• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    MaOEA/I: Many-objective Evolutionary Algorithm Based on Indicator Iε+

    2023-10-20 13:31:16SifengZhuChengruiYangandJiamingHu

    Sifeng Zhu, Chengrui Yang and Jiaming Hu

    (School of Computer and Information Engineering, Tianjin Chengjian University, Tianjin, 300384, China)

    Abstract:Balancing the diversity and convergence of the population is challenging in multi-objective optimization. The work proposed a many-objective evolutionary algorithm based on indicator Iε+ (MaOEA/I) to solve the above problems. Indicator Iε+(x,y) is used for environmental selection to ensure diversity and convergence of the population. Iε+(x,y) can evaluate the quality of individual x compared with individual y instead of the whole population. If Iε+(x,y) is less than 0, individual x dominates y. If Iε+(x,y) is 0, individuals x and y are the same. If Iε+(x,y) is greater than 0, no dominant relationship exists between individuals x and y. The smaller Iε+(x,y), the closer the two individuals. The dominated individuals should be deleted in environmental selection because they do not contribute to convergence. If there is no dominant individual, the same individuals and similar individuals should be deleted because they do not contribute to diversity. Therefore, the environmental selection of MaOEA/I should consider the two individuals with the smallest Iε+(x,y). If Iε+(x,y) is not greater than 0, delete individual y; if Iε+(x,y) is greater than 0, check the distance between individuals x, y, and the target point and delete the individual with a longer distance. MaOEA/I is compared with 6 algorithms until the population does not exceed the population size. Experimental results demonstrate that MaOEA/I can gain highly competitive performance when solving many-objective optimization problems.

    Keywords:many-objective; evolutionary algorithm; indicator; diversity; convergence

    0 Introduction

    Optimization with multiple objective functions is called multi-objective optimization problems (MOPs)[1]. Since multiple objective functions often conflict with each other, MOPs are more complex than single objective optimization problems (SOPs). When MOPs have more than three objective functions, they are mentioned as many-objective optimization problems (MaOPs)[2-3]. MaOPs have more objective functions than MOPs, which makes solving more challenging.

    multi-objective evolutionary algorithms (MOEAs) can solve MOPs that simulate natural biological evolution processes[4]. Traditional MOEAs can get better performance when dealing with MOPs; however, there will be a series of problems when dealing with MaOPs[5]. One of the important problems is that more objective functions will produce a large number of non-dominated solutions, and sometimes the whole population will be non-dominated solutions. Too many non-dominated solutions will make the environmental-selection strategy based on non-dominated relations fail.

    Researchers have proposed a series of improved algorithms to meet the challenge brought about by the increased objectives. These algorithms are divided into the decomposition-based algorithm, laxity-based algorithm, and Indicator-based algorithm. The decomposition-based algorithm decomposes a MaOP into simple SOPs or MOPs, and it solves and merges these subproblems separately to obtain the solution to the MaOP. The representatives of such algorithms are the multi-objective evolutionary algorithm based on decomposition (MOEA/D)[6], reference-vector-guided evolutionary algorithm (RVEA)[7], and non-dominated sorting genetic algorithm III (NSGA-III)[8].

    The laxity-based algorithm modifies the dominating relationship to expand the dominating region of the solution and alleviate the dominating failure to a certain extent. Such algorithms proposed recently include the many-objective evolutionary algorithm adopting dynamic angle vector-based dominance relation (DAV-MOEA)[9], many-objective particle swarm optimization based on adaptive fuzzy dominance (MAPSOAF)[10], etc.

    Indicator-based algorithm proposes an indicator to map the objective values to a certain number, and the indicator is also used for environmental selection or mating selection.Immune-inspired resource allocation strategy for many-objective optimization (MaOEA/IRAS)[11]is a new indicator-based algorithm. The sparse region theory in Ref. [11] proposes a new indicator, which defined by the Euclidean distances of their projected points on the unit hyperplane. Solutions far from hyperplane are considered to be in the sparse region.The algorithm has less exploration in the sparse region, and exploring the region can increase the diversity of the algorithm. The indicator-based evolutionary algorithm (IBEA)[12]is the firstIε+-indicator-based algorithm and provides a common framework for indicator-based methods.

    The IBEA can be combined with arbitrary indicators. Although binary performance measureIε+(x,y) can be combined with arbitrary indicators, directly usingIε+(x,y) into the selection process also has good performance. The IBEA proposes a fitness function based onIε+(x,y) (fitness assignment), which considers the individual information of the entire population to evaluate individuals.Iε+(x,y) can be directly used for environmental selection (worst contribution) to balance the diversity and convergence, and only the information between two solutions is used for selection. The many-objective evolutionary algorithm based on indicatorIε+(x,y) is proposed.

