• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Variable precipitation behaviors of Laves phases in an ultralight Mg-Li-Zn alloy

    2023-10-15 12:09:00WeixinLouHongoXieXiooZhoJunyunBiHehngZhngYiWngXinzeLiHuchengPnYupingRenGowuQin
    Journal of Magnesium and Alloys 2023年6期

    Weixin Lou ,Hongo Xie,? ,Xioo Zho ,Junyun Bi ,Hehng Zhng ,Yi Wng ,Xinze Li,Hucheng Pn,Yuping Ren,c,Gowu Qin

    aKey Laboratory for Anisotropy and Texture of Materials (Ministry of Education),School of Materials Science and Engineering,Northeastern University,Shenyang 110819,China

    b State Key Laboratory of Rolling and Automation,Northeastern University,Shenyang 110819,China

    c Research Center for Metal Wires,Northeastern University,Shenyang 110819,China

    Abstract Precipitation habits plays a decisive role in strengthening materials,especially for Mg alloys the non-basal plane precipitation is necessary but very limited.Generally,the precipitates would nucleate and grow up in a specific habit plane owing to the constraint of free-energy minimization of the system.Herein,in an aged ultralight Mg-Li-Zn alloy,we confirmed that the precipitates dominated by C15 Laves structure could form in a variety of habit planes,to generate three forms of strengthening-phases,i.e.,precipitate-rod,precipitate-lath,and precipitate-plate.Among which,the precipitate-plates are on basal plane as usually but precipitate-rods/laths are on non-basal plane,and such non-basal precipitates would transform into the basal (Mg,Li)Zn2 Laves structure with prolonged aging.These findings are interesting to understand the precipitation behaviors of multi-domain Laves structures in hexagonal close-packed crystals,and expected to provide a guidance for designing ultralight high-strength Mg-Li based alloys via precipitation hardening on the non-basal planes.

    Keywords: Laves phase;Precipitation;Habit plane;Orientation;Magnesium alloys.

    1.Introduction

    Precipitation hardening is one of effective strategies in strengthening of materials,in which the precipitation habits play a crucial role in determining the mechanical properties[1–5].And it is generally accepted now that the precipitates nucleate and grow up in a specific habit plane,for example,typically theθseries precipitates form in the {001}Alplanes[6],theβseries precipitates generate in the {1010}Mgprismatic planes [7],or theT1phase,Ωphase,andγ’’ phase grow up in the close-packed planes(basal planes,i.e.,{111}Alor {0001}Mgplanes) [8–10].For these specific precipitates,their different precipitation behaviors along the given habit planes can minimize total free energy of a system when diffusion is enabled.

    Laves phase is a class of crystalline compounds composed of the topologically close-packed atomic-layers [11,12].So far,it is reported that more than 900 kinds of Laves phases have been confirmed experimentally [13] in metallic alloys[11–14],inorganic colloids [15],and soft matters [16].In aged light alloys,the Laves phase is also considered to be a strengthening phase,such as theηphase in the Al-Zn-Mg-Cu alloy [17],theβ2’ phase in the Mg-Zn alloy [1,18],and the Al2Ca phase in the Mg-Al-Ca alloy [19,20],usually lying on the low-energy close-packed planes like a plate.In a recent study,however,rod-shaped precipitates associated with the Laves phase formed perpendicular to the basal plane has been confirmed in the Mg-Zn alloy [21].Atomic-scale high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM) observation indicated that these precipitaterods,β1’ phase,containing two-dimensional five-fold symmetry locally and short-range ordered C14 and C15 Laves structures grow up on the {0001}Mgbasal plane,while periodical arrangement along the [0001]Mgdirection [21].Confirmation of the elusiveβ1’ phase in Mg-Zn binary system means that the Laves structures can not only precipitation in the low-energy basal plane.

    Mg-Li based alloys are the lightest structural metallic materials,however,their low strength and poor corrosion resistance,together with thermal instability have limited their wider applications[22–24].The addition of Zn to Mg-Li alloy can induce the precipitation ofθ-MgLiZn(fcc,a=0.744 nm)phase in theα-Mg matrix,resulting in an increase of strength[22,25,42].However,it is well known that such basal precipitation ofθ-MgLiZn has limited contribution to the improvement of strength.On the other hand,the understanding of aging precipitation behaviors of Zn-containing Mg-Li alloys are very limited up to date,and the fine structure of the precipitate,such as the so-called fccθ-MgLiZn phase,has never been confirmed by any atomic-scale HAADF-STEM observation.The lack of deep understanding of the precipitation behavior limits the further development of Mg-Li-Zn alloys.

    Here,in an aged ultralight Mg-4Li-4Zn(wt.%)alloy,using aberration-corrected HAADF-STEM technique,we confirmed that (Mg,Li)Zn2C15 Laves structure dominated precipitates can form not only on the low-energy basal plane,but also on the prismatic planes,even perpendicular to the basal plane.A five-fold Laves multi-domain structure assembled by C15 Laves phases without any translational periodicity was thus been discovered.We believe that these findings are important for understanding the formation mechanism of multi-domain Laves structures,and expected to provide a meaningful guidance to design ultralight high-strength Mg-Li based alloys by tuning non-basal plane precipitation hardening.

