• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Inertial Subgradient Extragradient Algorithm for Solving Variational Inequality Problems with Pseudomonotonicity

    2023-10-20 13:31:18YuwanDingHongweiLiuandXiaojunMa

    Yuwan Ding, Hongwei Liu and Xiaojun Ma

    (School of Mathematics and Statistics, Xidian University, Xi’an 710126, China)

    Abstract:In order to solve variational inequality problems of pseudomonotonicity and Lipschitz continuity in Hilbert spaces, an inertial subgradient extragradient algorithm is proposed by virtue of non-monotone stepsizes . Moreover, weak convergence and R-linear convergence analyses of the algorithm are constructed under appropriate assumptions. Finally, the efficiency of the proposed algorithm is demonstrated through numerical implementations.

    Keywords:variational inequality;extragradient method;pseudomonotonicity;Lipschitz continuity;weak and linear convergence

    0 Introduction

    LetHbe a real Hilbert space with transvection 〈·,·〉 and norm ‖·‖ andC?Hbe closed and convex nonempty. In this work, the discussion is mainly focused on the variational inequality problem (VIP) represented in the form:

    Seeks*∈Csuch that

    〈F(s*),ρ-s*)〉≥0, ?ρ∈C

    (1)

    whereF:H→His a mapping. The symbol Ω is defined as the solution of VIP (1). Here, the following presumptions hold:

    (C1) The answer set Ω is nonempty, i.e., Ω≠?.

    (C2) The mappingFis defined as pseudomonotonic, i.e.,

    〈F(c),ρ-c〉≥0?

    〈F(ρ),ρ-c〉≥0,?c,ρ∈H

    (C2') The mappingFisβ-strongly pseudomonotone, i.e., there existsβ>0 satisfying

    (C3) The mappingFis Lipschitz continuity and fulfills

    ‖F(xiàn)(c)-F(ρ)‖≤L‖c-ρ‖,?c,ρ∈H

    whereL>0 is a Lipschitz constant.

    (C4) The practicable setCis closed, convex and nonempty.

    The symbols ? and → express weak convergence and strong convergence, respectively.PC:H→Cis called the metric projection (see the definition in Section 1). It is universally known that the fixed point problem below and VIP (1) are of equivalence:

    Seeks*∈Csuch that

    s*=PC(s*-τF(s*))

    (2)

    whereτ>0.

    VIP (1), developed by Fichera[1-2]and Stampacchia[3], is of great importance in the field of applied mathematics, which serves as a useful tool for the study of complementarity problems, transportation, network equilibrium problems and many more[4-6]. Because of its role, scholars concentrate their attention on exploring and figuring out its approximate solution, so numerous projection-like methods that have been suggested to deal with VIP (1) with its associated optimization problems (refer to Refs.[7-20]).

    To be specific, the original approach to solve VIP (1) is projected gradient method,whose numerical advantage is that only one projection ontoCis finished. In the aspect of convergence proof,Fis strong (or inverse strongly) monotonicity. To weaken this strong condition, Korpelevich[21]and Antipin[22]presented the extragradient method which needs to calculate the value ofFtwice and two projections ontoC, respectively. However, the complex form ofCin concrete applications leads to a slow convergence rate. To improve its numerical efficiency, Censor et al[23],proposed the subgradient extragradient methodby improving Korpelevich’s extragradient method to solve VIP (1) in Hilbert space. This second projection of the method is a specific subgradient projection which can be readily computed. They also established its weak convergence under the monotone and Lipschitz continuous assumptions ofF. The subgradient extragradient method, due to its simplicity and feasibility, has been extensively researched and extended by many scholars (refer to Refs.[24-31] and the references therein). Inspired by the work of Censor[23], Dong et al.[24]embedded the projection and contraction method[32-33]into the subgradient extragradient method and proposed a modified subgradient extragradient method to solve VIP (1) via the following formula

    (3)

    where

    (4)

    and the stepsizeτnis selected to be the largestτ∈{σ,σl,σl2,…} fulfilling

    (5)

    They proved that algorithm (3) is weakly convergent when the hypothesis aboutFis Lipschitz continuous and monotonic. Noting that algorithm (3) runs an Armijo-like line search rule for finding a proper stepsize per iteration, which leads to additional computation costs.

    The inertial extrapolation technique was adopted by Nesterov[34]to accelerate the convergence rate about the heavy sphere method[35]. Motivated by the inertial idea, Alvarez and Attouch[36]offered an inertial proximal point algorithm in order to set the maximal monotone operator. Recently, it has been employed by many researchers to quicken the extragradient method for VIP (1)[25-31, 37-39]. However, the weak convergence of the algorithm[24]with inertial techniques has yet to be considered. So, a natural question emerges as follows.

    Is is possible to obtain a new modification of the subgradient extragradient method[24]such that a weak convergence theorem and numerical improvement can be gained under much weaker conditions than monotonicity and sequential weak continuity of the mappingF?

    In response to the above question, concrete contributions by this work are the following:

    Add an inertial effect to the modified subgradient extragradient method[24]for accelerating the convergence properties, which is inspired by some excellent works[20,26,34, 36, 39];

    Introduce a new stepsize different from that in Refs.[14, 17, 40] and overcome the drawback of additional computation projections ontoCper iteration. This can lower the computational costs of the algorithm;

    Present an inertial subgradient extragradient method and its weak convergence does not require monotonicity and sequential weak continuity of the cost mappingF, compared with the work by Thong et al.[18-19, 29]and by Cai et al.[20];

    Ultimately, some numerical computations are presented to demonstrate the effectiveness of this newly proposed algorithm.