    1 Propaedeutics

    1.1 Indicator-based Algorithm

    Classification method[13]classifies IB mechanisms into two main categories: IB Selection (IB-environmental selection, IB-density estimation, and IB-archiving) and IB-mating selection. Many-objective metaheuristics based on theR2indicator (MOMBI)[14]and Indicator-based evolutionary algorithm (IBEA) use the IB-environmental selection mechanism. The hypervolume estimation algorithm (HypE)[15]and IGD-based many-objective evolutionary algorithm (MaOEA/IGD)[16]use the IB-density estimator. The adaptive archiving algorithm for storing nondominated vectors (LAHC)[17]uses IB-archiving methods.IB-mating selection involves the identification of good parent solutions based on quality indicator values. IB-mating selection mechanisms are used by theR2Indicator-based evolutionary algorithm for multi-objective optimization (R2-IBEA)[18], MaOEA/IGD, and adaptive reference points-based multi-objective evolutionary algorithm (ARMOEA)[19].

    1.2 Indicator Iε+(x,y)

    A general optimization problem is defined byd-dimensional decision spaceX,m-dimensional objective spaceY, andmobjective functionsf1,f2,f3,…,andfm.

    y=(f1(x),f2(x),f3(x),…,fm(x))∈Yfor each decision variablex=(x1,x2,…,xd)∈X. All objective functions are assumed to be minimized, andY?m.Iε+(x,y) is defined as

    Iε+(x1,x2)=minε(?i∈{1,2,…,m},

    (1)

    Iε+(x,y) can be regarded as the enhancement of Pareto dominance, andIε+(x,y) can be directly used as a fitness value; therefore,Iε+(x,y) is used in the work. The two-objective problem is taken as an example (see Fig. 1).

    Two solutionsX1andX2do not dominate each other on the left.S1andS2represent the distance betweenX2andX1on object 1 and that betweenX1andX2on object 2, respectively.Iε+(X1,X2)=S2.S2is interpreted as that ifX1wants to dominateX2,S2needs to be optimized at least. Similar toIε+(X2,X1)=S1, ifX2wants to dominateX1,S1needs to be optimized at least. Two solutionsX1andX2are on the right, andX2dominatesX1.Iε+(X2,X1)<0, that is, whenIε+(x,y)<0,xdominatesy.

    Fig.1 Two cases of Iε+(x,y)

    2 Proposed MaOEA/I

    2.1 Framework of MaOEA/I

    The overall framework of the proposed MaOEA/I is presented in Algorithm 1.

    Algorithm1 General Framework of MaOEA/I Input :N (population size) ,maxFE (maximum function evaluation times)Output :P (final population)1: P=Initialization(N) 2: while FE

    The MaOEA/I starts from randomly initialized populationPcontainingNindividuals. Afterward,Pundergoes an evolution procedure. Offspring populationOis first generated in each generation by performing mating selection, simulated binary crossover[20], and polynomial mutation[21]onP.Second,PandOare merged to form new populationPtof 2Nindividuals. Finally, environmental selection is performed to selectNelite individuals. The evolution procedure is repeated until the termination criterion is satisfied. The mating selection and environmental selection of the MaOEA/I are introduced in the following sections.

    2.2 Mating Selection

    The binary tournament selection method is used for a mating selection. FunctionFbased onIε+(x,y) is used as the fitness value of the mating selection (see Eq. (2)).

    Fx=-minIε+(x,xi),xi∈P/{x}

    (2)

    whereFxis the fitness value of individualx;xiis the other individual except forxin populationP.

    2.3 Environmental Selection

    Environmental selection mainly depends on fitness assignments in the IBEA.

    F(x1)=∑x2∈P/{x1}-e-I(x2,x1)/κ

    (3)

    wherePis the population;κthe fitness scaling factor. FitnessF(x) is related toIε+(x,y) betweenxand the whole population without itself.

    The MaOEA/I has no fitness for the individual.IndicatorIε+(x,y) can measure individuals by its value.Iε+(x,y) is directly used to evaluate the quality of individuals.

    A population of 100 individuals is taken as an example, and each iteration produces 100 new individuals.Both the IBEA and MaOEA/I need to calculateIε+(x,y) between each individual. TheIBEA usesIε+(x,y) to calculate the fitness of the 200 individuals, while the MaOEA/I usesIε+as the indicator of environmental selection. Although the environmental selection of the MaOEA/I needs to consider more values and the situation is more complex (with 200 fitness of IBEA and 200×199Iε+),it can more accurately select the individual with the lowest contribution.

    The environmental selection procedure of the proposed MaOEA/I is presented in Algorithm 2.