    2.Experimental procedures

    The alloy used in this experiment was melted in a vacuum induction furnace to obtain a Mg-4Li-4Zn(wt.%)alloy by using pure magnesium (99.9 wt%),pure zinc (99.9 wt.%),and Mg-10 wt.% Li master alloy.The molten alloy was stirred and kept at 760 °C for 10 min and poured into a steel mold preheated to 300 °C.Then,the ingot was solution treated at 450 °C for 12 h,followed by water quenching and cut the ingot into small pieces of 10 × 10 × 10 mm.Finally,aging at 100 and 150 °C in oil-bath furnace.Disks of the TEM specimens with a diameter of 3 mm manually ground to 60 μm and prepared by twin-jet electropolished(TenuPol-5)at roomtemperature,using a phosphoric acid: ethanol=3:5 solution.Then,the TEM specimens were slightly trimmed with Gatan PIPS 695 (3.0 kV ion-gun emergy under a 3.5°milling angle).TEM and STEM observations were carried out using JEMARM200F at an accelerating voltage of 200 kV,equipped with probe Cs corrector and cold-field emission gun.The probe convergence was 25 mrad which yielded a probe size of less than 0.1 nm,and the camera length was set to 8 cm which yielded a collection semi-angle of 48–327 mrad.

    The first-principles calculations were conducted using the Vienna ab-initio simulation package (VASP) [26] with projector augmented-wave (PAW) [27,28] pseudopotentials.The exchange-correlation potential was described by the generalized gradient approximation (GGA) functional of Perdew,Burke and Ernzerhof (PBE) [29].A high plane-wave cutoff energy of 400 eV and dense k-point sampling based Gammacentered Monkhorst-pack scheme were employed to guarantee high numerical accuracy.The geometry optimization process was performed using a conjugate gradient algorithm until the final force on each atom was less than 0.02 eV/?A.

    The formation energy,Ef,can approximately characterize the stability of compounds in thermodynamics [30].And the formation energy in present calculation,Ef,was calculated as following equation:

    Here,E(MgxLiyZnz),E(Mg),E(Li),and E(Zn)represent the total energy of the compound,the energies of Mg,Li and Zn unit cells,respectively.

    3.Results and discussion

    To better understand and describe the multi-domain Laves structures precipitated in the Mg-Li-Zn alloy,Fig.1 provides a detailed schematic diagram of typical Laves structures.Atomic icosahedral clusters have a high stacking density and a low free energy of system [31,32],and an atomic number of “…1–5–1–5–1…” icosahedral cluster model is exhibited in Fig.1a,suggesting that the central atom (yellow atom-sphere) is in contact with 12 atom-spheres.Generally,the Laves structures can be considered as a periodic arrangement of icosahedron columns (Fig.1b) along the pseudo fivefold axis promoting the formation of the minimum rhomboid structural unit (Fig.1c),and self-assembly of these rhomboid tiling patterns under some geometrical constraints to generate the present Laves phases.From the viewpoint of crystallography characteristics,there are only three types of Laves structures frequently observed to date[11–13]:(ⅰ)C14 Laves phase(Fig.1d,representative alloy: MgZn2),can be considered as the rhomboid struct-ural units are periodically arranged along the [0001] direction to form a hexagonal close-packed crystal (hcp,space group: P63/mmc),which has a stacking sequence of“…AB…”;(ⅱ)C15 Laves phase(Fig.1e,representative alloy: MgCu2);can be regarded as the rhomboid structural units are periodically arranged in the 〈111〉 directions to build a face-centered cubic structure (fcc,space group:Fd3m),with a stacking sequence of “…ABC…”;(ⅲ) C36 Laves phase (Fig.1f,representative alloy: MgNi2),it can be considered as double-layer rhomboid structural units are periodically arranged along the [0001] direction to generate a di-hcp crystal (space group: P63/mmc),and with a stacking sequence of “…ABA’B’…”.

    Fig.1.Schematic diagram of the Laves phases.(a) Three-dimensional atomic structure model of the icosahedron.(b) Modeled atomic structure of the icosahedron column.(c) Modeled atomic arrangement of the rhomboid structural unit,which is constituting the Laves phase.(d–f) Structural models of the three Laves phases: (d) C14 type Laves phase;(e) C15 type Laves phase;(f) C36 type Laves phase.

    The TEM bright-field images of the Mg-4Li-4Zn alloy after isothermally aged at 100 °C for 400 h,viewed along the [0001]α,[1100]α,and [1120]αdirections,are shown in Fig.2a–c.And the insets are the corresponding select-area electron diffraction (SAED) patterns.From these images,it can be found that there are high-density variform precipitates with different sizes distributed in theα-Mg matrix.And these precipitates can be summarized into the following three forms: (ⅰ) rod-shaped precipitates,which are perpendicular to the {0001}αbasal planes;(ⅱ) lath-shaped precipitates,they have three variants and with one of {1120}αhabit planes;(ⅲ)plate-shaped precipitates,which are parallel to the {0001}αbasal planes.The three kinds of precipitates are marked by red,blue,and green dashed circles,respectively,in Fig.2a–c.Local parts in Fig.2 are enlarged and shown in Fig.2d–f.High-resolution TEM image of a precipitate-rod is displayed in Fig.2d,under this imaging condition,the structural characteristics of the precipitate-rod would not be well represented.The corresponding SAED pattern presented in Fig.2g indicates that the precipitate-rod has sharp diffraction spots,but without any symmetry on the basal plane,which is different from theβ1’ precipitates in binary Mg-Zn alloy [21].Periodic diffraction lattice (Fig.2h) of the precipitate-lath indicates that the structure is totally different from the precipitaterod,means that the precipitate-lath has a strict orientation relationship with theα-Mg matrix,and high-resolution TEM image (Fig.2e) clearly shows that the precipitate-lath formed along the (2110)αprismatic plane.High-resolution TEM image (Fig.2f) and the corresponding SAED pattern (Fig.2i)indicate that the precipitate-plates should have an AB2type Laves phase characteristic,and similar results have been reported in other alloy systems [12,14,18].