    This article is organized as below. Several fundamental lemmas and concepts which are applied in the subsequent sections are introduced in Section 1. Weak convergence theorem of this new proposed algorithm is established in Section 2 and R-linear convergence rate is obtained in Section 3. Numerical implementations and corresponding results are presented in Section 4 and display a brief summary in Section 5.

    1 Preliminaries

    Suppose thatHis known to be a real Hilbert space andC?His closed and convex nonempty.PC:H→Cis called the metric projection. For every dotc∈Hfulfills

    PC(c)∶=argmin{‖c-ρ‖ |ρ∈C}

    The projection ofζonto a half-spaceT={u∈H:〈v,u-c〉≤0} is computed by

    (6)

    wherec∈H,v∈Handv≠0[41].

    Lemma1[11,42]For eachξ,ρ,η∈H,

    (i)〈ξ-ρ,ξ-η〉=0.5‖ξ-ρ‖2+

    0.5‖ξ-η‖2-0.5‖ρ-η‖2

    (ii)‖φξ+(1-φ)ρ‖2=φ‖ξ‖2+

    (1-φ)‖ρ‖2-φ(1-φ)‖ξ-ρ‖2,

    ?φ∈R

    Lemma2[43]Letξ∈H, then

    (i)〈ξ-PC(ξ),ρ-PC(ξ)〉≤0,?ρ∈C

    (ii)‖PC(ξ)-PC(ρ)‖2≤

    〈PC(ξ)-PC(ρ),ξ-ρ〉,?ρ∈H

    Lemma3[44]Presume thatC?His closed and convex nonempty. LetF:C→Hbe pseudomonotone and continuous. Then the following equivalence holds:

    s*∈Ω?〈F(t),t-s*〉≥0,?t∈C

    Lemma4[45]Assume thatH1andH2are two real Hilbert spaces. If the mappingF:H1→H2fulfills uniform continuity onDandD?H1is bounded, thenF(D) is bounded.

    Lemma5[46-47]Presume that the sequence {ξn} is nonnegative number satisfying

    Lemma6[48]Presume that {bn}?[0,∞) and {wn}?[0,∞) are the sequences fulfilling:

    (i)bn+1≤bn+Δn(bn-bn-1)+wn, ?n≥1;

    (iii){Δn}?[0,?], where ?∈[0,1).

    Lemma7[42,48]Presume thatC?His a nonempty set and {cn} is a sequence inHfulfilling:

    (ii)any sequential weak cluster point of {cn} belongs toC.

    Then {cn} converges weakly to a dot inC.

    2 Weak Convergence

    In the section, inertial effects and new stepsizes are added to the subgradient extragradient algorithm to solve VIP (1), and its weak convergence is established under some weaker conditions thatFare pseudomonotone and uniformly continuous, compared with the work in Ref.[24]. Next, some useful conditions are stated as follows.

    (C5) The operatorF:H→Hfulfills the following property[25]:

    Lemma8If the sequence {cn} is created by Algorithm 1 and suppose that

    ∞. Then the succession {cn} is bounded.

    Algorithm 1 Step 0 Take τ1>0,δ∈(0,χ)?(0,1) and {ψn}?[0,?)?[0,1). Adopt the sequence {qn} satisfying Lemma 5. Let c0,c1∈H1 be initial points. Step 1 With cn-1,cn(n≥1), computedn=ψn(cn-cn-1)+cnyn=PC(dn-τnF(dn))(7)and update τn+1=ì?í????min{δ‖dn-yn‖‖F(xiàn)(dn)-F(yn)‖,qnτn}, if F(dn)≠F(yn)qnτn+ω—n, otherwise(8) If dn=yn, stop,dn is a solution of VIP (1). If not, go to Step 2. Step 2 Figure outcn+1=PTn(dn-ΛnτnF(yn))(9)whereTn∶={ξ∈H|〈yn-ξ,dn-τnF(dn)-yn〉≥0} Λn=〈dn-yn,Θn〉‖Θn‖2 Θn=dn-yn-τn(F(dn)-F(yn))(10)

    (11)

    Remark2With relation (7), it can be easily found that when the proposed method creates some finite iterations,dn∈Ω. Therefore, unless otherwise stated, it is assumed that Algorithm 1 iterates infinitely and generates an infinite sequence.

    ProofIn the situation ofF(dn)≠F(yn), asFisL-Lipschitz continuous, it can be derived that

    This further discloses that

    Lemma10Suppose that presumptions (C1)-(C4) hold. If succession {dn} is produced by Algorithm 1. Then, for anys∈Ω there is

    2‖cn+1-s‖2≤2〈cn+1-s,dn-τnΛnF(yn)-s〉=

    ‖cn+1-s‖2+‖dn-τnΛnF(yn)-s‖2-

    ‖cn+1-dn+τnΛnF(yn)‖2=‖cn+1-s‖2+

    ‖cn+1-s‖2+‖dn-s‖2-‖cn+1-dn‖2-

    2〈cn+1-s,τnΛnF(yn)〉

    After arrangement,

    ‖cn+1-s‖2≤‖dn-s‖2-‖cn+1-dn‖2-

    2τnΛn〈cn+1-s,F(yn)〉

    (12)

    Using the pseudomonotonicity ofF,yn∈Cands∈Ω, and by Lemma 3 again, it can be seen that 〈F(yn),yn-s〉≥0, which further shows that 〈cn+1-s,F(yn)〉≥〈cn+1-yn,F(yn)〉.