    Algorithm 2 Environmentals election Input: Pt (temporary population), count (number of individuals in Pt), and N (population size)Output: P (final population)1: I=CalculationI(Pt,2N) 2: Sort I from small to large3: i=1 4: while count>N do5: Get the elements in I (defined as Ii ) and corresponding individu-als xi,yi in order6: if xi∈Pt∧yi∈Pt, then7: Delete yi from Pt 8: count=count-1 9: end if10: i=i+111: end while12: P=Pt 13: Return P

    CalculateIε+(x,y) of temporary populationPt, and sortIfrom small to large. WhenIε+(x,y)≤0,xdominatesy.SmallerIε+(x,y) means greater dominance. WhenIε+(x,y)>0, the closerxis toy, the smallerIε+(x,y) is. Therefore, the work gives priority to deleting the most dominant individual. When all the dominant individuals are deleted and the number of individuals in temporary populationPtis still larger thanN, one of the closest two individuals is deleted. The inferior individuals are deleted fromPtone by one until the number of individuals inPtisN.The individuals with poor convergence and diversity in the population are gradually eliminated by repeating the above operations, and the population converges and is evenly distributed on the Pareto front (see Fig. 2).

    Iε+(x,y) calculation procedure is presented in Algorithm 3. In particular, wheni=j,I(i,j)=+∞ is set becauseIε+(x,y) cannot be calculated for the same individual.

    2.4 Calculation of Iε+(x,y)

    Algorithm 3 Calculation IInput: P (population) and N (population size)Output: I( Iε+ matrix)1: Normalize the objective values of all individuals in P2: Generate matrix Iof N×N, the value of the element in the matrix is +3: for i=1∶N do4: for j=1∶N do5: if i≠j do6: Calculate Iε+(xi,xj) by Eq. (1) and fill in storage matrixI(i,j)7: end if8: end for9: end for10:Return I

    2.5 Computational Complexity Analysis

    The computational complexity of the proposed MaOEA/I mainly depends on the mating selection and environmental selection. The computational complexity of the mating selection isO(N2) in the worst case. Environmental selection includes the calculation ofIε+(x,y), sort, and deletion. The calculation ofIε+(x,y) includesO(2mN) required for normalization.mis the objective number of the problem, and the calculated value ofIε+(x,y) requiresO(4mN2).Sort requiresO(4N2log2(2N)), and deletion requiresO(2N).Overall, the computational complexity of MaOEA/I isO(N2)+O(2mN)+O(4mN2)+O(4N2log2(2N))+O(2N)=O((4m+log2(2N))N2).

    3 Experiment and Discussion

    The proposed MaOEA/I was compared with other 6 algorithms, including IBEA[11], MOMBI-II[22], MaOEA/IGD[15], NSGA-III[8], RPEA[23], and RVEA, to test its performance in MaOPs. This section describes the test problems, performance indicator, experimental environment, parameter settings used in the experimental study, results, and discussion.

    3.1 Test Problems

    MaF[24]test problems are used to verify the performance of the MaOEA/I. MaF test problems have many properties of the Pareto Front, which can test the performance of solving MaOPs from many aspects.

    The number of objectiveMis 5, 10, 15, and 25, respectively. The default values of the number of decision variableDis used for MaF test problems. CalculateDwithD=M+K-1 in MaFs 1-12, andK=10.CalculateDwithD=M+K-1 in MaF 7, andK=20.Dis fixed to 2 in MaFs 8 and 9. CalculateDwithD=M×20 in MaFs 14 and 15.

    3.2 Performance Indicator

    Inverse generation distance (IGD)[25]and Hypervolume (HV)[26]were used to evaluate the convergence and diversity of results. Each algorithm was independently executed 30 times on each test problem to reduce the impact of random factors on performance evaluations. The Wilcoxon rank sum test with a significance level of 0.05 was used to discuss the difference in algorithm performance.

    3.3 Experimental Environment

    The computer was configured with 16G memory, Intel (R) Core (TM) i7-10875H CPU@2.30GHz processor, and Windows10 X64 system. All algorithms were compared on PlatEMO[27]based on MATLAB, and the version of the PlatEMO was v3.5.

    3.4 Parameter Settings

    The population size with 5, 10, 15, and 25 objectives were 150, 200, 250, and 300, respectively. The termination condition was that the algorithm had exhausted the number of evaluations. The maximum number of evaluations was 100000. All evolutionary algorithms in the work used binary crossover and polynomial mutation to generate offspring. The crossover probability and mutation probability were set to 1.0 and 1/D, andDwas the number of decision variables. The fitness scaling factor of IBEA was set to 0.5. The number of evaluations for nadir point estimation of the MaOEA/IGD was set to 100×N.The parameter controlling the rate of change of penalty in RVEA was set to 2, and the frequency of employing reference vector adaptation was set to 0.1. The variance threshold,tolerance threshold, and record size of nadir vectors of MOMBI-II were set to 0.5, 0.001, and 5. The ratios of individuals used to generate reference points and parameters determining the difference between the reference point and the individuals of RPEA were set to 0.4 and 0.1, respectively. There was no need to set parameters for the MaOEA/I.

