姚晶晶,韋存茜,孫夢捷
食品接觸材料中微塑料的釋放及檢測
姚晶晶,韋存茜,孫夢捷
(上海市質(zhì)量監(jiān)督檢驗技術(shù)研究院,上海 201114)
討論微塑料從食品包裝、餐具、廚具、加工機械等食品接觸材料中的釋放途徑和檢測技術(shù),為食品接觸材料中微塑料選擇和組合多樣化的分析方法提供建議,為食品接觸材料中微塑料及相關(guān)有毒有害物質(zhì)的監(jiān)測研究提供依據(jù)。首先概述食品接觸材料中微塑料的釋放途徑及影響因素,其次系統(tǒng)闡述食品接觸材料中微塑料的分離富集技術(shù),以及顯微鏡法、光散射法、光譜法和熱裂解氣相色譜質(zhì)譜法等多種檢測技術(shù),針對不同技術(shù)的適用范圍和特點進行比較和分析,并提出具有代表性的食品接觸用材料中微塑料從樣品處理到顆粒分析的框架和技術(shù)路線圖,以識別微塑料的化學(xué)成分、形貌、豐度、尺寸及分布等特性。針對不同的樣品和場景,有必要選擇和組合多樣化的技術(shù),以達到最優(yōu)的路徑,同時標準化的分析方法和檢測技術(shù)處理仍是食品接觸材料中微塑料風(fēng)險評估的一大挑戰(zhàn),還亟待提出更為規(guī)范的標準化操作流程和檢測技術(shù),以提高結(jié)果準確性。
食品接觸材料;微塑料;釋放;樣品前處理;檢測技術(shù)
微塑料(Microplastics,MPs)被認為是對環(huán)境至關(guān)重要的新興污染物。研究者將直徑小于5 mm的塑料顆粒定義為微塑料[1]。目前,微塑料沒有國際公認的定義,對納米塑料的尺寸分類仍然存在爭議,在ISO/TR 21960—2020及一些研究中將納米塑料尺寸范圍定義為1~1 000 nm[2-4]。EFSA在2016年發(fā)布的報告中將微塑料定義為從0.1 μm到5 mm的塑料顆粒[5-6]。依據(jù)產(chǎn)生途徑,微塑料可分為在人工生產(chǎn)過程中直接產(chǎn)生的原生微塑料和由塑料產(chǎn)品受到光照、外力、風(fēng)化等物理化學(xué)作用破壞而形成的次生微塑料[7]。這些不同來源的塑料顆粒釋放到環(huán)境中并最終可能通過水和空氣進入食物鏈[7-11]。全球多個國家均報道了在飲料、啤酒、牛奶、蜂蜜、海產(chǎn)品、蔬菜肉類等食品中發(fā)現(xiàn)了微塑料,并證實了微塑料在人體糞便、血液、胎盤中等的存在[12-15]。
最近的一些研究發(fā)現(xiàn),除了水源與空氣,食品加工過程、儲存過程、食用過程,甚至清洗過程中都有可能有微塑料的產(chǎn)生[7,16-20]。因此食品接觸材料(Food Contact Materials,F(xiàn)CM)中微塑料釋放的問題也日益引起人們廣泛關(guān)注。例如奶瓶奶嘴、外賣餐具、烘焙模具、可折疊電熱壺、水瓶、不粘鍋、電飯煲中的密封圈等常用于高溫高濕環(huán)境,在反復(fù)高溫水熱條件下易釋放大量的微塑料[21-28]。歐盟食品和飼料類快速預(yù)警系統(tǒng)(Rapid Alert System for Food and Feed,RASFF)將塑料食品包裝材料列為關(guān)注重點[29],并從2017年至2020年共通報食品、飼料以及食品相關(guān)產(chǎn)品中塑料顆粒、碎片等異物156例。然而,食品接觸材料中微塑料釋放的濃度普遍偏低,相關(guān)研究起步較晚,對其釋放微塑料的分離富集及識別是一項挑戰(zhàn)。
為了更好地理解食品接觸材料中微塑料如何被釋放和識別,筆者對食品接觸材料中微塑料的釋放途徑、影響因素及其檢測技術(shù)進行系統(tǒng)地闡述,并通過不同技術(shù)的比較,提出從樣品處理到顆粒分析的整個路線圖。
塑料由于來源豐富、價廉、可塑性強、力學(xué)性能好、物理化學(xué)穩(wěn)定性好等優(yōu)點,成為廣泛應(yīng)用的食品接觸材料,包括聚乙烯(Polyethylene,PE)、聚丙烯(Polypropylene,PP)、聚苯乙烯(Polystyrene,PS)、聚氯乙烯(Polyvinyl Chloride,PVC)、聚對苯二甲酸乙二醇酯(Polyethylene Terephthalat,PET)、聚偏二氯乙烯(Polyvinylidene Chloride,PVDC)、聚碳酸酯(Polycarbonate,PC)等。在食品的運輸和使用過程中,這些材料受到一定的物理、化學(xué)或生物作用(濕、熱、光、機械力、微生物等),導(dǎo)致它們破碎成不同形狀的微尺寸顆粒,即微塑料[30]。此外,降解過程不會停止,而是繼續(xù)將微塑料降解為納米尺寸的顆粒(納米塑料)(圖1)。
