb friction, where Afstands for the amplitude of Coulomb friction and Sfstands for a known function; f(t) stands for unknown mechanical dynamics containing parametric uncertainties, unmodeled friction and disturbances.

    The pressure dynamics of the actuator are depicted as.17,18,27

    where V1=V01+Ay and V2=V02-Ay represent volumes of two chambers,where V01and V02are the initial volumes of the two chambers; βestands for the oil bulk modulus; Ctdenotes internal leakage coefficient; q1is the supplied flow rate and q2is the return flow rate;⊿1and ⊿2denote unmodeled uncertainties caused by pressure and flow characteristics.

    Fig.1 Sketch of considered HAS.

    The impact of servo-valve dynamics on control performance has been investigated.21,23Whereas, an additional sensor is needed to gain the spool position, and only the minor precision enhancement is ensured for position tracking.Also,the valve dynamics can augment the system order and make the designed controller more complicated.As a result, the servo-valve dynamics can be ignored in lots of existing studies.1–12,14–20,22,24–26Hence,the control input u can be supposed to be linear with the spool displacement xv, thus q1and q2are reconstructed by17,18,27.

    where kvrepresents the flow gain; Psdenotes the supply pressure and Prdenotes the return pressure; sign(*) is defined by.

    Defining x =[x1;x2;x3]=[y; ˙y;A(P1-P2)/m], one has.

    where

    Remark 1.Indeed, the nominal parameter values of the HAS that are able to be gained by off-line identification, are employed in the subsequent designed observer and controller.The discrepancy between the identified and real values can be regarded as the unknown dynamics D1(t) and D2(t).The mismatched dynamics D1(t) and matched dynamics D2(t) are then observed and compensated with the aid of the developed unknown dynamics observer.

    Some assumptions below are provided.

    Assumption 1.The mismatched and matched unknown dynamics in Eq.(5) are bounded and satisfy.

    with D-1and D-2being unknown positive constants.

    Assumption 2.The desired trajectory xd(t) and its derivatives ˙xd(t) and ¨xd(t) are bounded.

    Remark 2.It is noteworthy that Assumption 1 is more reasonable and relaxed for practical HASs when compared to the previous results.17–22Assumption 1 ensures the presented observer does not need any precondition on the unknown dynamics D1(t) and D2(t) while the existing SMO22and ESO17–21need to assume that their first-order derivatives are bounded.In addition, Assumption 2 indicates that only the first-order and second-order derivatives of xdare necessitated,which breaks down many limitations in comparison with lots of previous control methods8–26needing higher-order derivatives of xd.These make the use range of the presented controller broadened significantly.

    3.Controller development

    3.1.Observer design for system unknown dynamics

    To estimate mismatched and matched unknown dynamics existing in the HAS, a set of auxiliary variables xai(i=2,3)are firstly constructed by.

    and

    where xri=xai-xiare known since xaiand xiare known; βidenote non-negative adjustable constants for i=2,3.

    The estimations of xriare designed as.

    where ˙xristand for the numerical differentiation of the known xri;^?stands for the estimation of the variable ?throughout this paper.

    Then two unknown dynamics observers for D1(t)and D2(t)are depicted by.

    and

    Thus, the error dynamics of observers can be exhibited as.

    and

    in which ?~=^?-? stands for the estimation error of the variable.

    Given the previous analysis, the following Theorem 1 holds.

    Theorem 1.With the observer updated laws Eqs.(11)and(12),by selecting positive constant values β2and β3,it is inferred that the estimation errors D~iof the unknown dynamics Di(t) can achieve the asymptotic convergence.

    Proof: Take a Lyapunov function as.

    According to Eq.(13),the derivative of Vocan be presented by.

    Hence,the asymptotic convergence of the estimation errors D~iis proved, which leads to Theorem 1.

    Remark 3.It is obtained from Eq.(17) that the estimation errors for both mismatched and matched unknown dynamics can asymptotically converge, while most existing extended state observers17–21only assured the ultimate boundness of estimation errors.Moreover, from Eq.(17), the faster estimation rate of the developed observers can be acquired by choosing larger parameters β2and β3.

    3.2.Observer-based controller design

    The backstepping method28is a classic tool to dispose of unknown dynamics existing in the HAS.Nonetheless, considering that the order of the system in Eq.(5) is third-order, the traditional backstepping technique28brings the problem named ‘‘explosion of complexity” on account of the high computational burden resulting from the repeated derivatives of virtual controls.To overcome the problem, a modified backstepping design with nonlinear filters will be provided here.