    Fig.2.TEM images and corresponding SAED patterns of the Mg-4Li-4Zn alloy after isothermally aged at 100 °C for 400 h The electron beam is parallel to the (a,d–i) [0001]α,(b) [1100]α,and (c) [1120]α directions.(a–c) Bright-field TEM images.(d–f) High-resolution TEM images.The insets in Fig.2a–c,and Figs.2g–i,are the SAED patterns.The representative precipitate-rod,precipitate-lath,and precipitate-plate in Fig.2a–c have been marked by red,blue,and green dashed circles,respectively.

    To precisely reveal the structures and atomic coordinates of these precipitates,atomic imaging by HAADF-STEM was used.Fig.3a provides a[0001]αHAADF-STEM image showing a precipitate-rod with bright-contrast in theα-Mg matrix.Each bright dot inside the precipitate-rod represents a Zn-rich atomic-column because the brightness of individual atomic-columns in the HAADF-STEM image approximates the square of the average atomic numbers (the atom number is 3 for Li,12 for Mg,and 30 for Zn) [33–35].Local part in Fig.3a is further enlarged and presented in Fig.3b,the atomicscale HAADF-STEM image indicates the precipitate-rod has a Laves structure characteristic,and the “…ABC…” stacking sequence is consistent with the C15 Laves phase illustrated in Fig.1e.In the Mg-Li-Zn system,the atomic-radius of Mg,Li,and Zn is 1.60,1.54,and 1.39 ?A,respectively,in which the Li atomic-radius is very close to that of Mg,means the atomic position of Mg in the Laves structure can be substituted easily by Li atoms.Consequently,local chemical composition of the C15 Laves structure can be represented as (Mg,Li)Zn2.Fig.3c displays a minimum rhomboid structural unit model for the (Mg,Li)Zn2Laves phase,which l value of the side length is measured to be ~4.54 ?A

    Fig.3.HAADF-STEM images of the precipitate-rod and the first-principles calculations of C15 Laves structure.The electron beam is parallel to the [0001]α direction.(a) Low-magnification HAADF-STEM images.(b) Local part in Fig.3a is further enlarged,atomic-scale HAADF-STEM image indicates the precipitate-rod locally with a C15 Laves structure characteristic.(c) Rhomboid structural unit model for the (Mg,Li)Zn2 Laves phase.(d) Formation energy of the C15 (Mg,Li)Zn2 Laves phase with different Li contents.(e) Local part in Fig.3a is modeled and enlarged,five orientation C15 rhombus variants bonding together to form a star pattern is presented.

    In order to evaluate the thermal stability of the C15 (Mg,Li)Zn2Laves structure and search for its potential optimal composition ratio,the first-principles calculations based on density functional theory(DFT)were performed[36,37].With the random substitution of Mg and Li atoms,the Mg-Li-Zn alloy system was constructed and the formation energies of Mg(1-x)LixZn2(x=0,0.2,0.4,0.6,0.8,and 1.0)C15 Laves phases were calculated.Fig.3d provides the formation energy curve with random substitution ratio of Li atoms.The negative formation energy values indicate that all the (Mg,Li)Zn2C15 Laves phases are energetically stable [38,39].And the formation energy would gradually decreases and reach the minimum with the doping of Li atoms by 0.8 at%,which indicates that the (Mg,Li)Zn2C15 Laves structure would reach the most stable state.Therefore,it can be speculated that the chemical composition ratio of the most stable C15 Laves structured precipitate is Mg0.2Li0.8Zn2.

    Local part labeled by colorful star in Fig.3a is modeled and enlarged in the Fig.3e,and five orientation C15 rhombus variants bonding together to form a multi-domain Laves superstructure is presented.Five-fold symmetry is forbidden for the periodic crystals because of no translational or rotational symmetry [40,41].Our observation here indicates that the precipitate-rod is not a single-crystal phase,but a Laves multi-domain structure on nanometer scale,which is well consistent with the weak and random diffraction spots in Fig.2d.

    The structures of precipitate-rods are further characterized and provided in Fig.4a–f.These HAADF-STEM images clearly shows that these rod-shaped precipitates are neither the C14 laves phase,nor the C15 and C36 Laves structures,but multi-domain structures formed by the combination of multiple Laves crystallites.Among which,the C15 Laves structure is dominant.The stacking sequences of these multi-domain Laves structures have been depicted with cyan polylines in these precipitate-rods.Additionally,some Laves defects resulting from the bonding of multiply orientated Laves crystallites can be found in Fig.4d–f.Compared to the binary Mg-Zn nanodomains assembled by rhombus structural units and equilateral hexagon structural units [21],such multi-domain structures dominated by C15 Laves phase with a better crystallinity.

    Fig.4.HAADF-STEM images showing the precipitate-rods in the aged Mg-4Li-4Zn alloy.The electron beam is parallel to the [0001]α direction.(a–d,f)Atomic-scale HAADF-STEM images.(e) Low-magnification HAADF-STEM image.

    Fig.5 provides more[0001]αSAED patterns for the multidomain precipitate-rods,and the diffraction contrasts come from the precipitate-rods have been indicted by cyan arrows in the images.From Fig.5 combined with Fig.2g above,it can be concluded that a unified orientation relationship between theα-Mg matrix and precipitate-rods cannot be determined due to the diversity of the precipitate-rods.

    Fig.5.SAED patterns of the precipitate-rods in the aged Mg-4Li-4Zn alloy.The electron beam is parallel to the [0001]α direction.The cyan arrows indicate the electron diffractions from the precipitate-rods.