研究表明,溫度、蒸汽、外部機械力、微波輻射及光老化是造成食品接觸材料磨損、剝落并產(chǎn)生微塑料的主要原因。研究發(fā)現(xiàn)暴露在高溫下(100 ℃)的滅菌的奶瓶,其聚丙烯的有序結(jié)構(gòu)和無定型內(nèi)部結(jié)構(gòu)受到一定破壞,比未滅菌奶瓶釋放更多的微塑料顆粒[27]。餐盒、茶袋及紙杯也具有相似的結(jié)果,溫度的升高促進了塑料的磨損,增加了微塑料顆粒的釋放[31-34]。Sobhani等[35]發(fā)現(xiàn),在剪切、撕裂、切割或打開等食品包裝時,會有0.46~250個顆粒/cm微塑料的釋放。Du等[36]研究發(fā)現(xiàn)輕微機械力導(dǎo)致的食物或餐具與容器內(nèi)表面的摩擦可導(dǎo)致微塑料的剝落和污染。Luo等[37]發(fā)現(xiàn)洗碗海綿在使用時,機械摩擦可導(dǎo)致尼龍和聚酯微塑料的脫落。Winkler等[38]評估了一次性礦泉水瓶在機械力作用下微塑料的釋放情況,研究發(fā)現(xiàn),聚對苯二甲酸乙二酯瓶頸和高密度聚乙烯帽是微塑料的主要來源,特別是在延長機械應(yīng)力(開和關(guān)過程)的情況下。此外,在生產(chǎn)、運輸或其他過程的磨損也會積累微塑料的釋放,墨西哥對8個國際品牌的牛奶樣本進行分析發(fā)現(xiàn),熱塑性砜類聚合物微塑料存在于所有的分析樣本中,而它來源于牛奶加工過程中使用的薄膜過濾器的磨損[39]。礦泉水瓶在灌裝過程中,高壓和流體壓力在瓶體上產(chǎn)生剪切應(yīng)力,并最終產(chǎn)生刮擦力,也同樣會釋放微塑料[40-42]。
圖1 食品接觸材料中微塑料的釋放
食品接觸材料的樣品主要來自食品包裝、餐具廚具、食品加工機械等。不同類型的樣品,前處理有所不同。對于礦泉水、飲料等食品包裝樣品,由于其有機物基質(zhì)和復(fù)雜顆粒較少,可以直接采用過濾的方式將瓶中液體中的微塑料分離[43]。在一些情況下,為了研究特定條件下微塑料的產(chǎn)生會增加一些步驟,例如在研究機械作用對水瓶中微塑料釋放的影響,采用多次開合瓶和擠壓等預(yù)處理[38]。存在有機物復(fù)雜混合物(如礦物質(zhì)、脂肪及蛋白質(zhì))時,需要先進行特定的預(yù)處理。例如一些研究采用螯合劑(乙二胺四乙酸)和表面活性劑(十二烷基磺酸鈉)將鈣和鎂離子與螯合劑絡(luò)合,溶解鈣鎂碳酸鹽顆粒,以取得更好的樣品均勻性和高通量的過濾效果。對富含脂肪和蛋白質(zhì)等有機物的樣品,研究中普遍使用酸堿消化(NaOH、KOH、HNO3和HCl)、氧化劑(H2O2和芬頓試劑)和酶這幾種方法去除有機材料,減少微塑料鑒定過程中的干擾[44-45]。
對餐具、廚具等微塑料釋放的研究,研究者們大多是先模擬真實使用的場景,例如將奶瓶在高溫下進行滅菌[27],在紙杯和食品容器中注入合適溫度的水[34,46],用洗碗海綿在盤子上反復(fù)摩擦[37]或改變樣品儲存條件[47],隨后再將收集的溶液過濾分離。需要注意的是,由于食品接觸材料釋放的微塑料顆粒尺寸較小,對大多數(shù)樣品需要進一步進行濃縮和富集。例如一些研究中利用超濾、微濾、納濾、滲透、超速離心、旋轉(zhuǎn)蒸發(fā)、冷凍干燥等方法來收集更小尺寸的塑料顆粒[30, 48-52]。此外,固相微萃取技術(shù)也被用于微塑料顆粒的提取中。Ouyang等[53]基于固相微萃取技術(shù)建立了一種袋裝茶遷移過程中微塑料和初級芳香胺一體化富集預(yù)處理方法。這樣一體化的樣品預(yù)處理技術(shù)為食品安全樣品中微塑料和有害分子的一步法測定提供了新的思路和技術(shù)。
對食品接觸材料中微塑料的分析主要是對微塑料的物理特性(尺寸、形貌)和化學(xué)特性(微塑料成分的定性和定量)進行表征(表1)。目前文獻中使用的表征方法有顯微鏡法、光散射法、光譜法和熱裂解氣相色譜質(zhì)譜法。
表1 食品接觸材料中微塑料的分析方法及其特點
Tab.1 Analysis methods and characteristics of microplastics in food contact materials
2.2.1 顯微鏡法
顯微鏡是獲得微塑料樣品形態(tài)樣品的有力手段。其中,光學(xué)顯微鏡(OM)、熒光顯微鏡(FM)、電子顯微鏡(SEM/TEM)和共焦激光顯微鏡(CLSM)是最常用的分析方法。
光學(xué)顯微鏡可以根據(jù)形狀和顏色等顆粒形態(tài)特征識別微塑料。為了提高檢測的效率,常將樣品熒光染色后再結(jié)合熒光顯微鏡進行觀察計數(shù),可以更容易地對微塑料進行測定。這種方法也被用于聚酯水瓶、聚丙烯食品盒、聚苯乙烯盒、高密度聚乙烯袋、三聚氰胺碗等食品接觸材料中微塑料的研究[47, 54-55]。然而這種測試方法對大體積的樣品來說是耗時的,并且對粒徑小于50 μm的顆粒是不合適的。此外,塑料顆粒的老化和透明顆粒使目視法具有更大的挑戰(zhàn)性。因此,目前研究多是采用光譜與光學(xué)顯微鏡聯(lián)用的方法,能更準確地識別微塑料。掃描電鏡(SEM)可以提供微塑料的尺寸、形態(tài)等多種信息,高倍掃描電鏡還可以觀測到食品接觸材上的裂縫、表面裂紋、凹槽等,有利于分析微塑料的產(chǎn)生和降解模式[34, 56-57]。另外,SEM與能譜儀(EDS)可以獲得微塑料的元素組成,利于微塑料的溯源分析。Makhdoumi等[58]通過SEM-EDS發(fā)現(xiàn)聚乙烯微塑料從食品容器中釋放到食用醋中,并且除C外,還具有O、Al、Na、Cl等元素,從而推測這些元素可能來自塑料添加劑或周圍介質(zhì)中。透射電子顯微鏡(TEM)由于經(jīng)加速和聚集的電子束投射到非常薄的樣品上,具有很高的分辨力,且能夠提供顆粒內(nèi)部而非表面的信息,也常用于納米塑料的識別中[59-60]。另外,共焦激光顯微鏡(CLSM)在熒光顯微鏡成像的基礎(chǔ)上加裝了激光掃描裝置,經(jīng)常被用來研究熒光染色的納米塑料粒子在生物體內(nèi)的轉(zhuǎn)移[59]。Stock等[61]使用了共焦熒光顯微鏡研究了不同粒徑(1、4、10 μm)的球形熒光聚苯乙烯(PS)微塑料顆粒在胃腸道中的吸附和輸運的情況。