    Before accomplishing the controller design, define the following variables.

    where e1stands for the tracking error;αi-1stand for the virtual controls at the ith step; α(i-1)fstand for the filtered signals of αi-1for i=2,3.

    Notably, to get the filtered signals of α1and α2, a set of smooth nonlinear filters are designed by.

    Step 1: Considering Eq.(5) and differentiating e1in Eq.(18), one has.

    Design α1as.

    where k1denotes a non-negative feedback gain.

    Substituting Eqs.(21) into (20) results in.

    Taking a Lyapunov function asyields.

    Step 2: Differentiating e2in Eq.(18), it has.

    Step 3: The derivative of e3in Eq.(18) is expressed by.

    From Eq.(28), the control input u can be depicted by.

    3.3.Stability analysis

    Before demonstrating the main result, define.

    Fig.2 Block diagram of developed controller.

    with

    Theorem 2.With the observer updated laws in Eqs.(11)-(12)and the control law in Eq.(29), by choosing appropriate controller parameters k1,k2,k3,β2,β3,l1,l2,τ1and τ2such that the matrix Λ defined in Eq.(33) is positive definite, then it is inferred that all signals in the closed-loop system are bounded.Furthermore,the tracking error e1can asymptotically converge.

    Proof: Firstly, a new Lyapunov function by integrating tracking errors, observer errors and filter errors is constructed as.

    Combining Eqs.(16), (19) and (32), one has.

    Therefore,V ?L∞,Φ ?L2, and the boundness of all signals is attained on Ω1×Ω2.As a result,Φ is uniformly continuous.Via adopting the Barbalat’s lemma,29Φ →0 as t →∞on Ω1×Ω2.Hence,the output error e1is able to converge to zero asymptotically.Thus, Theorem 2 holds.

    Remark 4.The objective of designing observer parameters β2and β3is to attain a faster estimation rate for mismatched and matched unknown dynamics.The nonlinear filter parameters l1,l2,τ1and τ2are used to get the filtered signals for the virtual control α1and α2, and further attenuate the effects of the sensor noise on tracking accuracy.Meanwhile,the objective of using k1,k2,k3, γ1and γ2is to realize better control performance.Moreover, the efforts of arbitrarily increasing k1,k2,k3,β2,β3,l1,l2,τ1,τ2,γ1and γ2can be performed to achieve better tracking accuracy.Whereas, from Eqs.(19), (21), (25)and (29), the increase of the above control parameters may result in the augmentation of the control input and even destabilize the system.Consequently, a tradeoff between the tracking accuracy and the control input is worth considering.

    4.Experiment setup and results

    To uncover the availability of the developed controller, a hydraulic actuation system (HAS) with an inertial load is set up, as shown in Fig.3.The components of the HAS are collected in Table 1.The sample time is 0.5 ms.

    Five controllers can be done to validate the merits of the developed controller.

    1) UDOC: This controller with two unknown dynamics observes(UDOC)is described in this paper.In the HAS,some system parameters are provided as:A=9?05×10-4m2,V01=V02=3?98×10-5m3.By off-line friction identification,the corresponding parameters are provided as B=4000N ?s/m,Af=200N,Sf=2 arctan(900x2)/π.Meanwhile the feedback gains are set as k1=1600,k2=350,k3=150, the nonlinear filter parameters are provided by τ1=τ2=1000,l1=l2=1, and the observer parameters are set as β2=100,β3=15000.The parameter adaption rates are set as γ1=0?1 and γ2=1.

    2) FLC: This is a feedback linearization controller (FLC),which is the same as UDOC but without unknown dynamics compensation, i.e., β2=β3=0.The other control parameters are the same as UDOC.

    Fig.3 HAS.

    Table 1 Components of HAS.

    3) PI: This is a proportional-integral controller (PI).The parameters are set as kP=10000 and kI=500, which stand for the P-gain and I-gain, respectively.

    4) VPI: This is a velocity feedforward-based proportionalintegral controller (VPI).The parameters are set as kP=10000, kI=500 and kve=0?0281V ?s/mm, which stands for the open-loop velocity feedforward gain, respectively.

    5) AESO: This adaptive robust controller with extended state observers(AESO)is presented.17The corresponding control gains are set as k1=1600, k2=350 and k3=150.The other parameters and initial values can be seen17.