    HAADF-STEM images of the precipitate-laths,viewed along the [0001]αdirection,are displayed in the Fig.6a–c.Low-magnification image in Fig.6a corresponds to the brightfield TEM image shown in Fig.2e,and local part of the precipitate-lath is enlarged and atomic-scale HAADF-STEM image is presented in the top-right inset.It indicates clearly that the precipitate-lath has an“…ABC…”stacking sequence,which is consistent with the C15 Laves structure.However,the precipitate-laths have no unified fcc Laves structure,as shown in Fig.6b,c.This precipitate-lath is also composed of a multi-domain Laves structure with the enlarged local part in Fig.6c,and stacking sequence locally of the precipitate-lath has been identified by cyan rhombus.What is worth mentioning that these (Mg,Li)Zn2precipitate-laths have three variants of{1120}αhabit planes,which is different from the other prismatic precipitates with {1010}αhabit planes identified in the other Mg alloys [1,3,4,7].

    Fig.6.HAADF-STEM and bright-field TEM images showing the precipitate-laths in the aged Mg-4Li-4Zn alloy.The electron beam is parallel to the (a–c)[0001]α and (d–f) [1100]α directions.(a–c,e,and f) HAADF-STEM images.(d) Bright-field TEM image,the inset is the corresponding SAED pattern.

    Fig.7a provides a bright-field TEM showing a precipitateplate lying on the (0001)αbasal plane.The corresponding SAED pattern is shown in the top-right inset,which is highly consistent with the result presented by Yamamoto and coworkers in 2003 [42].Atomic-scale HAADF-SETM image of such precipitate-plate is presented in Fig.7b.It can be concluded that the precipitate-plate has a C15 Laves structure.However,not all of precipitate-plates are of C15 Laves structure,a precipitate-plate with both “…ABC…” and “…AB…”stacking sequences exhibited in Fig.7c indicates that the precipitate-plates can also be multi-domain Laves structures in the [0001]αdirection.And the orientation relationships among the C14 Laves phase,C15 Laves phase,andα-Mg matrix are determined to be [1120]C14// [110]C15// [1100]αand (0001)C14// (111)C15// (0001)α.Fig.7d provides a low-magnification HAADF-STEM image viewed along the[1120]αdirection showing a (Mg,Li)Zn2precipitate-plate formed on the (0001)αbasal plane.In binary Mg-Zn alloys,the structure ofβ2’ precipitate-plate is considered to be the C14 MgZn2Laves phase [1,18,21],which is different from such C15 Laves phase,or the multi-domain Laves structures dominated by C15.And this finding unambiguously verifies that the precipitate-plates in the Li-containing Mg-Zn system have a (Mg,Li)Zn2type Laves characteristic,not the previously reported MgLiZn phase only with fcc structure [42,43].

    Fig.7.Bright-field TEM and HAADF-STEM images showing the precipitate-plates in the aged Mg-4Li-4Zn alloy.The electron beam is parallel to the (a-c) [1100]α and (d) [1120]α directions.(a) Bright-field TEM images,the inset is the corresponding SAED pattern.(b–d) HAADF-STEM images.

    In the early-aged period,we noticed that the three types of precipitates formed in theα-Mg matrix almost simultaneously.The (Mg,Li)Zn2C15 Laves phase dominated precipitate-rods/laths would be replaced by the plate-shaped precipitates gradually with prolonged aging.As evidenced by TEM/HAADF-STEM analysis in Fig.8,it can be seen that the previously dominated precipitate-rods/laths have been replaced by the C15 (Mg,Li)Zn2Laves precipitate-plates in the over-aged sample.Therefore,it indicates that the Laves structure on the {0001}αbasal planes is the lowest energy state,and the non-basal plane phases would be gradually replaced by the basal ones with prolonged aging or increased temperatures.

    Fig.8.Bright-field TEM and HAADF-STEM images of the Mg-4Li-4Zn alloy aged at 100 °C for 400 h,and then subjected to continuous isothermal aging at 150 °C for 400 h The electron beam is parallel to the [1100]α direction.(a) Bright-field TEM image,the inset is the corresponding SAED pattern.(b) Atomic-scale HAADF-STEM image.

    For magnesium alloys,the introduction of nano-sized precipitates through alloying is by far the most effective way to improve resistance for dislocation motion.The stronger the resistance to dislocation motion,the higher the yield strength obtained.And there is no doubt that the increment in critical resolved shear stress (CRSS) can be used to describe the effect of precipitates on strengthening [1,44–45].For precipitation-hardening alloys,the CRSS increment can be produced by a combination of dispersion hardening (shearresistant) and shearable precipitates to impede the movement of dislocations during plastic deformation.The CRSS increment produced by prismatic nanoplates are always larger than those produced by basal nanoplates or spherical nanoparticles in the case of the same volume fraction of the second nanoprecipitate,and the difference in the CRSS increment increases significantly with increasing the aspect ratio of nanoprecipitate.And for a certain ratio,the maximum difference in the CRSS increment can even reach two orders of magnitude [1].Recently,Mg-Li based alloys containing Zn element have received widespread attention due to lightweight requirement [46,47].The average density of such Mg-4Li-4 Zn (wt.%) alloy is 1.641 g/cm3,which is lower than the density of typical AZ31 magnesium alloy in widespread usage[48].If a higher precipitation density and a finer precipitation size of the precipitate-laths/rods can be designed with reasonable alloying and aging treatment,an ultralight high-strength Mg-Li-Zn based alloy would be expected.