顯微鏡的技術(shù)可以提供食品接觸材料中微塑料顆粒的高分辨圖像和多層次信息,但只能對樣品特定區(qū)域進行測定,容易遺漏信息,導(dǎo)致結(jié)果偏差。此外,它們也不能提供微塑料化學(xué)成分更多的信息。
2.2.2 光散射法
光散射法是利用激光在微塑料的散射來獲得顆粒的物理信息。動態(tài)光散射(DLS)可以通過懸浮液的激光束強度波動對1~3 mm內(nèi)的顆粒進行測定。Oriekhova等[62]通過DLS測定了納米塑料懸浮液,以了解這些納米塑料顆粒表面電荷的變化。Deng等[32]將PE和PP食物容器在微波爐加熱后,利用DLS分析了浸出液中200~800 nm內(nèi)聚酯和聚丙烯的粒徑分布,并用SEM圖像加以佐證。激光衍射(LD)是另一種基于靜態(tài)激光散射的技術(shù),能夠測定10 nm~10 mm內(nèi)的顆粒,因此,可以同時表征多孔塑料、亞微米塑料[63]。Seghers等[64]指出由于DLS計算模型是基于球體的,激光衍射法高估了所有粒子的實際體積,并且來自基質(zhì)、聚集體或灰層殘留物的大顆粒污染物可能會掩蓋實際的分析物。此外,DLS沒有提供任何化學(xué)信息,無法區(qū)分形狀相似但化學(xué)成分不同的顆粒。
2.2.3 光譜法
紅外光譜和拉曼光譜由于非破壞性、高分辨率、低樣品量測試的特點經(jīng)常被應(yīng)用于食品接觸材料中微塑料的定性分析。值得注意的是,研究發(fā)現(xiàn)當PP、PE、PET、PS等包裝材料老化降解,并產(chǎn)生微塑料釋放到環(huán)境中時,其表面會發(fā)生一定的化學(xué)變化,明顯改變了原始的光譜圖,這為微塑料的成分鑒定帶來困難。因此一些研究者建議將聚合物的老化光譜納入數(shù)據(jù)庫,以獲得更準確的匹配效果[65]。由于食品接觸材料在使用過程中釋放微塑料的尺寸較小,目前的研究大多是將紅外光譜技術(shù)與成像技術(shù)結(jié)合的方式。受限于紅外的波長,顯微紅外(μ-FTIR)一般識別的最小尺寸為10~20 μm,可獲得顆粒成分、豐度、形貌、尺寸及分布等多層次的信息[28, 60, 66]。
O-PTIR光熱紅外顯微成像技術(shù)是一項快速簡單的非接觸式光學(xué)技術(shù),其空間分辨率可以提高至幾百納米,可直觀判斷亞微米尺度下塑料表面的降解情況。Su等[26]利用O-PTIR發(fā)現(xiàn)硅橡膠奶嘴蒸汽消毒后的表面及清洗后的水中出現(xiàn)了大量聚二甲基硅氧烷彈性體和聚酰胺的微(納米)塑料(尺寸為0.6~332 μm),并追蹤了奶嘴在蒸氣消毒不同時間后的老化降解過程,將塑料水解、氧化、刻蝕、顆粒遷移和脫落可視化表達。
顯微拉曼(μ-Raman)是食品接觸材料中微塑料檢測的有力手段。其識別的最小極限尺寸為1 μm,可以識別塑料瓶、玻璃瓶、飲料紙盒等食品包裝釋放的小于20 μm的微塑料顆粒[41]。由于μ-Raman可以獲取到波長600 cm?1以下的信息,更有利于鑒別出有機及無機的添加劑和涂料。但由于μ-Raman是通過物體表面的散射信號來確定物質(zhì)成分,對尺寸較小的顆粒普遍信號較弱,很多研究中需要采用增強技術(shù)提高信號強度[67-68]。Luo等[22]采用拉曼成像來掃描不粘鍋的表面,并收集光譜作為光譜矩陣,創(chuàng)建了一種新的混合算法來提取特氟龍微塑料,特別是納米塑料的極弱信號,以表征和量化微塑料和納米塑料。另外,值得注意的是,由于樣品中某些有機成分也會產(chǎn)生熒光,可能會影響檢測分析的準確性。可見,紅外光譜與拉曼光譜在識別微塑料時,各具優(yōu)勢,將2種光譜結(jié)合使用會更有利于微塑料的準確識別。
2.2.4 熱裂解氣相色譜質(zhì)譜法