    To validate the merits of these controllers, three indices including maximum(Max),average(Ave)and standard deviation (Std) of e1are provided:

    1) Max stands for.

    where n is on behalf of the number of the recorded points.

    2) Ave stands for.

    3) Std stands for.

    Three experiment cases are done.Case 1.First a common signal xd=10 arctan(sin(πt))[1-e-t]/0?7854 mm is carried out.The corresponding results are depicted in Figs.4-6 and Table 2, respectively.As shown,all the performance indices in Table 2 indicate that the proposed UDOC achieves better tracking performance than the other controllers, since two unknown dynamics observers and nonlinear filters are introduced into the designed controller.Concretely,the index Max of C1 is 0.0209 mm(i.e.,the accuracy at 0.5 Hz is 0.209 %), which decreases by about 98%,91%,59%and 42%when compared to those of FLC,PI, VPI and AESO severally.Though FLC utilizes the same model-based approach like UDOC,its control accuracy is still inequitable to that of UDOC for lack of the unknown dynamics compensation.This indicates the validity of the unknown dynamics compensation method presented in this paper, which can decrease the time-variant disturbances and further gain the attainment of high-precision tracking.From performance indices in Table 2,FLC and PI only have a bit of robustness against uncertainties and their tracking performance is worse than the other three controllers.Moreover,it is easy to find that the tracking error of PI is larger than that of FLC,which uncovers that feedback gains in UDOC,FLC and AESO are weaker than those of PI and VPI.Even though,UDOC and AESO can attain better control performance than PI.This verifies the merit of the uncertainty compensationbased controller design of UDOC and AESO.Furthermore,it is observed that the performance of VPI is superior to that of FLC and PI, which is mainly owing to both large feedback gains and velocity feedforward compensation in VPI to restrain parametric uncertainties and disturbances.Thus, the augmentation of control performance of VPI is attained.Nonetheless, VPI gains a worse control performance than UDOC.

    Fig.4 Tracking errors in Case 1.

    Fig.5 Control input of UDOC.

    Fig.6 Tracking errors in Case 2.

    Table 2 Performance indexes in Case 1.

    Also, AESO17obtains a better control performance than FLC,PI and VPI.This reason is that parametric uncertainties and external disturbances can be disposed of by adaptive laws and the ESO technique severally in AESO.Whereas,considering that only ultimately bounded-error tracking performance is obtained in AESO,its performance indices are still inequitable to those of UDOC.As a result, the developed UDOC adopts the weakest feedback gains but attains the best control performance by virtue of actively compensating unknown disturbances.In addition, the control input of UDOC is seen from Fig.5.

    Case 2.A slow trajectory xd=10 arctan(sin(0?4πt))[1-e-t]/0?7854 mm is performed to further attest to the merit of the developed approach.The control errors and indices of all the controllers can be thus found from Fig.6 and Table 3,respectively.

    As shown,the index Max of C1 is 0.0074 mm(i.e.,the accuracy at 0.2 Hz is 0.074 %), which decreases by about 98 %,94 %, 75 % and 66 % when compared to those of FLC, PI,VPI and AESO severally.This uncovers that the control precision of the proposed UDOC is superior to those of FLC, PI,VPI and AESO once again.

    Case 3.Finally, an input disturbance experiment is done by using the same reference trajectory xd=10 arctan(sin(0?4πt))[1-e-t]/0?7854 mm, where a similar technique17can be adopted to insert the input disturbance.The inserted disturbance signal 0?2 arctan(sin(0?4πt))[1-e-t]/0?7854 V is added to the control input directly.According to the Eq.(5), the disturbance D2(t) can be increased greatly, and the HAS willwork under such strong disturbance.As a result, the learning capability of the developed method can be verified.The tracking errors and indices of UDOC, FLC, PI, VPI and AESO are presented in Fig.7 and Table 4.It is easy to find that the control performance of the three controllers increases when compared to the former case.Nevertheless,in view of the merit of compensating for unknown disturbances,the tracking performance of the developed UDOC still surpasses those of FLC, PI, VPI and AESO as well.

    Table 3 Performance indexes in Case 2.

    Fig.7 Tracking errors in Case 3.

    Table 4 Performance indexes in Case 3.