    4.Conclusions

    In summary,the variable precipitation behaviors of Laves phases in an aged hcp Mg-Li-Zn alloy has been systematically investigated using atomic-scale HAADF-STEM.The morphology,structure,and orientation of these precipitates are fully unraveled.The precipitate-rods are perpendicular to the {0001}αbasal plane,and self-assembly of the rhomboid structural units under some geometrical constraints lead to the generation of the multi-domain Laves structures without any translational symmetry.And a five-fold Laves multi-domain structure assembled by (Mg,Li)Zn2C15 Laves phases (fcc,space group: Fd3m,a=7.38 ?A) has been identified.The precipitate-laths containing C15 Laves phase and short-range ordered domain locally have a {1120}αhabit plane,with the orientation relationships between the C15 Laves precipitatelath andα-Mg matrix being [0001]α// [110]C15and (1120)α// (001)C15.The C15 Laves structure dominated precipitateplates,containing some C14 Laves domains,lying on the(0001)αbasal plane,and the orientation relationships among the C14 Laves phase,C15 Laves phase,andα-Mg matrix is [1120]C14// [110]C15// [1100]αand (0001)C14// (111)C15// (0001)α.Additionally,this work has unambiguously verified that the plate-like precipitates in theα-Mg matrix have an (Mg,Li)Zn2type Laves characteristic,not the previously reported MgLiZn phase.These results are expected to lead to new insights into the clustering and stacking behaviors of solutes,especially into the formation mechanism of the multi-domain Laves structures,and would provide a practical guidance for designing and developing novel ultralight highstrength Mg-Li based alloys.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The authors acknowledge the National Natural Science Foundation of China (Grant No.51525101,No.51971053,No.52101129),the Project of Promoting Talents in Liaoning Province(No.XLYC1808038),the Fundamental Research Funds for the Central Universities(Grant No.N2002018),and the Project funded by China Postdoctoral Science Foundation(2020M670774).The authors extend their gratitude to Prof.Yonghui Sun and Dr.Na Xiao (Analytical and Testing Center,Northeastern University) for their help with the Cs-corrected HAADF-STEM technique.