熱裂解氣相色譜-質(zhì)譜(py-GC-MS)是表征食品接觸用材料中微塑料的一種有效技術(shù)。這種技術(shù)的一個主要優(yōu)點是Py-GC-MS對微小質(zhì)量的樣品具有很高的靈敏性,有利于識別納米塑料,并且在分析過程中可以同時表征聚合物本身和樣品中存在的有機添加劑。Gerhard等[69]對7種不同的嬰兒奶瓶中微塑料的釋放進行了研究。結(jié)果發(fā)現(xiàn)與其他研究中光譜結(jié)果不同,Py-GC-MS證明了并無PP和PA微塑料檢出,只有脂肪酸等從奶瓶中釋放。這可能是在瓶體生產(chǎn)中經(jīng)常用作脫模劑的脂肪酸酯等添加劑的遷移和沉淀的結(jié)果。遷移的添加劑可能導(dǎo)致微塑料顆粒的假陽性誤差,這是聚合物在受熱實驗條件下需要考慮的關(guān)鍵問題。Kirstein等[70]比較了μ-FTIR成像和Py-GCMS 2種方法被應(yīng)用于實際飲用水中微塑料的評估。2種方法都成功地測定了飲用水中低含量的微塑料顆粒。然而,μ-FTIR和Py-GCMS在MP含量總體較低的樣品中發(fā)現(xiàn)了不同的聚合物類型。因此,Py-GC-MS和光譜技術(shù)在鑒定微塑料方面的互補性也得到研究者的證明。在一項研究中發(fā)現(xiàn),相較于微衰減全反射傅里葉變換紅外光譜,Py-GC-MS能夠給出與添加劑相關(guān)的化學(xué)信息,但分析速度緩慢,且無法識別出某些合成纖維的成分[71]。由于大多數(shù)風(fēng)險評估研究都與顆粒的大小、形狀和數(shù)量有關(guān),像FTIR成像這樣的光譜技術(shù)是必不可少的,但對于建模、質(zhì)量平衡研究及其監(jiān)測,Py-GC/MS則是首選的方法。因此在工作流程中,應(yīng)結(jié)合2種技術(shù)進行識別和量化[72]。
從以上總結(jié)來看,有多種技術(shù)方法用于識別來源于食品接觸材料中微塑料的特性,并且它們各有優(yōu)缺點,需要結(jié)合使用以獲取最佳的實驗結(jié)果。目前,由于缺乏統(tǒng)一的試樣收集流程和檢測方法,各種實驗方案、數(shù)據(jù)采集和儀器的巨大差異也給結(jié)果的對比帶來了困難。目前市場上日益增多的食品接觸材料種類也增加了找到合適方法的挑戰(zhàn)性?;诖?,對目前文獻中所出現(xiàn)的食品接觸材料中微塑料的檢測方法,提出了一個具有代表性的檢測流程(圖2),包括微塑料的分離富集及其定性和定量所采用的方法、設(shè)備和技術(shù),為制定更適合食品接觸材料中微塑料的檢測方案提供依據(jù)。
如圖2所示,針對不同的情況采用不同的技術(shù)路線。首先,需要根據(jù)采樣的場景、研究目標以及樣品的特性選擇預(yù)處理(溫度、蒸汽、機械力、老化等實驗條件)或除去基質(zhì)雜質(zhì)(消化或礦物質(zhì)螯合等)的實驗步驟。隨后,根據(jù)顆粒尺寸采取不同的分離富集方式。通過濃縮和分離過程后,對微塑料進行化學(xué)成分定性定量、顆粒形貌、豐度、尺寸及分布等檢測分析,根據(jù)儀器的適用范圍可選擇最少且最優(yōu)的組合方式。值得注意的是,需要避免各種來源(空氣、實驗服、儀器設(shè)備等)的二次污染。同時,在實驗過程中需要空白實驗確認在處理和分析過程中是否有其他污染。
圖2 食品接觸材料中微塑料的檢測分析示例框架
綜上所述,概述了食品接觸材料釋放微塑料的影響因素,總結(jié)了微塑料的分離富集方法,并闡述了顯微鏡法、光散射法、光譜法及熱裂解氣相色譜質(zhì)譜法等多種最新的分析技術(shù)。通過比較它們的適用范圍和特點,提出了具有代表性的食品接觸用材料中微塑料從樣品處理到顆粒分析的框架和技術(shù)路線圖。針對不同的樣品特性、采樣場景和研究目的,有必要選擇和組合多樣化的技術(shù),以達到最優(yōu)的路徑。
目前來說,具有標準化的分析方法和檢測技術(shù)處理仍是食品接觸材料中微塑料風(fēng)險評估的一大挑戰(zhàn),還亟待提出更為規(guī)范的標準化操作流程和檢測技術(shù),以提高結(jié)果準確性。另外,需要注意的是食品接觸材料中微塑料尺寸普遍較小,而納米塑料即使采用多種表征技術(shù)也難以被準確識別。因此納米顆粒的分離富集、表征分析及其毒理學(xué)評估數(shù)據(jù)的進一步突破也是食品接觸材料中微塑料風(fēng)險評估的關(guān)鍵。同時,添加劑等化學(xué)物質(zhì)的遷移也可能造成微塑料假陽的現(xiàn)象,此類化學(xué)物質(zhì)在高溫等條件下的遷移及其與微塑料的相互作用等研究也需要進一步得到關(guān)注。
[1] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at Sea: Where is all the Plastic?[J]. Science, 2004, 304(5672): 838.
[2] GIGAULT J, TER HALLE A, BAUDRIMONT M, et al. Current Opinion: What is a Nanoplastic?[J]. Environmental Pollution, 2018, 235: 1030-1034.
[3] SCHWAFERTS C, NIESSNER R, ELSNER M, et al. Methods for the Analysis of Submicrometer- and Nanoplastic Particles in the Environment[J]. TrAC Trends in Analytical Chemistry, 2019, 112: 52-65.