    5.Conclusions

    In this article, an observer-based backstepping tracking controller is developed for the motion axis of hydraulic actuation systems.Firstly,an observer with a simple structure is adopted to estimate mismatched and matched unknown dynamics for feedforward compensation.Then combining the backstepping design and unknown dynamics observers, a composite robust axis control framework is proposed,where nonlinear feedback terms with updated gains are utilized to further improve the tracking precision.Moreover,a smooth nonlinear filter is introduced into the control development process to shun the ‘‘explosion of complexity” and attenuate the impact of sensor noise on control performance.Furthermore,the control framework makes the assumptions on both unknown dynamics and the reference trajectory much relaxed.As a result, this makes the applied range of the developed control method extended.Based on the Lyapunov function, both the boundness of all signals in the closed-loop system and asymptotic convergence of the tracking errors can be attained.The results of the three experiment cases performed in a hydraulic actuation system with an inertial load validate the merits of the presented method.As our future work, it is worth studying how to attain the development of an output feedback-based controller for hydraulic actuation systems.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    This work was supported in part by the National Key R&D Program of China (No.2021YFB2011300), the National Natural Science Foundation of China (No.52075262, 51905271,52275062), the Fok Ying-Tong Education Foundation of China(No.171044)and the Postgraduate Research&Practice Innovation Program of Jiangsu Province (No.KYCX22_0471).