    Its version is the following:

    -2τnΛn〈cn+1-s,F(yn)〉≤

    -2τnΛn〈cn+1-yn,F(yn)〉

    (13)

    Meanwhile, both the definition ofTnandcn+1∈Tnindicate that

    〈cn+1-yn,dn-τnF(dn)-yn〉≤0

    After its change, there is

    〈cn+1-yn,Θn〉≤τn〈cn+1-yn,F(yn)〉

    (14)

    With relations (10), (13) and (14), it can be derived that

    -2τnΛn〈cn+1-s,F(yn)〉≤-2Λn〈cn+1-

    yn,Θn〉=-2Λn〈dn-yn,Θn〉+2Λn〈dn-

    2Λn〈dn-cn+1,Θn〉

    (15)

    In response to the term 2Λn〈dn-cn+1,Θn〉 in Eq.(15), it can be estimated that

    2Λn〈dn-cn+1,Θn〉=‖dn-cn+1‖2+

    (16)

    which comes from the usual relation 2cd=c2+d2-(c-d)2.Combining Eqs.(12), (15) and (16), it shows that

    ‖cn+1-s‖2≤‖dn-s‖2-

    (17)

    〈dn-yn,Θn〉=‖dn-yn‖2-

    τn〈F(dn)-F(yn),dn-yn〉≥

    ‖dn-yn‖2-τn‖F(xiàn)(dn)-F(yn)‖·

    and

    ‖Θn‖=‖dn-yn-τn(F(dn)-F(yn))‖≥

    ‖dn-yn‖-τn‖F(xiàn)(dn)-F(yn)‖≥

    Since

    whereδ∈(0,χ)?(0,1). Therefore,

    So, ?n≥N',

    〈dn-yn,Θn〉≥(1-χ)‖dn-yn‖2

    (18)

    and

    ‖Θn‖≥(1-χ)‖dn-yn‖

    (19)

    On the other hand,

    ‖Θn‖=‖dn-yn-τn(F(dn)-F(yn))‖≤

    ‖dn-yn‖+τn‖F(xiàn)(dn)-F(yn)‖≤

    Since

    whereδ∈(0,χ)?(0,1). Therefore,

    So, ?n≥N'',

    ‖Θn‖≤(1+χ)‖dn-yn‖

    (20)

    With Eqs.(18) and (20), it can be derived that ?n≥N, whereN=max{N',N''},

    (21)

    It verifies from Eq.(19) that ?n≥N,

    (22)

    Also, by Eqs.(17) and (21), it deduces that ?n≥N,

    ‖cn+1-s‖2≤‖dn-s‖2-‖dn-cn+1-ΛnΘn‖2-

    (23)

    Theorem1Assume that presumptions (C1)-(C5) are satisfied and

    So sequence {cn} created by Algorithm 1 converges weakly to a dot ofΩ.

    ProofLets∈Ω. Employing the regulation ofdn, it implies that

    ‖dn-s‖2=‖ψn(cn-cn-1)+cn-s‖2=

    ‖cn-s‖2+2ψn〈cn-cn-1,cn-s〉+

    (24)

    Applying Lemma 1 (i), there is

    This, along with Eq.(24), shows that

    (25)

    The Combination of Eqs.(23) and (25) signifies that ?n≥N,

    2ψn‖cn-cn-1‖2-‖dn-cn+1-ΛnΘn‖2-

    2ψn‖cn-cn-1‖2

    (26)

    Use Lemma 6 with

    bn=‖cn-s‖2

    and

    wn=2ψn‖cn-cn-1‖2

    where [t]+=max{t,0}. Therefore,

    Applying Eq.(26), it verifies that ?n≥N,

    ‖cn-s‖2-‖cn+1-s‖2+

    ψn(‖cn-s‖2-‖cn-1-s‖2)+

    2ψn‖cn-cn-1‖2≤‖cn-s‖2-

    ‖cn+1-s‖2+ψn[‖cn-s‖2-‖cn-1-s‖2]++2ψn‖cn-cn-1‖2

    (27)

    From Eqs.(7) and (11), it can be derived that ?n≥N,

    which corresponds to

    (28)

    This and Eq.(27) verify that

    (29)

    With Eqs.(20), (22) and (27), it can be deduced that ?n≥N,

    ‖dn-cn+1‖≤‖dn-cn+1-ΛnΘn‖+

    ‖ΛnΘn‖≤‖dn-cn+1-ΛnΘn‖+

    (30)

    Invoking Eqs.(28) and (30) can derive

    ‖cn+1-cn‖≤‖dn-cn+1‖+

    ‖dn-cn‖→0,n→∞

    (31)

    〈dni-τniF(dni)-yni,t-yni〉≤0,?t∈C,

    After arrangement, its version is that

    Further there is:

    〈F(dni),t-dni〉,?t∈C

    (32)

    (33)

    Also,

    (34)

    From ‖dni-yni‖→0, the resulted sequence {yni} is bounded. SinceFfulfills Lipschitz condition inH, {F(yni)} is bounded. Thus, it can be observed that

    Along with Eqs.(33) and (34), it means that

    〈F(ynk),t-ynk〉+θi≥0,k≥Ni

    (35)

    As the sequence {θi} is decreasing, it is found that sequence {Ni} is increasing. Moreover, as {yNi}?C, it may be assumed thatF(yNi)≠0 for eachi≥0 (otherwise,yNiis a solution ) and thus, setting