    3.5 Results and Discussion

    Tables 1 and 2 show the results of each algorithm on MaF(5-objective). The IBEA, MOMBI-II, MaOEA/IGD, NSGA-III, RPEA, RVEA, and MaOEA/I are in columns 1-7, respectively.

    The MaOEA/I obtains significantly better performance on MaF testing problems with different dimensions and different difficulties (see Table 1). Although the performance of the MaOEA/I is not as good as that in Table 1, the MaOEA/I is still better than other algorithms (see Table 2). Fig. 3 shows the IGD changing curves of MaFs 1, 3, 5, 6, 7, and 13. IGD values obtained by the MaOEA/I in the 6 test problems can rapidly converge to a relatively good position and continue to optimize,which shows its performance in balancing convergence and diversity. The IGD of the IBEA, MaOEA/IGD, NSGA-III, RVEA, and MOMBIII fluctuates during the search process (see Fig. 3 (f)).

    Table 3 shows the average running time of the algorithm for calculating MaFs. Environmental selection is more complex and the computation will increase with the expansion of the population; therefore, the MaOEA/I has no advantage over other algorithms in running time.

    Fig. 4 shows IGD on 5-objective MaFs.

    The MaOEA/I can obtain stable results on most problems in 30 repeated experiments, and it is only inferior to other algorithms on MaFs 6 and 15.

    4 Conclusions

    Aiming at the environmental selection strategy based on non-dominated relation failure and the difficulty in the balance of convergence and diversity in MaOPs, the work proposed the MaOEA/I. The MaOEA/I usedIε+(x,y) for environmental selection.Iε+(x,y) could select the dominated solution and the solution close in space with the strengthening non-dominated relationship, which considers convergence and diversity.

    Table 3 Running time

    The IBEA focused on global information and usedfitness assignment usingIε+(x,y); however, MaOEA/I used the local meaning and worst contribution. If two solutions were too close, no matter where they were in the population, one of them must be deleted. It solved the environmental selection strategy based on non-dominated relation failure and contributed to dealing with the irregular Pareto front. The experimental results showed that the MaOEA/I has a good performance on MaF problems, with effectiveness in balancing convergence and diversity.