    精品久久久久久久人妻蜜臀av| 国产精品一区二区性色av| 简卡轻食公司| 亚洲国产精品成人综合色| 亚州av有码| 亚洲精品日韩在线中文字幕| 亚洲经典国产精华液单| 中文字幕av在线有码专区| 男女那种视频在线观看| 99热精品在线国产| 麻豆一二三区av精品| 联通29元200g的流量卡| 国产精品电影一区二区三区| 国产日韩欧美在线精品| 99在线视频只有这里精品首页| 六月丁香七月| 七月丁香在线播放| 欧美日本亚洲视频在线播放| 小说图片视频综合网站| 人人妻人人看人人澡| 国产乱人偷精品视频| 国产69精品久久久久777片| 69av精品久久久久久| 国国产精品蜜臀av免费| 久久亚洲精品不卡| 国产一区二区三区av在线| 亚洲中文字幕日韩| 99久久精品一区二区三区| 老司机福利观看| 国产老妇伦熟女老妇高清| 欧美zozozo另类| 日韩强制内射视频| 日韩精品有码人妻一区| 亚洲欧美精品自产自拍| 国产又色又爽无遮挡免| 午夜久久久久精精品| 色视频www国产| 亚洲最大成人手机在线| 69av精品久久久久久| 久久久久久久午夜电影| 国产私拍福利视频在线观看| av国产免费在线观看| 国产精品综合久久久久久久免费| 成年版毛片免费区| 国产伦理片在线播放av一区| 亚洲精品一区蜜桃| 亚洲欧美精品综合久久99| 午夜精品在线福利| 亚洲av男天堂| 亚洲第一区二区三区不卡| 国产伦理片在线播放av一区| 欧美97在线视频| 乱码一卡2卡4卡精品| 内地一区二区视频在线| 亚洲av电影不卡..在线观看| 欧美3d第一页| 秋霞在线观看毛片| 日韩亚洲欧美综合| 午夜亚洲福利在线播放| av免费在线看不卡| 日韩欧美精品v在线| 亚洲精品自拍成人| 在线观看av片永久免费下载| 精品熟女少妇av免费看| 亚洲经典国产精华液单| av在线亚洲专区| 99在线人妻在线中文字幕| 只有这里有精品99| 九九在线视频观看精品| 久久久久国产网址| 亚洲性久久影院| 国产精品99久久久久久久久| 亚洲,欧美,日韩| .国产精品久久| 九九在线视频观看精品| 人体艺术视频欧美日本| 波野结衣二区三区在线| 特级一级黄色大片| 色5月婷婷丁香| 看片在线看免费视频| 久久人妻av系列| 直男gayav资源| 国产v大片淫在线免费观看| 免费黄色在线免费观看| 日韩欧美精品免费久久| 天天躁日日操中文字幕| 欧美激情在线99| 麻豆国产97在线/欧美| 国产精品一区二区三区四区久久| 欧美bdsm另类| av免费观看日本| 日本与韩国留学比较| 天天躁夜夜躁狠狠久久av| 国内精品美女久久久久久| 在线观看66精品国产| 国产精品一区二区三区四区免费观看| 免费av观看视频| 亚洲成av人片在线播放无| 18+在线观看网站| 麻豆一二三区av精品| 日韩一区二区视频免费看| 成人综合一区亚洲| 国产 一区 欧美 日韩| 久久久久久久国产电影| 国产单亲对白刺激| 干丝袜人妻中文字幕| 最近的中文字幕免费完整| 非洲黑人性xxxx精品又粗又长| 一级毛片我不卡| 丝袜美腿在线中文| 卡戴珊不雅视频在线播放| 免费观看性生交大片5| 免费大片18禁| 校园人妻丝袜中文字幕| 18禁在线播放成人免费| 亚洲精品国产成人久久av| 舔av片在线| 亚洲精品国产成人久久av| 变态另类丝袜制服| 亚洲国产欧美人成| 亚洲欧洲日产国产| 精品久久国产蜜桃| 变态另类丝袜制服| 九九热线精品视视频播放| 久久久久久大精品| 欧美一区二区国产精品久久精品| 国产亚洲最大av| 日韩强制内射视频| 国产黄片视频在线免费观看| 综合色丁香网| 国产高清有码在线观看视频| 性插视频无遮挡在线免费观看| 亚洲国产最新在线播放| 国产精品嫩草影院av在线观看| 午夜精品在线福利| 麻豆成人午夜福利视频| 国产精品美女特级片免费视频播放器| 国产麻豆成人av免费视频| 亚洲国产色片| 国产美女午夜福利| 建设人人有责人人尽责人人享有的 | 乱系列少妇在线播放| 国内精品宾馆在线| 国产精品久久久久久精品电影小说 | 亚洲怡红院男人天堂| 美女国产视频在线观看| 国产精品,欧美在线| 色吧在线观看| 亚洲av成人av| 亚洲最大成人av| 听说在线观看完整版免费高清| 日日干狠狠操夜夜爽| 国产在视频线精品| 好男人视频免费观看在线| 亚洲欧美清纯卡通| 三级毛片av免费| 日韩一区二区三区影片| 亚洲国产成人一精品久久久| av线在线观看网站| 国产在线一区二区三区精 | 美女大奶头视频| 