[4] ISO/TR 21960: 2020: DS/CEN ISO/TR 21960, Plastics-Environmental Aspects-State of Knowledge and Methodologies[S].
[5] HOOGENBOOM L A P. Statement: Presence of Microplastics and Nanoplastics in Food, with Particular Focus on Seafood[J]Efsa Journal, 2016, 14(6): 04501.
[6] SHOPOVA S, SIEG H, BRAEUNING A, et al. Risk Assessment and Toxicological Research on Micro- and Nanoplastics after Oral Exposure via Food Products[J]. EFSA Journal European Food Safety Authority, 2020, 18: 181102.
[7] 胡佳玲, 張?zhí)忑? 陳杰, 等. 微塑料在食品中的來源及其檢測技術(shù)研究進展[J]. 分析測試學(xué)報, 2021, 40(11): 1672-1680.
HU Jia-ling, ZHANG Tian-long, CHEN Jie, et al. Research Progresses on Source of Microplastics in Food and Their Identification Technology[J]. Journal of Instrumental Analysis, 2021, 40(11): 1672-1680.
[8] TOUSSAINT B, RAFFAEL B, ANGERS-LOUSTAU A, et al. Review of Micro- and Nanoplastic Contamination in the Food Chain[J]. Food Additives & Contaminants Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2019, 36(5): 639-673.
[9] OKEKE E S, OKOYE C O, ATAKPA E O, et al. Microplastics in Agroecosystems-Impacts on Ecosystem Functions and Food Chain[J]Resources Conservation and Recycling, 2022, 177: 105961.
[10] CVERENKAROVA K, VALACHOVICOVA M, MACKULAK T, et al. Microplastics in the Food Chain[J]Life-Basel, 2021, 11(12): 1349.
[11] MERCOGLIANO R, AVIO C G, REGOLI F, et al. Occurrence of Microplastics in Commercial Seafood under the Perspective of the Human Food Chain a Review[J]. Journal of Agricultural and Food Chemistry, 2020, 68(19): 5296-5301.
[12] YAN Ze-hua, LIU Ya-fei, ZHANG Ting, et al. Analysis of Microplastics in Human Feces Reveals a Correlation between Fecal Microplastics and Inflammatory Bowel Disease Status[J]. Environmental Science & Technology, 2022, 56(1): 414-421.
[13] ZHANG J J, WANG L, TRASANDE L, et al. Occurrence of Polyethylene Terephthalate and Polycarbonate Microplastics in Infant and Adult Feces[J]Environmental Science & Technology Letters, 2021, 8(11): 989-994.
[14] LESLIE H A, VAN VELZEN M J M, BRANDSMA S H, et al. Discovery and Quantification of Plastic Particle Pollution in Human Blood[J]. Environment International, 2022, 163: 107199.