    Fig. 4 IGD on 5-objective MaFs

    乱人伦中国视频| 中文欧美无线码| 18禁黄网站禁片午夜丰满| 国产一区二区在线观看av| 日本猛色少妇xxxxx猛交久久| 欧美少妇被猛烈插入视频| 中文字幕色久视频| 国精品久久久久久国模美| 亚洲av电影在线观看一区二区三区| 国产欧美日韩综合在线一区二区| 日韩一卡2卡3卡4卡2021年| 丰满迷人的少妇在线观看| 99九九在线精品视频| 亚洲精品国产区一区二| 国产又色又爽无遮挡免| 久久99一区二区三区| 青草久久国产| 一级毛片 在线播放| 久久ye,这里只有精品| 亚洲国产精品成人久久小说| av在线老鸭窝| 九草在线视频观看| 欧美变态另类bdsm刘玥| 一二三四社区在线视频社区8| 国产又色又爽无遮挡免| 国产女主播在线喷水免费视频网站| 免费高清在线观看视频在线观看| 国产精品人妻久久久影院| av天堂久久9| 水蜜桃什么品种好| 亚洲国产看品久久| 色网站视频免费| 波多野结衣一区麻豆| 精品国产一区二区久久| 欧美精品av麻豆av| 中文字幕精品免费在线观看视频| 国产高清视频在线播放一区 | 九色亚洲精品在线播放| 一区二区日韩欧美中文字幕| 男女无遮挡免费网站观看| 美女高潮到喷水免费观看| 男女下面插进去视频免费观看| 又大又黄又爽视频免费| 亚洲,一卡二卡三卡| 久热爱精品视频在线9| 丝袜喷水一区| 看免费成人av毛片| 99国产精品一区二区蜜桃av | 日本黄色日本黄色录像| 国产福利在线免费观看视频| 一本—道久久a久久精品蜜桃钙片| 国产av国产精品国产| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品国产色婷婷电影| 王馨瑶露胸无遮挡在线观看| 日本五十路高清| 岛国毛片在线播放| 亚洲一区二区三区欧美精品| 国产精品一区二区在线不卡| 中文字幕av电影在线播放| 国产精品久久久久成人av| 老汉色∧v一级毛片| 蜜桃在线观看..| 国产精品国产三级专区第一集| 久久ye,这里只有精品| 亚洲精品av麻豆狂野| 亚洲五月色婷婷综合| 久久精品熟女亚洲av麻豆精品| 人成视频在线观看免费观看| 又大又黄又爽视频免费| 亚洲av电影在线进入| 最新的欧美精品一区二区| 国产激情久久老熟女| 黄色视频在线播放观看不卡| 一区二区三区激情视频| 免费少妇av软件| 日韩熟女老妇一区二区性免费视频| 最黄视频免费看| 久久热在线av| 久久精品久久久久久久性| 欧美老熟妇乱子伦牲交| 最近最新中文字幕大全免费视频 | 超碰成人久久| 人妻 亚洲 视频| 久久人妻熟女aⅴ| 国产一区二区在线观看av| 久久青草综合色| 在线观看www视频免费| 亚洲久久久国产精品| 99精品久久久久人妻精品| 亚洲国产av新网站| 一级毛片我不卡| 欧美日韩亚洲高清精品| 黄色视频不卡| 中文字幕人妻熟女乱码| 国产高清videossex| 丰满饥渴人妻一区二区三| 精品人妻熟女毛片av久久网站| 永久免费av网站大全| 日韩大片免费观看网站| 久热爱精品视频在线9| 一区福利在线观看| 亚洲黑人精品在线| 亚洲情色 制服丝袜| 国产精品久久久久成人av| 男女午夜视频在线观看| 欧美xxⅹ黑人| av网站在线播放免费| 一二三四在线观看免费中文在| 国产91精品成人一区二区三区 | a 毛片基地| 一区福利在线观看| 男女之事视频高清在线观看 | 9191精品国产免费久久| 午夜影院在线不卡| 电影成人av| 91麻豆av在线| 国产一级毛片在线| 午夜福利免费观看在线| 亚洲成国产人片在线观看| 日本欧美国产在线视频| 亚洲人成网站在线观看播放| 欧美精品一区二区免费开放| 日韩免费高清中文字幕av| 午夜福利视频在线观看免费| 日韩人妻精品一区2区三区| 久久久久国产一级毛片高清牌| 99香蕉大伊视频| 久久人人爽av亚洲精品天堂| 男女高潮啪啪啪动态图| 国产精品熟女久久久久浪| 午夜免费观看性视频| 亚洲精品自拍成人| 精品第一国产精品| 极品少妇高潮喷水抽搐| 一级毛片黄色毛片免费观看视频| 亚洲综合色网址| 欧美精品亚洲一区二区| 久久av网站| 国产精品成人在线| 777米奇影视久久| 精品卡一卡二卡四卡免费| 黑人巨大精品欧美一区二区蜜桃| 久久精品国产亚洲av高清一级| 十八禁网站网址无遮挡| 午夜老司机福利片| 亚洲自偷自拍图片 自拍| 国产精品久久久av美女十八| 麻豆国产av国片精品| 王馨瑶露胸无遮挡在线观看| 午夜影院在线不卡| 欧美人与性动交α欧美精品济南到| 大码成人一级视频| 高潮久久久久久久久久久不卡| 