欧美日本亚洲视频在线播放| 国产不卡一卡二| 国产精品,欧美在线| 国产欧美另类精品又又久久亚洲欧美| 狂野欧美激情性xxxx在线观看| 国产精品精品国产色婷婷| 69人妻影院| 99久久无色码亚洲精品果冻| 午夜老司机福利剧场| 一级毛片我不卡| 免费黄色在线免费观看| 久久草成人影院| 99久久人妻综合| 国产免费又黄又爽又色| 亚洲人成网站高清观看| 一级毛片aaaaaa免费看小| 国产精品不卡视频一区二区| 黄色一级大片看看| 欧美日韩综合久久久久久| 国产精品一区二区性色av| 欧美又色又爽又黄视频| 精品久久久久久电影网 | 久久久a久久爽久久v久久| 精品久久久噜噜| 啦啦啦观看免费观看视频高清| 欧美人与善性xxx| 看免费成人av毛片| 波野结衣二区三区在线| 亚洲精品aⅴ在线观看| 久久99精品国语久久久| 菩萨蛮人人尽说江南好唐韦庄 | 91久久精品国产一区二区成人| 国产免费视频播放在线视频 | 69人妻影院| 国产免费视频播放在线视频 | 免费看美女性在线毛片视频| av国产久精品久网站免费入址| 2021少妇久久久久久久久久久| 午夜激情福利司机影院| 麻豆乱淫一区二区| 乱码一卡2卡4卡精品| 午夜视频国产福利| 色综合色国产| 国内少妇人妻偷人精品xxx网站| 精品久久久久久久久亚洲| 在线免费观看的www视频| 听说在线观看完整版免费高清| 亚洲精品影视一区二区三区av| 最近2019中文字幕mv第一页| 亚洲精品乱码久久久v下载方式| 午夜视频国产福利| .国产精品久久| 日韩av不卡免费在线播放| 国产私拍福利视频在线观看| 久久综合国产亚洲精品| 最近手机中文字幕大全| 欧美丝袜亚洲另类| 国产在线一区二区三区精 | 精品酒店卫生间| 又粗又爽又猛毛片免费看| 亚洲成人中文字幕在线播放| 中文精品一卡2卡3卡4更新| 免费看美女性在线毛片视频| 国内精品宾馆在线| 晚上一个人看的免费电影| 免费观看精品视频网站| 精品国产一区二区三区久久久樱花 | 日韩欧美精品免费久久| 国产精品美女特级片免费视频播放器| 欧美高清性xxxxhd video| 午夜视频国产福利| 亚洲中文字幕日韩| 亚洲精品亚洲一区二区| 七月丁香在线播放| 视频中文字幕在线观看| 国产美女午夜福利| 日韩欧美国产在线观看| 日韩成人伦理影院| 色网站视频免费| 成人毛片60女人毛片免费| 久久国产乱子免费精品| 亚洲精品国产成人久久av| 男人的好看免费观看在线视频| 99热全是精品| 一级毛片aaaaaa免费看小| 国产老妇女一区| 只有这里有精品99| 长腿黑丝高跟| 亚洲精品影视一区二区三区av| 国产黄色视频一区二区在线观看 | 国产精品无大码| 亚洲伊人久久精品综合 | 国产精品嫩草影院av在线观看| 成人亚洲精品av一区二区| 欧美变态另类bdsm刘玥| 亚洲电影在线观看av| 男女下面进入的视频免费午夜| 国产高清视频在线观看网站| 亚洲av一区综合| 99久国产av精品国产电影| 亚洲精品一区蜜桃| 婷婷色av中文字幕| 国产日韩欧美在线精品| av天堂中文字幕网| 美女大奶头视频| 最近视频中文字幕2019在线8| 男人的好看免费观看在线视频| 老司机福利观看| 免费一级毛片在线播放高清视频| 99视频精品全部免费 在线| 欧美日韩在线观看h| 国国产精品蜜臀av免费| 国产淫片久久久久久久久| 亚洲久久久久久中文字幕| 国产成人一区二区在线| 国产免费福利视频在线观看| 婷婷六月久久综合丁香| 69人妻影院| 三级毛片av免费| 久久久精品大字幕| 成年版毛片免费区| 日产精品乱码卡一卡2卡三| 亚洲一级一片aⅴ在线观看| av在线播放精品| 桃色一区二区三区在线观看| 精品人妻一区二区三区麻豆| 色综合色国产| 亚洲国产精品sss在线观看| 乱人视频在线观看| 久久久久网色| 乱码一卡2卡4卡精品| .国产精品久久| 国产一区二区三区av在线| 国产精品爽爽va在线观看网站| 日本一二三区视频观看| av黄色大香蕉| 99久久九九国产精品国产免费| 蜜臀久久99精品久久宅男| 亚洲国产欧美人成| 男人和女人高潮做爰伦理| 老师上课跳d突然被开到最大视频| h日本视频在线播放| 日韩欧美精品v在线| 久久久久久大精品| 久久久色成人| 国产高清三级在线| 国产精品.