    〈F(yNi),vNi〉=1 can be deduced for eachi≥0.Below, it can be inferred from Eq.(35), for eachi≥0

    〈F(yNi),t+θivNi-yNi〉≥0

    SinceFis pseudomonotone, it means that

    〈F(t+θivNi),t+θivNi-yNi〉≥0

    This shows that

    〈F(t),t-yNi〉≥〈F(t)-F(t+θivNi),t+

    θivNi-yNi〉-θi〈F(t),vNi〉

    (36)

    Thus, for anyt∈C, it can be deduced that

    Remark3

    (1) It is remarkable that the weak convergence of Algorithm 1 under presumptions (C2) and (C5) are much weaker than the hypothesis of monotonicity and sequential weak continuity ofFemployed in existing works[20, 24, 29, 49];

    (2) The obtained results in this paper improve the results of Theorem 3.1 in Ref.[ 18], the Theorem 3.1 in Ref.[ 24], the Theorem 3.1 in Ref. [ 29], the Theorem 3.1 in Ref. [ 37] and the Theorem 4.1 in Ref. [38], because the convergence is obtained without monotonicity and sequential weak continuity.

    3 Linear Convergence Rate

    On the portion, linear convergence rate of the succession {cn} created by Algorithm 1 is discussed.

    Theorem2Suppose that presumptions (C1), (C2’) and (C3) are satisfied. Let

    {cn} converges at least R-linearly to the unique solution of Ω.

    ProofThe operatorFfulfills strongly pseudomonotone, which means that VIP (1) has a unique solution denoted bys. From the computation rule ofynand applying Lemma 2 (i), it signifies that

    〈dn-yn,s-yn〉≤τn〈F(dn),s-yn〉=τn〈F(dn)-F(yn),s-yn〉+τn〈F(yn),s-yn〉≤τn‖F(xiàn)(dn)-F(yn)‖·‖s-yn‖-βτn‖s-yn‖2≤τnL‖dn-yn‖·‖s-yn‖-

    βτn‖s-yn‖2

    (37)

    After its change, it can be derived that

    Hence

    This shows that

    (38)

    Combining Lemma 10 and Eq.(38), there is ?n≥N,

    ‖cn+1-s‖2≤r2‖dn-s‖2

    (39)

    From the regulation ofdnand Lemma 1 (ii), it can be concluded that

    ‖d2n+1-s‖2=‖ψ2n+1(c2n+1-c2n)+c2n+1-s‖2=

    ‖(1+ψ2n+1)(c2n+1-s)+(-ψ2n+1)(c2n-s)‖2=(1+ψ2n+1)‖c2n+1-s‖2-ψ2n+1‖c2n-s‖2+ψ2n+1(1+ψ2n+1)‖c2n+1-c2n‖2

    (40)

    Combining Eq.(39) and the regulation ofdn, ?n≥N/2 is obtained:

    ‖c2n+1-s‖2≤r2‖d2n-s‖2=r2‖c2n-s‖2

    (41)

    Letn∶=2n+1 in Eq.(39), from Eqs.(40) and (41), there is ?n≥N/2,

    ‖c2n+2-s‖2≤r2‖d2n+1-s‖2=r2[(1+ψ2n+1)‖c2n+1-s‖2-ψ2n+1‖c2n-s‖2+

    ψ2n+1(1+ψ2n+1)·‖c2n+1-c2n‖2]≤r2[(1+ψ2n+1)r2‖c2n-s‖2-ψ2n+1·

    ‖c2n-s‖2+ψ2n+1(1+ψ2n+1)(‖c2n+1-s‖+

    ‖c2n-s‖)2]≤r2[(1+ψ2n+1)r2-ψ2n+1+ψ2n+1(1+ψ2n+1)(1+r)2]·‖c2n-s‖2≤r2‖c2n-s‖2

    (42)

    where the last inequality is due toψn≤(1-r)/(1+r),?n≥1.By (42), there is ?n≥N,

    ‖c2n+2-s‖≤r‖c2n-s‖≤…
    ≤rn-N+1‖c2N-s‖

    (43)

    With Eqs.(41) and (43), it can be implied that ?n≥N,

    ‖c2n+1-s‖≤r‖c2n-s‖≤…

    ≤rn-N+1‖c2N-s‖

    (44)

    Consequently, from Eqs.(43) and (44), it can be concluded that {cn} converges R-Linearly tos.

    4 Numerical Experiments

    On the portion, several numerical implementations relative to the pseudomonotone VIP (1) are presented. The proposed Algorithm 1 (Alg.1) are compared with some recent self-adaptive algorithms such as Yao’s Algorithm 1 (YISAlg.1)[25], Reich’s Algorithm 3 (SDPLAlg. 3)[26]and Thong’s Algorithm 3.1 (TVRAlg. 3.1)[29]. The tests are performed in MATLAB R2020b on Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHZ, RAM 4.00 GB.

    Example1The first classical example is shown in Refs.[26,50-51]. The practicable set fulfillsC=RmandF(x)=Ax, whereAis anm×msquare matrix whose entries are represented by

    Table 1 Results in Example 1

    Remark4According to the results in Table 1, it is easy to observe that Alg. 1 enjoys a faster convergence speed than YISAlg. 1 and SDPLAlg. 3 in the aspects of iteration number and CPU time. So, the proposed method in this paper is of feasibility.

    The corresponding experimental results (execution time in seconds and number of iterations) are exhibited by employing different dimensionsm. Table 2 records the experimental results.