[15] RAGUSA A, SVELATO A, SANTACROCE C, et al. Plasticenta: First Evidence of Microplastics in Human Placenta[J]. Environment International, 2021, 146: 106274.
[16] BAI C L, LIU L Y, HU Y B, et al. Microplastics: A Review of Analytical Methods, Occurrence and Characteristics in Food, and Potential Toxicities to Biota[J]Science of the Total Environment, 2022, 806: 150263.
[17] KWON J H, KIM J W, PHAM T D, et al. Microplastics in Food: A Review on Analytical Methods and Challenges[J]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6710.
[18] BAI Cui-lan, LIU Liang-ying, GUO Jia-liang, et al. Microplastics in Take-out Food: Are we over Taking It?[J]. Environmental Research, 2022, 215: 114390.
[19] WEISSER J, BEER I, HUFNAGL B, et al. From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water[J]. Water, 2021, 13(6): 841.
[20] JIN Meng-ke, WANG Xue, REN Tao, et al. Microplastics Contamination in Food and Beverages: Direct Exposure to Humans[J]. Journal of Food Science, 2021, 86(7): 2816-2837.
[21] HE Ying-jie, QIN Yan, ZHANG Tie-li, et al. Migration of (Non-) Intentionally Added Substances and Microplastics from Microwavable Plastic Food Containers[J]. Journal of Hazardous Materials, 2021, 417: 126074.
[22] LUO Yun-long, GIBSON C T, CHUAH C, et al. Raman Imaging for the Identification of Teflon Microplastics and Nanoplastics Released from Non-Stick Cookware[J]. The Science of the Total Environment, 2022, 851: 158293.
[23] SCHWABL P. Microplastics in Hot Water[J]. Nature Food, 2020, 1(11): 671-672.
[24] SHI Y, LI D, XIAO L, et al. The Influence of Drinking Water Constituents on the Level of Microplastic Release from Plastic Kettles[J]Journal of Hazardous Materials, 2022, 425: 127997.
[25] KEDZIERSKI M, LECHAT B, SIRE O, et al. Microplastic Contamination of Packaged Meat: Occurrence and Associated Risks[J]. Food Packaging and Shelf Life, 2020, 24: 100489.
[26] SU Yu, HU Xi, TANG Hong-jie, et al. Steam Disinfection Releases Micro(Nano) Plastics from Silicone- Rubber Baby Teats as Examined by Optical Photothermal Infrared Microspectroscopy[J]. Nature Nanotechnology, 2022, 17(1): 76-85.
[27] LI D Z, SHI Y H, YANG L M, et al. Microplastic Release from the Degradation of Polypropylene Feeding Bottles During Infant Formula Preparation[J]Nature Food, 2020, 1(11): 746.
[28] ZHOU X J, WANG JREN J F. Analysis of Microplastics in Takeaway Food Containers in China Using FPA-FTIR Whole Filter Analysis[J]Molecules, 2022, 27(9): 2646.
[29] 寇筱雪, 黃華軍, 蔡汶靜, 等. 食品接觸材料檢測技術(shù)新進展[J]. 分析測試學(xué)報, 2022, 41(3): 409-417.
KOU Xiao-xue, HUANG Hua-jun, CAI Wen-jing, et al. New Progress on Detection Techniques for Food Contact Materials[J]. Journal of Instrumental Analysis, 2022, 41(3): 409-417.
[30] JADHAV E, SINGH SANKHLA M, BHAT R, et al. Microplastics from Food Packaging: An Overview of Human Consumption, Health Threats, and Alternative Solutions[J]. Environmental Nanotechnology Monitoring & Management, 2021, 16(1-4): 100608.
[31] LIU G Q, WANG J, WANG M J, et al. Disposable Plastic Materials Release Microplastics and Harmful Substances in Hot Water[J]Science of the Total Environment, 2022, 818: 151685.
[32] DENG Jing-yu, IBRAHIM M S, TAN Lang-yang, et al. Microplastics Released from Food Containers can Suppress Lysosomal Activity in Mouse Macrophages[J]. Journal of Hazardous Materials, 2022, 435: 128980.
[33] HERNANDEZ L M, XU E G, LARSSON H C E, et al. Plastic Teabags Release Billions of Microparticles and Nanoparticles into Tea[J]. Environmental Science & Technology, 2019, 53(21): 12300-12310.
[34] RANJAN V P, JOSEPH A, GOEL S. Microplastics and other Harmful Substances Released from Disposable Paper Cups into Hot Water[J]. Journal of Hazardous Materials, 2021, 404: 124118.
[35] SOBHANI Z, LEI Yong-jia, TANG You-hong, et al. Microplastics Generated when Opening Plastic Packaging[J]. Scientific Reports, 2020, 10(1): 4841.
[36] DU Fang-ni, CAI Hui-wen, ZHANG Qun, et al. Microplastics in Take-out Food Containers[J]. Journal of Hazardous Materials, 2020, 399: 122969.
[37] LUO Y L, QI F J, GIBSON C T, et al. Investigating Kitchen Sponge-Derived Microplastics and Nanoplastics with Raman Imaging and Multivariate Analysis[J]Science of the Total Environment, 2022, 824: 153963.
[38] WINKLER A, SANTO N, ORTENZI M A, et al. Does Mechanical Stress Cause Microplastic Release from Plastic Water Bottles?[J]. Water Research, 2019, 166: 115082.