    一级a做视频免费观看| 男女边吃奶边做爰视频| 国产男女内射视频| 亚洲精品国产色婷婷电影| 国产成人av激情在线播放 | 大香蕉97超碰在线| 国产精品久久久久成人av| 黄色视频在线播放观看不卡| 青春草国产在线视频| 自线自在国产av| av在线老鸭窝| kizo精华| 免费高清在线观看日韩| 久久久久久久久久久久大奶| 国产日韩欧美在线精品| 两个人免费观看高清视频| 精品一品国产午夜福利视频| 国产在线一区二区三区精| 国产色爽女视频免费观看| 欧美日韩国产mv在线观看视频| 国产免费一级a男人的天堂| 全区人妻精品视频| 国产精品国产av在线观看| 精品人妻一区二区三区麻豆| 999精品在线视频| 亚洲精品乱码久久久v下载方式| 日本91视频免费播放| 国产av一区二区精品久久| 免费看光身美女| 国产精品久久久久久久电影| 91午夜精品亚洲一区二区三区| 国产熟女午夜一区二区三区 | 秋霞在线观看毛片| 欧美成人午夜免费资源| 午夜免费观看性视频| 女人久久www免费人成看片| 高清黄色对白视频在线免费看| 日本vs欧美在线观看视频| 美女内射精品一级片tv| 老女人水多毛片| 人人妻人人澡人人爽人人夜夜| 国产欧美日韩综合在线一区二区| 日日摸夜夜添夜夜爱| 香蕉精品网在线| 久久久久久久久久成人| 又大又黄又爽视频免费| 成人无遮挡网站| 久久精品国产亚洲av天美| 性高湖久久久久久久久免费观看| 亚洲国产精品专区欧美| 热99国产精品久久久久久7| 一个人免费看片子| 日本黄色日本黄色录像| 两个人免费观看高清视频| 伦理电影免费视频| 亚洲国产av新网站| 亚洲综合色惰| 草草在线视频免费看| 一级a做视频免费观看| 高清不卡的av网站| 老司机影院成人| 欧美亚洲日本最大视频资源| 亚洲精品一区蜜桃| 另类亚洲欧美激情| 久久精品人人爽人人爽视色| 男的添女的下面高潮视频| 五月伊人婷婷丁香| 中文精品一卡2卡3卡4更新| 日韩成人av中文字幕在线观看| 免费日韩欧美在线观看| 纯流量卡能插随身wifi吗| 日本黄色日本黄色录像| 色吧在线观看| 久久久久精品性色| 国产精品99久久久久久久久| 国产一区二区在线观看av| 亚洲国产最新在线播放| 亚洲av在线观看美女高潮| 亚洲成人av在线免费| 少妇人妻久久综合中文| av女优亚洲男人天堂| 日韩欧美一区视频在线观看| 亚洲美女黄色视频免费看| 日本av手机在线免费观看| 嘟嘟电影网在线观看| 久久精品国产亚洲av涩爱| 国产熟女午夜一区二区三区 | 欧美激情国产日韩精品一区| 菩萨蛮人人尽说江南好唐韦庄| 午夜91福利影院| 日本91视频免费播放| 三级国产精品欧美在线观看| 99九九线精品视频在线观看视频| 久久精品国产鲁丝片午夜精品| 精品国产露脸久久av麻豆| 97超视频在线观看视频| 日韩一区二区三区影片| 免费大片黄手机在线观看| 国产极品粉嫩免费观看在线 | 伊人久久精品亚洲午夜| 亚洲欧美成人综合另类久久久| 午夜老司机福利剧场| 国产日韩欧美亚洲二区| 国产精品 国内视频| 成人18禁高潮啪啪吃奶动态图 | 最新的欧美精品一区二区| 国产精品女同一区二区软件| videos熟女内射| 成年美女黄网站色视频大全免费 | 国产探花极品一区二区| 久久久久视频综合| 亚洲人与动物交配视频| 国产成人精品福利久久| 99热网站在线观看| 欧美日韩av久久| 97超碰精品成人国产| 如日韩欧美国产精品一区二区三区 | 国产在视频线精品| 国产精品人妻久久久久久| 欧美日韩在线观看h| 黄色毛片三级朝国网站| 美女中出高潮动态图| 2022亚洲国产成人精品| 99九九在线精品视频| 少妇精品久久久久久久| 亚洲精品久久久久久婷婷小说| 黄色怎么调成土黄色| 高清毛片免费看| av.在线天堂| 免费久久久久久久精品成人欧美视频 | 嫩草影院入口| 久久婷婷青草| 最新中文字幕久久久久| 日韩av在线免费看完整版不卡| 亚洲国产av新网站| 久久韩国三级中文字幕| 成年av动漫网址| 国产伦理片在线播放av一区| 亚洲一区二区三区欧美精品| 国产精品欧美亚洲77777| 在线 av 中文字幕| 男人添女人高潮全过程视频| 日本黄大片高清| 大码成人一级视频| 欧美 亚洲 国产 日韩一| 午夜福利视频在线观看免费| 九草在线视频观看| 狠狠婷婷综合久久久久久88av| 中文字幕人妻丝袜制服| 午夜久久久在线观看| 久久久久精品性色| 男女无遮挡免费网站观看| 男女啪啪激烈高潮av片| av卡一久久| 亚洲第一av免费看| 国产一区二区在线观看日韩| 久久国内精品自在自线图片| 国产成人一区二区在线| 五月玫瑰六月丁香| 欧美成人精品欧美一级黄| 精品国产一区二区三区久久久樱花| 少妇的逼好多水| 国产精品国产三级国产专区5o| www.av在线官网国产| 日韩大片免费观看网站| 热re99久久精品国产66热6| 国产男女超爽视频在线观看| 久久影院123| 99热这里只有精品一区| 国产成人精品久久久久久| 99九九线精品视频在线观看视频| 国产精品麻豆人妻色哟哟久久| 18在线观看网站| 人人妻人人添人人爽欧美一区卜| 丰满饥渴人妻一区二区三| 80岁老熟妇乱子伦牲交| a级毛片在线看网站| 免费久久久久久久精品成人欧美视频 | 免费观看a级毛片全部| 少妇猛男粗大的猛烈进出视频| 国产爽快片一区二区三区| 人人妻人人澡人人爽人人夜夜| 日韩制服骚丝袜av| 18禁在线无遮挡免费观看视频| 婷婷色av中文字幕| 欧美精品高潮呻吟av久久| 国产免费现黄频在线看| 亚洲熟女精品中文字幕| 国产成人av激情在线播放 | 不卡视频在线观看欧美| av播播在线观看一区| 制服人妻中文乱码| 亚洲欧美一区二区三区国产| 99久久精品一区二区三区| 高清黄色对白视频在线免费看| 亚洲精品乱久久久久久| 免费日韩欧美在线观看| 午夜免费观看性视频| 久久久亚洲精品成人影院| 免费av中文字幕在线| 女的被弄到高潮叫床怎么办| 