亚洲午夜精品一区,二区,三区| 久久国产精品男人的天堂亚洲| 高清黄色对白视频在线免费看| 久久影院123| 韩国高清视频一区二区三区| 亚洲人成77777在线视频| 亚洲免费av在线视频| 久久午夜综合久久蜜桃| 亚洲黑人精品在线| 国产成人一区二区三区免费视频网站 | 18在线观看网站| 夫妻午夜视频| 欧美精品亚洲一区二区| 黑丝袜美女国产一区| 亚洲av国产av综合av卡| 多毛熟女@视频| 亚洲精品国产区一区二| 大型av网站在线播放| 国产熟女午夜一区二区三区| 精品少妇久久久久久888优播| 美女国产高潮福利片在线看| 99久久人妻综合| 夫妻性生交免费视频一级片| 国产精品三级大全| 久久精品国产a三级三级三级| 国产亚洲精品久久久久5区| 国产成人欧美在线观看 | www.自偷自拍.com| 久久久亚洲精品成人影院| 久久综合国产亚洲精品| 黄色 视频免费看| 最近中文字幕2019免费版| 极品人妻少妇av视频| 日本欧美国产在线视频| 性高湖久久久久久久久免费观看| 国产视频首页在线观看| 精品人妻1区二区| 亚洲精品自拍成人| 午夜福利视频精品| 涩涩av久久男人的天堂| 亚洲欧美精品自产自拍| 中国国产av一级| 激情视频va一区二区三区| 一二三四社区在线视频社区8| 国产国语露脸激情在线看| 曰老女人黄片| 国产av精品麻豆| 日韩中文字幕视频在线看片| 亚洲 国产 在线| 女人久久www免费人成看片| 国产精品一国产av| 亚洲精品日本国产第一区| 中文字幕人妻丝袜一区二区| 一本—道久久a久久精品蜜桃钙片| 欧美乱码精品一区二区三区| 久久毛片免费看一区二区三区| 18在线观看网站| 精品一区二区三区av网在线观看 | 男人添女人高潮全过程视频| 国产成人影院久久av| 高潮久久久久久久久久久不卡| 久热爱精品视频在线9| 亚洲成人免费av在线播放| 亚洲欧美一区二区三区黑人| 两人在一起打扑克的视频| 国产日韩一区二区三区精品不卡| 午夜精品国产一区二区电影| 欧美日韩亚洲综合一区二区三区_| 午夜久久久在线观看| 99久久综合免费| 精品亚洲成国产av| 91国产中文字幕| 欧美乱码精品一区二区三区| 日韩视频在线欧美| 国产色视频综合| 在线观看免费高清a一片| 自线自在国产av| 午夜福利视频在线观看免费| 亚洲熟女精品中文字幕| 一边摸一边抽搐一进一出视频| 九草在线视频观看| 国产片内射在线| 精品亚洲乱码少妇综合久久| 十八禁人妻一区二区| 一本久久精品| 视频区欧美日本亚洲| 国产片内射在线| 男女午夜视频在线观看| 久久性视频一级片| 欧美精品啪啪一区二区三区 | 日本91视频免费播放| 国产成人精品久久二区二区91| 在线观看国产h片| 新久久久久国产一级毛片| 久久久国产精品麻豆| 国产精品人妻久久久影院| 欧美成人精品欧美一级黄| 国产伦人伦偷精品视频| 后天国语完整版免费观看| 国产免费一区二区三区四区乱码| 赤兔流量卡办理| 最新在线观看一区二区三区 | 国产一卡二卡三卡精品| 亚洲一卡2卡3卡4卡5卡精品中文| 精品福利观看| 人人妻人人澡人人爽人人夜夜| 久久久国产一区二区| 狠狠精品人妻久久久久久综合| 乱人伦中国视频| 久久鲁丝午夜福利片| 国产精品亚洲av一区麻豆| 建设人人有责人人尽责人人享有的| 欧美日韩亚洲综合一区二区三区_| 9色porny在线观看| 国产日韩欧美在线精品| 最新在线观看一区二区三区 | 成人午夜精彩视频在线观看| 国产精品秋霞免费鲁丝片| 亚洲精品久久午夜乱码| 国产成人系列免费观看| 99热网站在线观看| 亚洲av成人不卡在线观看播放网 | 久久久亚洲精品成人影院| 久久久久久久精品精品| 国产又色又爽无遮挡免| 久久国产精品影院| 成在线人永久免费视频| 男女边吃奶边做爰视频| 久久久久国产精品人妻一区二区| 成年人免费黄色播放视频| 国产高清videossex| 黄网站色视频无遮挡免费观看| 天堂中文最新版在线下载| 久久综合国产亚洲精品| 日本五十路高清| 麻豆国产av国片精品| 欧美人与性动交α欧美软件| 亚洲,欧美精品.