    Remark5As shown in Table 2, Alg.1 works better than YISAlg. 1 and TVRAlg. 3.1. To be specific, the proposed algorithm in this paper needs less time and smaller iteration numbers than the compared ones.

    Table 2 Results in Example 2

    5 Conclusions

    In the article, the modified subgradient extragradient algorithm with inertial effects and non-monotone stepsizes is proposed and analyzed to solve variational inequality problems with pseudomonotonicity. Furthermore, its weak convergence under weaker presumptions is proved and the R-linear convergence rate is obtained. Finally, numerical experiments verify the correctness of the theoretical results.

    人妻久久中文字幕网| 国产成人影院久久av| 欧美性猛交黑人性爽| 午夜福利欧美成人| 男人舔奶头视频| 三级男女做爰猛烈吃奶摸视频| 亚洲成av人片在线播放无| 成人欧美大片| 日本在线视频免费播放| 99热6这里只有精品| 国产欧美日韩一区二区精品| 久久久精品欧美日韩精品| 十八禁网站免费在线| 一区福利在线观看| av福利片在线观看| av黄色大香蕉| av视频在线观看入口| 哪里可以看免费的av片| 88av欧美| 亚洲国产精品sss在线观看| 日韩中文字幕欧美一区二区| 少妇熟女aⅴ在线视频| 欧美高清成人免费视频www| 亚洲国产精品久久男人天堂| 午夜激情福利司机影院| 久久精品91无色码中文字幕| 性色av乱码一区二区三区2| 99精品欧美一区二区三区四区| 国产男靠女视频免费网站| 三级男女做爰猛烈吃奶摸视频| 老司机深夜福利视频在线观看| 脱女人内裤的视频| 中文在线观看免费www的网站| 亚洲精品456在线播放app | 亚洲人成网站在线播放欧美日韩| 99热精品在线国产| 日本三级黄在线观看| 国产精华一区二区三区| 亚洲成av人片免费观看| 亚洲黑人精品在线| 久久精品aⅴ一区二区三区四区| 天天躁狠狠躁夜夜躁狠狠躁| 大型黄色视频在线免费观看| 麻豆久久精品国产亚洲av| 香蕉久久夜色| 亚洲 欧美一区二区三区| 日韩欧美在线乱码| 毛片女人毛片| 亚洲精华国产精华精| 啪啪无遮挡十八禁网站| 男女之事视频高清在线观看| 欧美性猛交╳xxx乱大交人| 男女床上黄色一级片免费看| 人人妻,人人澡人人爽秒播| 不卡一级毛片| 熟女电影av网| 色老头精品视频在线观看| 真人做人爱边吃奶动态| 两个人看的免费小视频| www国产在线视频色| 性欧美人与动物交配| 亚洲人成伊人成综合网2020| 真人一进一出gif抽搐免费| av视频在线观看入口| 亚洲九九香蕉| 搡老妇女老女人老熟妇| 国产一区二区三区在线臀色熟女| 欧美日韩中文字幕国产精品一区二区三区| 日本精品一区二区三区蜜桃| 国产高清激情床上av| 美女午夜性视频免费| 成人三级黄色视频| 少妇人妻一区二区三区视频| 久久久久亚洲av毛片大全| 身体一侧抽搐| 国产视频一区二区在线看| 三级男女做爰猛烈吃奶摸视频| 欧美日韩综合久久久久久 | 久久久精品欧美日韩精品| 亚洲精品美女久久久久99蜜臀| 亚洲国产欧洲综合997久久,| 亚洲av美国av| 五月玫瑰六月丁香| 免费高清视频大片| 99精品欧美一区二区三区四区| 男女床上黄色一级片免费看| 日韩三级视频一区二区三区| 五月玫瑰六月丁香| 久久这里只有精品中国| 五月伊人婷婷丁香| 97人妻精品一区二区三区麻豆| 无遮挡黄片免费观看| 999久久久国产精品视频| 成人av一区二区三区在线看| 两个人的视频大全免费| 老熟妇仑乱视频hdxx| 久久精品人妻少妇| 午夜免费成人在线视频| 人人妻,人人澡人人爽秒播| 国产精品综合久久久久久久免费| 亚洲 欧美 日韩 在线 免费| 久久香蕉精品热| 小说图片视频综合网站| 国产乱人伦免费视频| 网址你懂的国产日韩在线| 国产精品99久久99久久久不卡| 手机成人av网站| 激情在线观看视频在线高清| 国产探花在线观看一区二区| 欧美日韩国产亚洲二区| 白带黄色成豆腐渣| 亚洲专区国产一区二区| 国产亚洲av高清不卡| 欧美日韩综合久久久久久 | 欧美丝袜亚洲另类 | 99久久无色码亚洲精品果冻| 