亚洲av日韩在线播放| 色视频在线一区二区三区| 国产一区有黄有色的免费视频| 超色免费av| 国语对白做爰xxxⅹ性视频网站| 亚洲人成网站在线观看播放| 最近最新中文字幕免费大全7| 韩国av在线不卡| 亚洲成人av在线免费| 国产精品一区二区在线不卡| 国产色婷婷99| 亚洲国产av新网站| 国产精品久久久久久久久免| 久久久午夜欧美精品| 18禁在线无遮挡免费观看视频| 亚洲人成网站在线观看播放| 精品久久久久久电影网| 国产乱来视频区| 成人亚洲欧美一区二区av| 黑人猛操日本美女一级片| 久久精品国产亚洲av天美| 亚洲精品亚洲一区二区| 性色avwww在线观看| 色5月婷婷丁香| 爱豆传媒免费全集在线观看| 内地一区二区视频在线| 欧美亚洲 丝袜 人妻 在线| 日韩欧美精品免费久久| 久久久久国产网址| 9色porny在线观看| 赤兔流量卡办理| 亚洲av.av天堂| 久久精品久久久久久久性| 国产有黄有色有爽视频| 亚洲,一卡二卡三卡| 日韩精品免费视频一区二区三区 | 国产男女内射视频| 国产亚洲av片在线观看秒播厂| 蜜臀久久99精品久久宅男| 亚洲综合精品二区| 亚洲经典国产精华液单| 亚洲色图综合在线观看| 尾随美女入室| 女人精品久久久久毛片| 蜜桃久久精品国产亚洲av| 国产永久视频网站| 国产片内射在线| 男人操女人黄网站| 人人妻人人澡人人看| 18禁在线无遮挡免费观看视频| 亚洲少妇的诱惑av| 国产精品久久久久久久电影| 日本wwww免费看| 婷婷色综合www| 亚洲人成网站在线观看播放| 亚洲天堂av无毛| 亚洲精品乱久久久久久| av电影中文网址| 极品少妇高潮喷水抽搐| 天天操日日干夜夜撸| 搡老乐熟女国产| 婷婷色av中文字幕| 中文字幕人妻丝袜制服| 国产片内射在线| 亚洲人与动物交配视频| 在线精品无人区一区二区三| 亚洲熟女精品中文字幕| 王馨瑶露胸无遮挡在线观看| 精品久久久噜噜| 男女边摸边吃奶| 人人澡人人妻人| 国产亚洲精品第一综合不卡 | 9色porny在线观看| 国产精品国产三级国产专区5o| 欧美老熟妇乱子伦牲交| 91aial.com中文字幕在线观看| 亚洲色图综合在线观看| 久久久国产欧美日韩av| 免费高清在线观看视频在线观看| 搡老乐熟女国产| 热re99久久精品国产66热6| videosex国产| 日韩三级伦理在线观看| 欧美xxxx性猛交bbbb| 免费看不卡的av| 成人手机av| av卡一久久| 丁香六月天网| av免费观看日本| av电影中文网址| 久热这里只有精品99| 亚洲av国产av综合av卡| 丰满迷人的少妇在线观看| 在线亚洲精品国产二区图片欧美 | 女性被躁到高潮视频| 黄色配什么色好看| 久久久精品94久久精品| 亚洲不卡免费看| 国产极品天堂在线| 免费观看的影片在线观看| 99re6热这里在线精品视频| 国产成人免费观看mmmm| 韩国av在线不卡| 国产精品.久久久| 亚洲伊人久久精品综合| 国产片特级美女逼逼视频| 性高湖久久久久久久久免费观看| 在线观看免费日韩欧美大片 | 国产欧美亚洲国产| 七月丁香在线播放| 熟女av电影| 婷婷色av中文字幕| 麻豆乱淫一区二区| 国产精品一二三区在线看| 久久人人爽人人片av| 免费黄网站久久成人精品| av不卡在线播放| 九九爱精品视频在线观看| 十八禁高潮呻吟视频| 热99久久久久精品小说推荐| 成人毛片60女人毛片免费| 国产伦精品一区二区三区视频9| a级毛片免费高清观看在线播放| 久久精品国产亚洲网站| 中文字幕亚洲精品专区| 91精品一卡2卡3卡4卡| 久久女婷五月综合色啪小说| 久久鲁丝午夜福利片| 男人操女人黄网站| av在线播放精品| 乱码一卡2卡4卡精品| 精品国产露脸久久av麻豆| 亚洲国产欧美在线一区| 亚洲欧美清纯卡通| 国产色婷婷99| 国产有黄有色有爽视频| 久久99蜜桃精品久久| 亚洲av男天堂| 夫妻午夜视频| 最后的刺客免费高清国语| 涩涩av久久男人的天堂| 亚洲国产日韩一区二区| 亚洲精品亚洲一区二区| 国产视频首页在线观看| 999精品在线视频| 赤兔流量卡办理| 久久99蜜桃精品久久| 18禁在线无遮挡免费观看视频| 18禁动态无遮挡网站| 国产欧美亚洲国产| 日本av免费视频播放| 免费大片18禁| 欧美丝袜亚洲另类| 18禁观看日本| 亚洲av不卡在线观看| 大又大粗又爽又黄少妇毛片口| 国产午夜精品一二区理论片| 国产精品国产av在线观看| 视频在线观看一区二区三区| 一边亲一边摸免费视频| 黄色视频在线播放观看不卡| 夜夜爽夜夜爽视频| 中文字幕人妻丝袜制服| 91aial.com中文字幕在线观看| 精品久久久久久久久av| 日韩欧美精品免费久久| 51国产日韩欧美| 久久久久久久亚洲中文字幕| 国产成人精品久久久久久| 国产成人精品婷婷| 精品人妻熟女av久视频| 夜夜爽夜夜爽视频| 亚洲精品亚洲一区二区| 国产男女内射视频| 国产精品国产三级国产专区5o| 亚洲丝袜综合中文字幕| 天天躁夜夜躁狠狠久久av| 啦啦啦在线观看免费高清www| 丰满少妇做爰视频| 午夜精品国产一区二区电影| 熟女av电影| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂| 国产精品一二三区在线看| 欧美激情 高清一区二区三区| 全区人妻精品视频| 精品久久久久久久久av| 亚洲国产色片| 成年女人在线观看亚洲视频| 国产av精品麻豆| 99热国产这里只有精品6| 在线观看免费高清a一片| 999精品在线视频| 久久久久国产网址| av免费观看日本| 一二三四中文在线观看免费高清| 日本黄色片子视频| 十八禁网站网址无遮挡| 亚洲熟女精品中文字幕| 观看美女的网站| 婷婷成人精品国产| 亚洲久久久国产精品| 边亲边吃奶的免费视频| 亚洲内射少妇av| 欧美日韩国产mv在线观看视频| 建设人人有责人人尽责人人享有的| 一级爰片在线观看| 看免费成人av毛片| 女人精品久久久久毛片| 国产精品一区www在线观看| 国产高清三级在线| 欧美激情国产日韩精品一区| 国产成人精品福利久久| 久久免费观看电影| 天美传媒精品一区二区| 精品少妇黑人巨大在线播放| 日本爱情动作片www.