[39] KUTRALAM-MUNIASAMY G, PéREZ-GUEVARA F, ELIZALDE-MARTíNEZ I, et al. Branded Milks - are they Immune from Microplastics Contamination?[J]. The Science of the Total Environment, 2020, 714: 136823.
[40] AMIN A. Occurrence of Microplastic Particles in the most Popular Iranian Bottled Mineral Water Brands and an Assessment of Human Exposure[J]. Journal of Water Process Engineering, 2021, 39: 1-8.
[41] SCHYMANSKI D, GOLDBECK C, HUMPF H U, et al. Analysis of Microplastics in Water by Micro-Raman Spectroscopy: Release of Plastic Particles from Different Packaging into Mineral Water[J]. Water Research, 2018, 129: 154-162.
[42] O?MANN B E, SARAU G, HOLTMANNSP?TTER H, et al. Small-Sized Microplastics and Pigmented Particles in Bottled Mineral Water[J]. Water Research, 2018, 141: 307-316.
[43] SRIDHAR A, KANNAN D, KAPOOR A, et al. Extraction and Detection Methods of Microplastics in Food and Marine Systems: A Critical Review[J]. Chemosphere, 2022, 286: 131653.
[44] DIAZ-BASANTES M, CONESA J A, FULLANA A. Microplastics in Honey, Beer, Milk and Refreshments in Ecuador as Emerging Contaminants[J]. Sustainability, 2020, 12(14): 5514.
[45] AFRIN S, RAHMAN M M, HOSSAIN M N, et al. Are There Plastic Particles in My Sugar? A Pioneering Study on the Characterization of Microplastics in Commercial Sugars and Risk Assessment[J]The Science of the Total Environment, 2022, 837: 155849.
[46] GUAN Qing-fang, YANG H, ZHAO Y, et al. Microplastics Release from Victuals Packaging Materials during Daily Usage[J]. EcoMat, 2021, 3(3): 12107.
[47] HEE Y Y, WESTON K, SURATMAN S. The Effect of Storage Conditions and Washing on Microplastic Release from Food and Drink Containers[J]. SSRN Electronic Journal, 2021: 100826.
[48] K?PPLER A, WINDRICH F, L?DER M G J, et al. Identification of Microplastics by FTIR and Raman Microscopy: A Novel Silicon Filter Substrate Opens the Important Spectral Range below 1 300 cm?1for FTIR Transmission Measurements[J]. Analytical and Bioanalytical Chemistry, 2015, 407(22): 6791-6801.
[49] HILDEBRANDT L, VOIGT N, ZIMMERMANN T, et al. Evaluation of Continuous Flow Centrifugation as an Alternative Technique to Sample Microplastic from Water Bodies[J]. Marine Environmental Research, 2019, 151: 104768.
[50] O?MANN B E, SARAU G, SCHMITT S W, et al. Development of an Optimal Filter Substrate for the Identification of Small Microplastic Particles in Food by Micro-Raman Spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2017, 409(16): 4099-4109.
[51] LABORDA F, BOLEA E, CEPRIá G, et al. Detection, Characterization and Quantification of Inorganic Engineered Nanomaterials: A Review of Techniques and Methodological Approaches for the Analysis of Complex Samples[J]. Analytica Chimica Acta, 2016, 904: 10-32.
[52] LI P, KUMAR A, MA J, et al. Density Gradient Ultracentrifugation for Colloidal Nanostructures Separation and Investigation[J]Science Bulletin, 2018, 63(10): 645-662.
[53] OUYANG Xiao-yan, HU Yu-ling, LI Gong-ke. Integrated Sample-Pretreatment Strategy for Separation and Enrichment of Microplastics and Primary Aromatic Amines in the Migration of Teabag[J]. Journal of Separation Science, 2022, 45(4): 929-937.
[54] MASON S A, WELCH V G, NERATKO J. Synthetic Polymer Contamination in Bottled Water[J]. Frontiers in Chemistry, 2018, 6: 407.
[55] KANKANIGE D, BABEL S. Smaller-Sized Micro-Plastics (MPs) Contamination in Single-Use PET-Bottled Water in Thailand[J]. The Science of the Total Environment, 2020, 717: 137232.
[56] MARAZUELA M D, KLAIBER M, MORENO- GORDALIZA E, et al. Safety Assessment of Commercial Antimicrobial Food Packaging: Triclosan and Microplastics, A Closer Look[J]Food Packaging and Shelf Life, 2022, 31: 100780.
[57] FADARE O O, WAN Bin, GUO Liang-hong, et al. Microplastics from Consumer Plastic Food Containers: Are we Consuming It?[J]. Chemosphere, 2020, 253: 126787.
[58] MAKHDOUMI P, NAGHSHBANDI M, GHADERZADEH K, et al. Micro-Plastic Occurrence in Bottled Vinegar: Qualification, Quantification and Human Risk Exposure[J]Process Safety and Environmental Protection, 2021, 152: 404-413.
[59] WANG Qiang-qiang, BAI Jia-lei, NING Bao-an, et al. Effects of Bisphenol a and Nanoscale and Microscale Polystyrene Plastic Exposure on Particle Uptake and Toxicity in Human Caco-2 Cells[J]. Chemosphere, 2020, 254: 126788.