久久久久久大精品| 欧美日韩乱码在线| 亚洲五月天丁香| 久9热在线精品视频| 女警被强在线播放| 女人被狂操c到高潮| 首页视频小说图片口味搜索| 久久久久性生活片| 老司机午夜十八禁免费视频| 狂野欧美白嫩少妇大欣赏| 欧美一级毛片孕妇| xxx96com| 亚洲欧美日韩高清在线视频| 免费在线观看日本一区| 人妻丰满熟妇av一区二区三区| 精品国产乱子伦一区二区三区| 91九色精品人成在线观看| 成人国产综合亚洲| 白带黄色成豆腐渣| 精品国产超薄肉色丝袜足j| 伊人久久大香线蕉亚洲五| 男女床上黄色一级片免费看| 激情在线观看视频在线高清| 国产亚洲精品一区二区www| 亚洲无线观看免费| 搡老熟女国产l中国老女人| 免费看光身美女| 国产黄片美女视频| 亚洲精品在线美女| 国产视频一区二区在线看| 成人国产一区最新在线观看| 91字幕亚洲| 日本黄色视频三级网站网址| 12—13女人毛片做爰片一| 日本与韩国留学比较| 免费av毛片视频| 亚洲av电影在线进入| 制服丝袜大香蕉在线| 一级作爱视频免费观看| 精品无人区乱码1区二区| 成人鲁丝片一二三区免费| 老司机午夜福利在线观看视频| 国产又黄又爽又无遮挡在线| 99久久精品一区二区三区| 一本综合久久免费| 成年女人看的毛片在线观看| 国内精品美女久久久久久| 亚洲专区中文字幕在线| 国产真人三级小视频在线观看| 日韩人妻高清精品专区| 国产主播在线观看一区二区| 亚洲精品国产精品久久久不卡| а√天堂www在线а√下载| 青草久久国产| 两性夫妻黄色片| aaaaa片日本免费| 久久午夜综合久久蜜桃| 欧美日本视频| 一区二区三区激情视频| 男人舔奶头视频| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜一区二区| 久久久久久久午夜电影| 一夜夜www| 亚洲欧美日韩高清专用| 特大巨黑吊av在线直播| 国产av麻豆久久久久久久| 一二三四在线观看免费中文在| 色在线成人网| 长腿黑丝高跟| av视频在线观看入口| 亚洲成人久久爱视频| 美女高潮的动态| 人妻丰满熟妇av一区二区三区| 亚洲自偷自拍图片 自拍| 激情在线观看视频在线高清| 999精品在线视频| 五月伊人婷婷丁香| 久久亚洲精品不卡| 国产精品自产拍在线观看55亚洲| 美女cb高潮喷水在线观看 | 久久国产精品影院| 12—13女人毛片做爰片一| 国产蜜桃级精品一区二区三区| www.999成人在线观看| 精品国产乱码久久久久久男人| 亚洲色图 男人天堂 中文字幕| 欧美中文综合在线视频| 久久久久免费精品人妻一区二区| 国产亚洲av高清不卡| 男女午夜视频在线观看| 国产成年人精品一区二区| 亚洲七黄色美女视频| 别揉我奶头~嗯~啊~动态视频| 成年女人毛片免费观看观看9| 国产探花在线观看一区二区| 国产精品一区二区精品视频观看| 国产男靠女视频免费网站| 一进一出好大好爽视频| 午夜福利免费观看在线| www.www免费av| 特大巨黑吊av在线直播| 韩国av一区二区三区四区| 日本黄大片高清| 久久亚洲精品不卡| 国产一区二区三区在线臀色熟女| 欧美日韩一级在线毛片| 最近最新中文字幕大全电影3| 亚洲av成人一区二区三| 1000部很黄的大片| 久久久成人免费电影| 91在线精品国自产拍蜜月 | 男人和女人高潮做爰伦理| 色尼玛亚洲综合影院| 国产精品一区二区三区四区免费观看 | 中文字幕精品亚洲无线码一区| 欧美成人免费av一区二区三区| 国产精品亚洲美女久久久| 久久精品人妻少妇| 国产免费av片在线观看野外av| 啪啪无遮挡十八禁网站| 欧美丝袜亚洲另类 | 欧美日本视频| 小说图片视频综合网站| 国产又色又爽无遮挡免费看| 国产精品av久久久久免费| 国产精品美女特级片免费视频播放器 | 成人特级黄色片久久久久久久| 2021天堂中文幕一二区在线观| 国产一区二区在线av高清观看| 黄片大片在线免费观看| 亚洲国产中文字幕在线视频| 国产亚洲精品av在线| 每晚都被弄得嗷嗷叫到高潮| 丰满的人妻完整版| 男女视频在线观看网站免费| 欧美一级毛片孕妇| 不卡av一区二区三区| 色在线成人网| a级毛片a级免费在线| 老司机午夜十八禁免费视频| 国产伦精品一区二区三区四那| 999精品在线视频| 97超视频在线观看视频| 18禁裸乳无遮挡免费网站照片| 国产精品亚洲av一区麻豆| 国产熟女xx| 神马国产精品三级电影在线观看| 变态另类丝袜制服| 亚洲五月天丁香| svipshipincom国产片| 超碰成人久久| 国产乱人视频| 国产一区二区三区在线臀色熟女| 国产精品美女特级片免费视频播放器 | 又黄又粗又硬又大视频| 欧美又色又爽又黄视频| 国产午夜精品久久久久久| 一级作爱视频免费观看| 丰满人妻熟妇乱又伦精品不卡| 欧美不卡视频在线免费观看| 亚洲国产看品久久| 国产成人精品久久二区二区91| 国产v大片淫在线免费观看| 欧美绝顶高潮抽搐喷水| 人人妻,人人澡人人爽秒播| 欧美性猛交黑人性爽| 