| 免费不卡黄色视频| 99久久人妻综合| 国产精品偷伦视频观看了| 女人爽到高潮嗷嗷叫在线视频| 欧美av亚洲av综合av国产av| 日韩制服骚丝袜av| 国产视频一区二区在线看| 国产成人精品无人区| 看免费av毛片| 男女床上黄色一级片免费看| 在线观看国产h片| av在线app专区| 免费高清在线观看视频在线观看| 99国产精品一区二区三区| 国产亚洲欧美在线一区二区| 亚洲伊人久久精品综合| 欧美成人午夜精品| 丰满饥渴人妻一区二区三| 亚洲,一卡二卡三卡| 女人高潮潮喷娇喘18禁视频| 久久中文字幕一级| 国产一区二区在线观看av| 女人被躁到高潮嗷嗷叫费观| 欧美日韩成人在线一区二区| 亚洲精品第二区| 一级毛片黄色毛片免费观看视频| 人妻人人澡人人爽人人| 亚洲人成网站在线观看播放| 国产成人影院久久av| 国产免费一区二区三区四区乱码| 国产亚洲欧美在线一区二区| 免费av中文字幕在线| 新久久久久国产一级毛片| 精品熟女少妇八av免费久了| 秋霞在线观看毛片| 国产福利在线免费观看视频| 欧美性长视频在线观看| 成年美女黄网站色视频大全免费| 久久精品国产综合久久久| 亚洲精品美女久久av网站| 伦理电影免费视频| 国产精品一二三区在线看| 久久这里只有精品19| 美女福利国产在线| 在线观看人妻少妇| 国产成人欧美在线观看 | av网站免费在线观看视频| 美女福利国产在线| 美女午夜性视频免费| 国产伦人伦偷精品视频| 丰满迷人的少妇在线观看| 国产视频一区二区在线看| 亚洲国产精品一区二区三区在线| 高清不卡的av网站| 精品视频人人做人人爽| 国产成人91sexporn| 亚洲专区国产一区二区| 欧美日韩亚洲综合一区二区三区_| 视频区图区小说| 久久精品亚洲熟妇少妇任你| 90打野战视频偷拍视频| 黄片播放在线免费| 亚洲,欧美精品.| av又黄又爽大尺度在线免费看| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| 9热在线视频观看99| 满18在线观看网站| 免费在线观看日本一区| 丝瓜视频免费看黄片| 久9热在线精品视频| 精品少妇内射三级| 亚洲精品一二三| 国产成人免费观看mmmm| 一区二区三区激情视频| av网站免费在线观看视频| 老司机亚洲免费影院| av欧美777| 国产精品亚洲av一区麻豆| 欧美+亚洲+日韩+国产| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇内射三级| 人妻一区二区av| 久久热在线av| 人妻 亚洲 视频| 国产成人欧美在线观看 | 国产精品久久久人人做人人爽| av片东京热男人的天堂| 国产精品免费视频内射| 男女免费视频国产| 人妻人人澡人人爽人人| 一二三四社区在线视频社区8| 黄片播放在线免费| 热99久久久久精品小说推荐| 亚洲精品国产一区二区精华液| 午夜影院在线不卡| 国产精品欧美亚洲77777| 成年动漫av网址| 欧美亚洲 丝袜 人妻 在线| 日韩中文字幕欧美一区二区 | 午夜激情av网站| 天堂中文最新版在线下载| 亚洲欧美清纯卡通| 最近中文字幕2019免费版| 精品少妇久久久久久888优播| 天天躁狠狠躁夜夜躁狠狠躁| 久久这里只有精品19| 男女边摸边吃奶| 色婷婷久久久亚洲欧美| 丁香六月天网| 国产成人91sexporn| av在线播放精品| 午夜精品国产一区二区电影| 日本一区二区免费在线视频| 久久精品久久久久久久性| 91麻豆精品激情在线观看国产 | 成年人免费黄色播放视频| 成人三级做爰电影| 两个人免费观看高清视频| 七月丁香在线播放| 999精品在线视频| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 老司机午夜十八禁免费视频| 搡老岳熟女国产| 日本av免费视频播放| 一级黄色大片毛片| 天天操日日干夜夜撸| 在线观看免费高清a一片| 人妻 亚洲 视频| 又大又黄又爽视频免费| 精品国产超薄肉色丝袜足j| 后天国语完整版免费观看| 九色亚洲精品在线播放| 国产一区二区三区av在线| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲男人天堂网一区| 青青草视频在线视频观看| 精品亚洲成国产av| 夫妻午夜视频| 欧美黄色片欧美黄色片| av网站在线播放免费| 午夜免费男女啪啪视频观看| 久久影院123| 黄色视频不卡| 国产精品免费大片| 欧美激情 高清一区二区三区| 国产高清国产精品国产三级| 国产在线免费精品| 亚洲自偷自拍图片 自拍| 高清视频免费观看一区二区| 午夜日韩欧美国产| 日韩,欧美,国产一区二区三区| 大片电影免费在线观看免费| kizo精华| 久久久久久久久免费视频了| 国产高清不卡午夜福利| 手机成人av网站| 夫妻性生交免费视频一级片| 曰老女人黄片| 香蕉国产在线看| 午夜福利影视在线免费观看| 伊人亚洲综合成人网| 亚洲精品成人av观看孕妇| 欧美在线一区亚洲| 人人妻人人澡人人看| 亚洲欧美精品综合一区二区三区| 午夜福利在线免费观看网站| 老司机影院成人| 