[60] SONG Ke, DING Run-run, SUN Cai-yun, et al. Microparticles and Microplastics Released from Daily Use of Plastic Feeding and Water Bottles and Plastic Injectors: Potential Risks to Infants and Children in China[J]. Environmental Science and Pollution Research International, 2021, 28(42): 59813-59820.
[61] STOCK V, B?HMERT L, LISICKI E, et al. Uptake and Effects of Orally Ingested Polystyrene Microplastic Particles in Vitro and in Vivo[J]. Archives of Toxicology, 2019, 93(7): 1817-1833.
[62] ORIEKHOVA O, STOLL S. Heteroaggregation of Nanoplastic Particles in the Presence of Inorganic Colloids and Natural Organic Matter[J]. Environmental Science: Nano, 2018, 5(3): 792-799.
[63] XU R L. Light Scattering: A Review of Particle Characterization Applications[J]Particuology, 2015, 18: 11-21.
[64] SEGHERS J, STEFANIAK E A, LA SPINA R, et al. Preparation of a Reference Material for Microplastics in Water-Evaluation of Homogeneity[J]. Analytical and Bioanalytical Chemistry, 2022, 414(1): 385-397.
[65] FERNANDEZ-GONZALEZ V, ANDRADE-GARDA J M, LOPEZ-MAHIA P, et al. Impact of Weathering on the Chemical Identi Fication of Microplastics from Usual Packaging Polymers in the Marine Environment[J]Analytica Chimica Acta, 2021, 1142: 179-188.
[66] LUO X, WANG Z Q, YANG L, et al. A Review of Analytical Methods and Models Used in Atmospheric Microplastic Research[J]Science of the Total Environment, 2022, 828: 154487.
[67] K?PPLER A, FISCHER D, OBERBECKMANN S, et al. Analysis of Environmental Microplastics by Vibrational Microspectroscopy: FTIR, Raman or Both?[J]. Analytical and Bioanalytical Chemistry, 2016, 408(29): 8377-8391.
[68] LIANG Z, CHU Y, GEN M, et al. Single-particle Raman Spectroscopy for Studying Physical and Chemical Processes of Atmospheric Particles[J]Atmospheric Chemistry and Physics, 2022, 22(5): 3017-3044.
[69] GERHARD M N, SCHYMANSKI D, EBNER I, et al. Can the Presence of Additives Result in False Positive Errors for Microplastics in Infant Feeding Bottles?[J]Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 2022, 39(1): 185-197.
[70] KIRSTEIN I V, HENSEL F, GOMIERO A, et al. Drinking Plastics? - Quantification and Qualification of Microplastics in Drinking Water Distribution Systems by μFTIR and Py-GCMS[J]. Water Research, 2021, 188: 116519.
[71] PE?ALVER R, ARROYO-MANZANARES N, LóPEZ- GARCíA I, et al. An Overview of Microplastics Characterization by Thermal Analysis[J]. Chemosphere, 2020, 242: 125170.
[72] PRIMPKE S, FISCHER M, LORENZ C, et al. Comparison of Pyrolysis Gas Chromatography/Mass Spectrometry and Hyperspectral FTIR Imaging Spectroscopy for the Analysis of Microplastics[J]. Analytical and Bioanalytical Chemistry, 2020, 412(30): 8283-8298.
Release and Detection of Microplastics in Food Contact Materials
YAO Jing-jing, WEI Cun-qian, SUN Meng-jie
(Shanghai Institute of Quality Inspection and Technical Research, Shanghai 201114, China)
The work aims to discuss the release pathway and detection technology of microplastics from food packaging, tableware, kitchenware, processing machinery and other food contact materials, so as to provide suggestions for the selection of microplastics in food contact materials and analysis methods of diversified combinations, and provide basis for monitoring and research of microplastics and related toxic and harmful substances in food contact materials. The release pathways and affecting factors of microplastics in food contact materials were overviewed. The separation and enrichment technology of microplastics in food contact materials, as well as various detection technologies such as microscopy, light scattering, spectroscopy and pyrolysis gas chromatography-mass spectrometry were systematically expounded. The application scope and characteristics of different technologies were compared and analyzed, and the framework and technical pathway of representative microplastics in food contact materials from sample treatment to particle analysis were put forward to identify the chemical composition, morphology, abundance, size and distribution of microplastics. For different samples and scenarios, it is necessary to select and combine a variety of technologies to achieve the optimal path. At the same time, standardized analysis methods and detection technologies are still a big challenge for microplastics risk assessment in food contact materials. More standardized operating procedures and detection technologies are needed to improve the accuracy of results.
food contact materials; microplastic; release; sample pretreatment; identification technology
O657
A
1001-3563(2023)19-0033-09
10.19554/j.cnki.1001-3563.2023.19.005
2023-06-08
上海市2022年度“科技創(chuàng)新行動計劃”啟明星項目(揚帆專項)(22YF1444700);上海市質(zhì)量監(jiān)督檢驗技術(shù)研究院科技項目(KY-2021-16-QH);上海市科委研發(fā)公共服務(wù)平臺項目(14DZ2293000)
責任編輯:曾鈺嬋