久久久| 亚洲精品成人久久久久久| 男女边吃奶边做爰视频| 插阴视频在线观看视频| 亚洲精品一区蜜桃| 国产白丝娇喘喷水9色精品| 亚洲av.av天堂| 久久人人爽人人片av| 免费观看在线日韩| 最近视频中文字幕2019在线8| 别揉我奶头 嗯啊视频| 亚洲精品日韩在线中文字幕| 丝袜美腿在线中文| 中文字幕久久专区| 日韩一本色道免费dvd| 久久精品久久精品一区二区三区| 尤物成人国产欧美一区二区三区| 午夜福利高清视频| 校园人妻丝袜中文字幕| videos熟女内射| 午夜福利在线在线| 91久久精品国产一区二区成人| 大又大粗又爽又黄少妇毛片口| 久久久久久九九精品二区国产| 偷拍熟女少妇极品色| 中文字幕精品亚洲无线码一区| 18+在线观看网站| 亚洲精品自拍成人| 国国产精品蜜臀av免费| 亚洲欧美日韩高清专用| 亚洲av成人精品一区久久| 全区人妻精品视频| 亚洲伊人久久精品综合 | 午夜激情福利司机影院| 18+在线观看网站| 亚洲精品,欧美精品| 美女xxoo啪啪120秒动态图| 麻豆av噜噜一区二区三区| 国产午夜精品一二区理论片| 中文字幕av成人在线电影| 天堂√8在线中文| 免费黄色在线免费观看| 免费一级毛片在线播放高清视频| 我的老师免费观看完整版| 97在线视频观看| 色视频www国产| 熟妇人妻久久中文字幕3abv| 亚洲成人精品中文字幕电影| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 亚洲在久久综合| av播播在线观看一区| 国产黄色小视频在线观看| 亚洲图色成人| 色网站视频免费| 国产精品国产三级国产av玫瑰| 午夜福利视频1000在线观看| 国产日韩欧美在线精品| 成人毛片a级毛片在线播放| a级毛片免费高清观看在线播放| 在线免费观看不下载黄p国产| 久久精品熟女亚洲av麻豆精品 | 久久久久久久久久久丰满| 三级男女做爰猛烈吃奶摸视频| 色综合亚洲欧美另类图片| 国产人妻一区二区三区在| 中文字幕av在线有码专区| 波多野结衣高清无吗| 国产精品女同一区二区软件| 干丝袜人妻中文字幕| 国产精品国产高清国产av| 国产精品av视频在线免费观看| 国模一区二区三区四区视频| 亚洲天堂国产精品一区在线| 人妻夜夜爽99麻豆av| 97在线视频观看| 非洲黑人性xxxx精品又粗又长| av在线亚洲专区| 欧美bdsm另类| 能在线免费看毛片的网站| 精品久久久噜噜| 国产精品综合久久久久久久免费| 日韩强制内射视频| 午夜精品国产一区二区电影 | 中文字幕久久专区| 身体一侧抽搐| 久久久久久久午夜电影| 超碰97精品在线观看| 老司机影院毛片| 日本猛色少妇xxxxx猛交久久| 麻豆精品久久久久久蜜桃| 亚洲国产精品合色在线| 国产伦精品一区二区三区视频9| 禁无遮挡网站| 亚洲丝袜综合中文字幕| 2021天堂中文幕一二区在线观| 亚洲国产精品成人综合色| 国产综合懂色| 22中文网久久字幕| 日本免费a在线| 精品人妻一区二区三区麻豆| 日本免费一区二区三区高清不卡| 激情 狠狠 欧美| 午夜福利成人在线免费观看| 精品国产露脸久久av麻豆 | 老司机影院毛片| 国产成人免费观看mmmm| 国产成人aa在线观看| 亚洲最大成人中文| 丰满人妻一区二区三区视频av| 国产精品美女特级片免费视频播放器| 国产伦在线观看视频一区| 久久久久精品久久久久真实原创| 99在线视频只有这里精品首页| 久久久久免费精品人妻一区二区| 久久久久精品久久久久真实原创| 一区二区三区免费毛片| 一级毛片aaaaaa免费看小| 亚洲av中文av极速乱| 一夜夜www| 国产精品麻豆人妻色哟哟久久 | 国内精品美女久久久久久| 日日摸夜夜添夜夜爱| 国产淫语在线视频| 国产真实伦视频高清在线观看| 成人无遮挡网站| 国产激情偷乱视频一区二区| 日韩中字成人| 老司机影院成人| 日韩,欧美,国产一区二区三区 | 欧美高清性xxxxhd video| 国产成人精品久久久久久| 一区二区三区四区激情视频| 国产免费又黄又爽又色| 国产精品,欧美在线| 色视频www国产| 男人舔奶头视频| 亚洲最大成人手机在线| 国产激情偷乱视频一区二区| 亚洲欧美日韩无卡精品| 欧美成人一区二区免费高清观看| 一级毛片aaaaaa免费看小| www日本黄色视频网| 国产淫片久久久久久久久| 看免费成人av毛片| 亚洲18禁久久av| 久久精品国产99精品国产亚洲性色| 色网站视频免费| 青春草亚洲视频在线观看| 最近最新中文字幕大全电影3| 亚洲自拍偷在线| 99久久无色码亚洲精品果冻| 看片在线看免费视频| 亚洲av成人精品一二三区| 亚洲欧美一区二区三区国产| 波野结衣二区三区在线| 男女国产视频网站| 国产在视频线在精品| 自拍偷自拍亚洲精品老妇| videossex国产| 看片在线看免费视频| 99久久精品热视频| 日本爱情动作片www.