成在线人永久免费视频| 中文字幕高清在线视频| 亚洲av美国av| 精品少妇内射三级| 欧美日韩综合久久久久久| 一边摸一边抽搐一进一出视频| 51午夜福利影视在线观看| 国产成人a∨麻豆精品| 久久人妻熟女aⅴ| 777久久人妻少妇嫩草av网站| 美女脱内裤让男人舔精品视频| 国产精品久久久久久精品电影小说| 亚洲精品自拍成人| 亚洲国产精品成人久久小说| 亚洲成色77777| 成人国语在线视频| 国产三级黄色录像| 一级毛片我不卡| 老司机影院毛片| 中文字幕av电影在线播放| 中文字幕另类日韩欧美亚洲嫩草| 亚洲情色 制服丝袜| 90打野战视频偷拍视频| 超碰成人久久| 这个男人来自地球电影免费观看| 999精品在线视频| 亚洲国产精品一区二区三区在线| 亚洲精品在线美女| 90打野战视频偷拍视频| 亚洲精品av麻豆狂野| 91精品三级在线观看| 亚洲欧美成人综合另类久久久| 热re99久久精品国产66热6| 亚洲国产精品一区二区三区在线| av网站在线播放免费| 日韩视频在线欧美| av又黄又爽大尺度在线免费看| 国产亚洲av片在线观看秒播厂| 中国美女看黄片| 啦啦啦视频在线资源免费观看| 欧美xxⅹ黑人| 两个人看的免费小视频| 亚洲,欧美精品.| 久久久久精品人妻al黑| 国产精品三级大全| 男女床上黄色一级片免费看| 亚洲av男天堂| 国产av一区二区精品久久| 可以免费在线观看a视频的电影网站| 下体分泌物呈黄色| 精品免费久久久久久久清纯 | 制服人妻中文乱码| 99久久人妻综合| 国产成人一区二区三区免费视频网站 | 飞空精品影院首页| 99热网站在线观看| 狠狠精品人妻久久久久久综合| 最新在线观看一区二区三区 | 国产免费福利视频在线观看| 久久人人爽人人片av| 国产精品av久久久久免费| 亚洲精品一卡2卡三卡4卡5卡 | 丝袜美腿诱惑在线| 色播在线永久视频| 99国产精品免费福利视频| 女人爽到高潮嗷嗷叫在线视频| 中文字幕另类日韩欧美亚洲嫩草| 91精品国产国语对白视频| 人成视频在线观看免费观看| 九色亚洲精品在线播放| 精品国产一区二区久久| 国产主播在线观看一区二区 | 午夜精品国产一区二区电影| 狂野欧美激情性xxxx| 欧美人与善性xxx| 欧美乱码精品一区二区三区| 国产又爽黄色视频| 久久精品久久精品一区二区三区| 久久精品国产亚洲av高清一级| 999精品在线视频| 精品欧美一区二区三区在线| 在线观看人妻少妇| 黑人欧美特级aaaaaa片| 成人亚洲精品一区在线观看| 精品一区二区三区av网在线观看 | 午夜福利,免费看| 亚洲精品国产av成人精品| 国产男女超爽视频在线观看| 一区二区三区四区激情视频| 人成视频在线观看免费观看| 亚洲国产精品成人久久小说| 欧美在线一区亚洲| 天天躁夜夜躁狠狠躁躁| 可以免费在线观看a视频的电影网站| 在线精品无人区一区二区三| 50天的宝宝边吃奶边哭怎么回事| 人人妻人人爽人人添夜夜欢视频| 高清欧美精品videossex| 十八禁人妻一区二区| 丝袜喷水一区| 青青草视频在线视频观看| 大话2 男鬼变身卡| 成年人午夜在线观看视频| 人人妻人人爽人人添夜夜欢视频| 男男h啪啪无遮挡| 国产男女超爽视频在线观看| 黄网站色视频无遮挡免费观看| 亚洲黑人精品在线| 丝瓜视频免费看黄片| 看十八女毛片水多多多| 久久国产精品影院| 亚洲国产欧美一区二区综合| 啦啦啦啦在线视频资源| 色综合欧美亚洲国产小说| 亚洲 国产 在线| 国产视频首页在线观看| 青春草视频在线免费观看| 男男h啪啪无遮挡| 青春草视频在线免费观看| 丁香六月欧美| www.999成人在线观看| 亚洲精品国产一区二区精华液| 久久精品国产亚洲av涩爱| 免费在线观看视频国产中文字幕亚洲 | 午夜日韩欧美国产| 久久国产精品大桥未久av| 国产黄色视频一区二区在线观看| 欧美精品一区二区免费开放| 亚洲专区国产一区二区| 国产成人av教育| 9色porny在线观看| 每晚都被弄得嗷嗷叫到高潮| 国产成人av教育| 精品少妇内射三级| 色精品久久人妻99蜜桃| 中文字幕亚洲精品专区| 丰满人妻熟妇乱又伦精品不卡| 丝袜美腿诱惑在线| 亚洲欧美清纯卡通| 欧美日韩视频精品一区| 国产亚洲午夜精品一区二区久久| 欧美日韩综合久久久久久| 热99国产精品久久久久久7| 国产男女超爽视频在线观看| 免费看av在线观看网站| 亚洲精品乱久久久久久| 国产精品.久久久| 国产黄色视频一区二区在线观看| 欧美黄色淫秽网站| 高清视频免费观看一区二区| 精品福利观看| 国产一区二区在线观看av| 亚洲国产精品国产精品| 校园人妻丝袜中文字幕|