99久久精品国产亚洲精品| 韩国av一区二区三区四区| 亚洲专区中文字幕在线| 欧美一区二区国产精品久久精品| 操出白浆在线播放| 日日夜夜操网爽| av在线蜜桃| 国产私拍福利视频在线观看| 国产成人精品无人区| 欧美一级毛片孕妇| 少妇熟女aⅴ在线视频| 亚洲自拍偷在线| 久久久久久大精品| 97超级碰碰碰精品色视频在线观看| 精品久久久久久久人妻蜜臀av| 动漫黄色视频在线观看| 免费电影在线观看免费观看| 这个男人来自地球电影免费观看| 美女扒开内裤让男人捅视频| 国内精品一区二区在线观看| 午夜福利欧美成人| 久久久久久久精品吃奶| 99久国产av精品| 一区二区三区激情视频| 亚洲精品美女久久av网站| 国产美女午夜福利| 亚洲在线观看片| 欧美+亚洲+日韩+国产| 90打野战视频偷拍视频| 美女高潮的动态| 国产午夜精品论理片| 全区人妻精品视频| 一级毛片女人18水好多| 一区福利在线观看| 天堂网av新在线| 欧美黄色片欧美黄色片| 亚洲第一欧美日韩一区二区三区| 九色国产91popny在线| 日韩国内少妇激情av| 国产三级在线视频| 搡老妇女老女人老熟妇| www国产在线视频色| 亚洲色图av天堂| 日韩精品青青久久久久久| 久久亚洲精品不卡| 欧美性猛交╳xxx乱大交人| 在线观看免费午夜福利视频| 欧美另类亚洲清纯唯美| 91在线观看av| 两个人的视频大全免费| 久久精品国产亚洲av香蕉五月| 国产亚洲av嫩草精品影院| 窝窝影院91人妻| 此物有八面人人有两片| 亚洲九九香蕉| 精品久久久久久成人av| 国产亚洲av高清不卡| 岛国视频午夜一区免费看| 麻豆国产av国片精品| 中文字幕高清在线视频| 国产男靠女视频免费网站| 18禁美女被吸乳视频| 美女扒开内裤让男人捅视频| 亚洲国产高清在线一区二区三| 露出奶头的视频| 亚洲av电影不卡..在线观看| 三级男女做爰猛烈吃奶摸视频| АⅤ资源中文在线天堂| 午夜激情福利司机影院| 欧美乱色亚洲激情| 一a级毛片在线观看| 俺也久久电影网| 黄色丝袜av网址大全| 午夜福利在线观看免费完整高清在 | 午夜福利在线观看免费完整高清在 | 18禁黄网站禁片免费观看直播| or卡值多少钱| 午夜免费激情av| 亚洲av成人一区二区三| 国产一区二区在线观看日韩 | 97人妻精品一区二区三区麻豆| 国产伦人伦偷精品视频| 美女扒开内裤让男人捅视频| 亚洲欧美精品综合一区二区三区| 97超视频在线观看视频| 国产精华一区二区三区| 亚洲国产欧美网| 亚洲乱码一区二区免费版| 色播亚洲综合网| 亚洲天堂国产精品一区在线| 日本免费一区二区三区高清不卡| 亚洲中文av在线| 国产v大片淫在线免费观看| 亚洲午夜精品一区,二区,三区| 岛国视频午夜一区免费看| 午夜激情欧美在线| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品久久久人人做人人爽| 欧美色视频一区免费| 国产熟女xx| 国产欧美日韩一区二区三| 操出白浆在线播放| 特级一级黄色大片| 久久精品国产清高在天天线| 热99re8久久精品国产| 婷婷精品国产亚洲av| 亚洲av免费在线观看| aaaaa片日本免费| 免费无遮挡裸体视频| 亚洲18禁久久av| 两人在一起打扑克的视频| 国产乱人伦免费视频| 亚洲18禁久久av| 两人在一起打扑克的视频| 婷婷亚洲欧美| 国产成年人精品一区二区| 97超级碰碰碰精品色视频在线观看| h日本视频在线播放| 国产欧美日韩精品亚洲av| x7x7x7水蜜桃| 曰老女人黄片| 国产精品日韩av在线免费观看| 亚洲第一欧美日韩一区二区三区| 免费av不卡在线播放| 亚洲av日韩精品久久久久久密| 成人亚洲精品av一区二区| 不卡一级毛片| 日本免费a在线| 中文在线观看免费www的网站| 2021天堂中文幕一二区在线观| 最近最新免费中文字幕在线| 国产1区2区3区精品| 巨乳人妻的诱惑在线观看| 精品欧美国产一区二区三| 99国产精品99久久久久| 一a级毛片在线观看| av女优亚洲男人天堂 | 精品久久久久久久毛片微露脸| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 国产高清有码在线观看视频| 亚洲在线自拍视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美日韩一级在线毛片| www日本在线高清视频| 国产精品九九99| 最新在线观看一区二区三区| 亚洲熟女毛片儿| 国内毛片毛片毛片毛片毛片| 国产高清三级在线| 村上凉子中文字幕在线| 免费在线观看影片大全网站| 久久久久久久久久黄片| 精品无人区乱码1区二区| 白带黄色成豆腐渣| 久久香蕉国产精品| 成熟少妇高潮喷水视频| 欧美一区二区精品小视频在线| 亚洲黑人精品在线| 日韩大尺度精品在线看网址| 色在线成人网| 麻豆成人午夜福利视频| 激情在线观看视频在线高清| 亚洲国产欧美人成| 久久伊人香网站| 女人高潮潮喷娇喘18禁视频| 