在线观看| 蜜桃亚洲精品一区二区三区| 永久免费av网站大全| 午夜福利在线观看吧| 97超碰精品成人国产| 国产成年人精品一区二区| 亚洲精品456在线播放app| 最近中文字幕2019免费版| 美女xxoo啪啪120秒动态图| 一级爰片在线观看| 婷婷色综合大香蕉| 国产美女午夜福利| 国产高清不卡午夜福利| 18禁在线播放成人免费| 国产成人精品一,二区| 精华霜和精华液先用哪个| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| av免费在线看不卡| 啦啦啦啦在线视频资源| 欧美三级亚洲精品| 欧美激情在线99| 欧美高清成人免费视频www| 精品午夜福利在线看| 国产精品久久电影中文字幕| 蜜臀久久99精品久久宅男| 国内精品宾馆在线| 人人妻人人澡人人爽人人夜夜 | 国产免费一级a男人的天堂| 国产高清有码在线观看视频| 免费一级毛片在线播放高清视频| 亚洲自偷自拍三级| 精品久久久噜噜| 亚洲一级一片aⅴ在线观看| 美女高潮的动态| 22中文网久久字幕| 大香蕉97超碰在线| 身体一侧抽搐| 禁无遮挡网站| 两个人的视频大全免费| 乱系列少妇在线播放| 男女啪啪激烈高潮av片| 亚洲综合精品二区| www.av在线官网国产| 18禁在线播放成人免费| 啦啦啦韩国在线观看视频| 亚洲伊人久久精品综合 | 成人午夜精彩视频在线观看| 日日撸夜夜添| 欧美另类亚洲清纯唯美| 中文欧美无线码| 欧美xxxx性猛交bbbb| 国语自产精品视频在线第100页| 青春草亚洲视频在线观看| 啦啦啦观看免费观看视频高清| 久久婷婷人人爽人人干人人爱| 国产乱来视频区| 老司机影院成人| 亚洲国产高清在线一区二区三| 色综合亚洲欧美另类图片| 99热这里只有是精品50| 精品久久国产蜜桃| 国产午夜精品一二区理论片| 一级毛片久久久久久久久女| 国产成人午夜福利电影在线观看| 亚洲av免费在线观看| 高清在线视频一区二区三区 | 欧美性猛交黑人性爽| 精品久久久噜噜| av又黄又爽大尺度在线免费看 | 两性午夜刺激爽爽歪歪视频在线观看| 变态另类丝袜制服| 99热这里只有是精品50| 99久久中文字幕三级久久日本| 色尼玛亚洲综合影院| 欧美bdsm另类| 嘟嘟电影网在线观看| 汤姆久久久久久久影院中文字幕 | 亚洲国产欧洲综合997久久,| av黄色大香蕉| 九九久久精品国产亚洲av麻豆| 极品教师在线视频| 国产午夜精品久久久久久一区二区三区| 午夜激情欧美在线| 22中文网久久字幕| 欧美色视频一区免费| 成年女人看的毛片在线观看| 日韩欧美精品免费久久| 亚洲色图av天堂| 精品免费久久久久久久清纯| 亚洲,欧美,日韩| 欧美性猛交╳xxx乱大交人| 午夜视频国产福利| 久久人人爽人人爽人人片va| 国产高清三级在线| 丰满人妻一区二区三区视频av| 久久久久久久久久久丰满| 草草在线视频免费看| 精品99又大又爽又粗少妇毛片| 黄片无遮挡物在线观看| 99热全是精品| 日韩精品青青久久久久久| 午夜激情福利司机影院| 国产三级中文精品| 精品无人区乱码1区二区| 日韩av在线免费看完整版不卡| 久99久视频精品免费| 国产精品综合久久久久久久免费| 男人和女人高潮做爰伦理| 日本黄色视频三级网站网址| 午夜老司机福利剧场| 熟女电影av网| 午夜福利视频1000在线观看| 精品国产露脸久久av麻豆 | 久久精品国产自在天天线| 国产精品伦人一区二区| 少妇人妻一区二区三区视频| 91精品国产九色| eeuss影院久久| 欧美极品一区二区三区四区| 搡女人真爽免费视频火全软件| 国产精品伦人一区二区| 日韩中字成人| 精品久久久久久成人av| 日韩制服骚丝袜av| 久久人妻av系列| av又黄又爽大尺度在线免费看 | 熟女电影av网| 亚洲欧美日韩高清专用| 国内少妇人妻偷人精品xxx网站| 国产麻豆成人av免费视频| 欧美又色又爽又黄视频| 麻豆乱淫一区二区| av在线观看视频网站免费| 男人狂女人下面高潮的视频| eeuss影院久久| 国产久久久一区二区三区| 七月丁香在线播放| 国产成人精品一,二区| 精品久久久久久久久av| 欧美高清成人免费视频www| 深爱激情五月婷婷| 国产精品乱码一区二三区的特点| 狠狠狠狠99中文字幕| 一个人看的www免费观看视频| 丰满少妇做爰视频|