在线观看| 亚洲久久久国产精品| 啦啦啦中文免费视频观看日本| 一个人看视频在线观看www免费| 在线观看美女被高潮喷水网站| 精品少妇黑人巨大在线播放| 国产免费视频播放在线视频| 久久女婷五月综合色啪小说| 国内精品宾馆在线| av网站免费在线观看视频| 精品人妻熟女av久视频| 国产精品成人在线| 嘟嘟电影网在线观看| 亚洲天堂av无毛| 中文字幕制服av| 国产伦精品一区二区三区视频9| 伊人久久国产一区二区| 中国三级夫妇交换| 天天影视国产精品| 国产精品欧美亚洲77777| 少妇被粗大的猛进出69影院 | 国产成人av激情在线播放 | 一边亲一边摸免费视频| 80岁老熟妇乱子伦牲交| 一级二级三级毛片免费看| 伊人久久精品亚洲午夜| 丝袜美足系列| 成人亚洲欧美一区二区av| 亚洲综合精品二区| 亚洲国产精品一区二区三区在线| 精品人妻熟女av久视频| 国产精品一国产av| 久久久久久久国产电影| 久久久久久伊人网av| 国产亚洲av片在线观看秒播厂| 我的女老师完整版在线观看| 大又大粗又爽又黄少妇毛片口| 久久久精品94久久精品| 国产毛片在线视频| 国产av国产精品国产| 色94色欧美一区二区| 99热网站在线观看| 国产 一区精品| 超碰97精品在线观看| 国产一区二区三区av在线| 亚洲国产欧美日韩在线播放| 日韩精品有码人妻一区| 丝袜喷水一区| 欧美国产精品一级二级三级| 色5月婷婷丁香| 日本爱情动作片www.在线观看| videosex国产| 2021少妇久久久久久久久久久| 高清黄色对白视频在线免费看| a级毛片黄视频| 亚洲精品自拍成人| 欧美成人精品欧美一级黄| 免费播放大片免费观看视频在线观看| videos熟女内射| 美女大奶头黄色视频| 日本猛色少妇xxxxx猛交久久| 亚洲,一卡二卡三卡| 美女国产高潮福利片在线看| 精品少妇黑人巨大在线播放| 桃花免费在线播放| 亚洲精品日本国产第一区| 午夜免费男女啪啪视频观看| 五月伊人婷婷丁香| 亚洲av免费高清在线观看| 久久av网站| 一本—道久久a久久精品蜜桃钙片| 在现免费观看毛片| 麻豆成人av视频| 日本午夜av视频| 精品久久久精品久久久| 亚洲av在线观看美女高潮| 大香蕉久久网| 亚洲精品色激情综合| 久久精品久久久久久久性| 人妻一区二区av| 国产欧美另类精品又又久久亚洲欧美| 午夜福利影视在线免费观看| 国产亚洲精品第一综合不卡 | 国产极品天堂在线| 久久久久久久大尺度免费视频| 草草在线视频免费看| 久久国产精品男人的天堂亚洲 | 亚洲五月色婷婷综合| av播播在线观看一区| 亚洲精品国产av蜜桃| 一级毛片 在线播放| 日韩精品免费视频一区二区三区 | 精品卡一卡二卡四卡免费| 天堂中文最新版在线下载| 最近2019中文字幕mv第一页| 黄片无遮挡物在线观看| 亚洲av在线观看美女高潮| 精品午夜福利在线看| 国产伦理片在线播放av一区| av卡一久久| 大话2 男鬼变身卡| 婷婷成人精品国产| 一级毛片 在线播放| 亚洲丝袜综合中文字幕| 高清不卡的av网站| 国产成人精品无人区| 久久99热6这里只有精品| 免费播放大片免费观看视频在线观看| 久久久久久久亚洲中文字幕| 制服人妻中文乱码| .国产精品久久| 亚洲精品日本国产第一区| 91aial.com中文字幕在线观看| av黄色大香蕉| √禁漫天堂资源中文www| 日本黄色日本黄色录像| 国产亚洲精品久久久com| 一级,二级,三级黄色视频| 精品99又大又爽又粗少妇毛片| 国产成人精品婷婷| 久久久久久久久久成人| 免费观看的影片在线观看| 日产精品乱码卡一卡2卡三| 18禁观看日本| 丰满乱子伦码专区| 少妇高潮的动态图| 国内精品宾馆在线| 欧美人与性动交α欧美精品济南到 | 国产有黄有色有爽视频| 久久精品国产亚洲网站| 少妇人妻久久综合中文| av专区在线播放| av卡一久久| 久久热精品热| 女的被弄到高潮叫床怎么办| 国产精品人妻久久久影院| 在线播放无遮挡| 国模一区二区三区四区视频| 18在线观看网站| 国产深夜福利视频在线观看| 成人影院久久| 国产成人精品在线电影| 九色亚洲精品在线播放| 少妇人妻 视频| 久热这里只有精品99| 亚洲精品av麻豆狂野| 日本黄大片高清| 亚洲精品456在线播放app| 国产一区亚洲一区在线观看| 亚洲性久久影院| 精品久久久精品久久久| 欧美日韩在线观看h| 久久久精品94久久精品| 欧美激情极品国产一区二区三区 | 男人添女人高潮全过程视频| 午夜免费鲁丝| 成人毛片60女人毛片免费| 在线亚洲精品国产二区图片欧美 | 亚洲在久久综合| 久久国内精品自在自线图片| 国产精品无大码| 国产成人精品一,二区| 黄色怎么调成土黄色| 日本-黄色视频高清免费观看| 亚洲成人一二三区av| 爱豆传媒免费全集在线观看| 精品人妻熟女毛片av久久网站| 成年人午夜在线观看视频| 欧美人与性动交α欧美精品济南到 | 国产精品一国产av| 久久久久久久大尺度免费视频| 国产精品人妻久久久影院| 亚洲精品美女久久av网站| 国产精品久久久久久av不卡| 国产熟女欧美一区二区| 久久久久网色| 3wmmmm亚洲av在线观看| 亚洲丝袜综合中文字幕| 最近中文字幕高清免费大全6| 插逼视频在线观看| 婷婷色av中文字幕| 日韩中文字幕视频在线看片| 亚洲国产精品999| 老司机影院成人| 久久久久精品久久久久真实原创| 亚洲人成网站在线观看播放| 一区二区三区乱码不卡18| 中文欧美无线码| 欧美97在线视频| 啦啦啦视频在线资源免费观看| 我的老师免费观看完整版| 香蕉精品网在线| 色哟哟·www| 色网站视频免费| 免费看av在线观看网站| 亚洲综合色网址| 亚洲成色77777| 久久精品国产亚洲网站|