国产成人影院久久av| 久久精品国产综合久久久| 欧美黄色片欧美黄色片| 国产成人av教育| 在线观看舔阴道视频| 亚洲国产看品久久| 精品无人区乱码1区二区| 亚洲成人免费电影在线观看| 一夜夜www| 日日夜夜操网爽| 日韩欧美一区二区三区在线观看| 久久久久性生活片| 亚洲中文字幕日韩| av在线天堂中文字幕| 观看免费一级毛片| 美女大奶头视频| 精品欧美国产一区二区三| 亚洲色图av天堂| av在线天堂中文字幕| 一本精品99久久精品77| 欧美日本亚洲视频在线播放| 美女cb高潮喷水在线观看 | 国产一区二区三区在线臀色熟女| 高清在线国产一区| 日韩欧美精品v在线| 99在线视频只有这里精品首页| 婷婷精品国产亚洲av| 偷拍熟女少妇极品色| 精品国产乱子伦一区二区三区| 国产精品香港三级国产av潘金莲| 欧美色欧美亚洲另类二区| 麻豆久久精品国产亚洲av| 嫩草影院入口| 搞女人的毛片| 一个人免费在线观看的高清视频| 91老司机精品| 国产精品av视频在线免费观看| xxxwww97欧美| 国产精品综合久久久久久久免费| 欧美黑人巨大hd| 亚洲自偷自拍图片 自拍| 九九热线精品视视频播放| 亚洲天堂国产精品一区在线| 女人高潮潮喷娇喘18禁视频| 在线观看午夜福利视频| 欧美绝顶高潮抽搐喷水| 久久香蕉国产精品| 久久热在线av| 婷婷六月久久综合丁香| 欧美丝袜亚洲另类 | av中文乱码字幕在线| 精品99又大又爽又粗少妇毛片 | ponron亚洲| 久久精品91无色码中文字幕| 亚洲欧美日韩东京热| 午夜福利免费观看在线| 国产av一区在线观看免费| 无遮挡黄片免费观看| 在线观看免费午夜福利视频| 99视频精品全部免费 在线 | 一个人看视频在线观看www免费 | 国产三级黄色录像| 一本精品99久久精品77| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕精品亚洲无线码一区| 麻豆久久精品国产亚洲av| 夜夜爽天天搞| 不卡av一区二区三区| 国产精品日韩av在线免费观看| 国产综合懂色| 久久精品夜夜夜夜夜久久蜜豆| 久久久久国产一级毛片高清牌| 婷婷精品国产亚洲av在线| 麻豆国产av国片精品| 熟女电影av网| 中亚洲国语对白在线视频| 亚洲av成人一区二区三| 变态另类丝袜制服| 亚洲人成网站高清观看| 在线永久观看黄色视频| 精品99又大又爽又粗少妇毛片 | 国产一区二区在线观看日韩 | 精品国产乱码久久久久久男人| 亚洲成av人片在线播放无| 国产黄a三级三级三级人| 高潮久久久久久久久久久不卡| 国产高清视频在线观看网站| 午夜精品一区二区三区免费看| 国产高清视频在线观看网站| 亚洲在线自拍视频| 十八禁网站免费在线| 精品一区二区三区av网在线观看| 99精品欧美一区二区三区四区| 天堂网av新在线| 深夜精品福利| 亚洲av成人精品一区久久| 岛国视频午夜一区免费看| 精品一区二区三区av网在线观看| 欧美黄色片欧美黄色片| 精品久久久久久久久久免费视频| 岛国视频午夜一区免费看| 精品国产乱子伦一区二区三区| 99精品欧美一区二区三区四区| 亚洲在线观看片| 日韩三级视频一区二区三区| 日日摸夜夜添夜夜添小说| 久久久久久大精品| 韩国av一区二区三区四区| 免费大片18禁| 天天一区二区日本电影三级| 岛国在线免费视频观看| 免费av不卡在线播放| 18禁裸乳无遮挡免费网站照片| 999久久久精品免费观看国产| 国产真实乱freesex| 国产精品综合久久久久久久免费| 无人区码免费观看不卡| 男人舔奶头视频| 成年免费大片在线观看| 欧美+亚洲+日韩+国产| 国产亚洲欧美98| 国产一区在线观看成人免费| 级片在线观看| www.999成人在线观看| 看免费av毛片| a级毛片a级免费在线| 搡老熟女国产l中国老女人| 久久中文字幕一级| 无限看片的www在线观看| 精品国产乱码久久久久久男人| 国产精品国产高清国产av| 国模一区二区三区四区视频 | 亚洲aⅴ乱码一区二区在线播放| 免费无遮挡裸体视频| 国模一区二区三区四区视频 | 黄片大片在线免费观看| 国产亚洲精品久久久久久毛片| 亚洲欧美日韩高清专用| 一进一出抽搐gif免费好疼| 无人区码免费观看不卡| 村上凉子中文字幕在线| 熟女少妇亚洲综合色aaa.| 国产免费av片在线观看野外av| 精品久久久久久久久久免费视频| 久久亚洲精品不卡| 最近最新中文字幕大全电影3| 哪里可以看免费的av片| 国产亚洲精品av在线| 亚洲七黄色美女视频| 婷婷精品国产亚洲av| 青草久久国产| 嫩草影视91久久| 国产97色在线日韩免费| 婷婷六月久久综合丁香| 淫妇啪啪啪对白视频| 国产精品爽爽va在线观看网站| 日韩国内少妇激情av| 麻豆av在线久日| 亚洲成人久久性| 国内精品久久久久久久电影| 欧美在线黄色| 久久午夜综合久久蜜桃| 99在线人妻在线中文字幕| 久久久久免费精品人妻一区二区| 日本免费a在线| av福利片在线观看|