• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High sintering and dielectric performance: The improved (Mg,Zn)3B2O6 ceramics with the help of the DFT calculation

    2023-10-15 12:10:00RuiPengYonghengLuLingShiGuolingYuYunmingLiGngWngYunxunLiHuSuHuiwuZhng
    Journal of Magnesium and Alloys 2023年6期

    Rui Peng ,Yongheng Lu ,Ling Shi ,Guoling Yu ,Yunming Li ,Gng Wng ,Yunxun Li,b,?,Hu Su,?,Huiwu Zhng

    aState Key Laboratory of Electronic Thin Films and Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China

    b Yangtze Delta Region Institute (Huzhou),University of Electronic Science and Technology of China,Huzhou 313001,China

    c China Jiliang University,Hangzhou 310018,China

    d Chengdu University of Technology,Chengdu 610059,China

    Abstract With the help of the first principle calculation,the solid-state reaction experiment was conducted to investigate the alteration in the sintering and the microwave dielectric properties of Mg3B2O6 ceramic with many Zn2+ substitutions.These properties were characterized using the scanning electron microscopy,network analyzer,X-ray diffraction,Raman spectroscopy,energy-dispersive spectroscopy,and thermomechanical and differential-thermal analyses.The coexistence of Mg3B2O6,Mg2B2O5 and ZnO ceramics could be observed with increasing Zn2+ addition,and the lattice distortion occurred in the Mg2B2O5 and Mg3B2O6 ceramics due to the substitution of Mg2+ with Zn2+.The electron density and the bond property of the MgO6 octahedron changed,and a quantitative method was used to discuss the variation in sintering,substitution and phase formation properties.The densification window was decreased to 1100 °C,and the dielectric properties improved with the formation of a three-phase borate solid solution (dielectric constant=6.73,quality factor=112,000 GHz at 16 GHz (Q=7000),temperature coefficient of resonant frequency=-61.2 ppm °C-1,and relative density=97.0%).

    Keywords: DFT;Borate;Solid solutions;Dielectric properties.

    1.Introduction

    Dielectric ceramics are widely studied recently due to its excellent electrical and mechanical properties,especially in the field of smart home,internet of things,aerospace,and wireless communication [1].The ceramic passive module integration technology is a promising method to minimize the size of electronic equipment and increase the transmission performance of signals,which is the development direction of the electronic component [2–4].In terms of 5 and 6 G communication,materials with relatively high quality factor(Q×f) and low dielectric constant (εr) may be used to realize a fast and high-quality signal transmission and are worth studying in the field of ceramic passive module integration technology [5–7].

    Dosler et al.reported that the microwave dielectric performance of the Mg3B2O6(MBO) ceramic sintered at 1350 °C are 7 forεr,108,000 GHz forQ×f,-69 ppm °C-1forτf,97%for relative density[8].The dielectric performance of the MBO meet the requirements for microwave communication,but the densification temperature should be decreased.Wu et al.found the Zn3B2O6(ZBO) material sintered at 925 °C have great dielectric properties (6.7 forεr,58,500 GHz forQ×f,-58 ppm °C-1forτf,and 96% for relative density)[9].Considering the sintering and the microwave properties of the MBO and the ZBO ceramics,the addition of the ZBO ceramic into the MBO ceramic can obtain the following advantages.Firstly,the densification temperature can be decreased without the remarkable deterioration of theQ×fvalue.Secondly,theεrand theτfvalues can be slightly adjusted to the desired direction.

    The solid-state reaction method is used to synthesize the(1-x)MBO+xZBO (x=0.00–0.40) composite materials.The sintering and the microwave dielectric performance of it are investigated,and the calculation based on the first principle is conducted to explain the microscopic characteristics theoretically.

    2.Experimental

    Analytically pure powders (MgO (99%),ZnO (99.5%) and B2O3(99%)) were weighed in accordance with the stoichiometric ratio (B2O3was weighed 10 mol.% in excess for compensation),and Chron Chemicals Co.Ltd (China) is the supplier of raw materials.The prepared materials were premilled(12 h),presintered (900 °C,4 h) and remilled (12 h).Distilled H2O and agate balls were the milling media.The 5 wt.%polyvinyl alcohols and 95 wt.%remilled powders were mixed.The obtained composite material was pressed into cylinders with thickness and diameter of 6 and 12 mm,respectively,and the final sintering temperature was 1050–1200 °C.

    The First-principle analysis was performed based on the Cambridge Serial Total Energy Package.The pseudopotential of Vanderbilt ultrasoft was taken to treat the ions interplay.The countermeasure of the approximation for the exchange correlation interplay and the atom vibration is the Perdew–Burke–Ernzerhoff standard and the linear response standard.The valence electron configurations were 2p63s2for Mg,3d104s2for Zn and 2s22p4for O.After testing,the energy cutoff,k-point mesh,maximum force,maximum stress,total energy,energy and maximum displacement were 380 eV,3 × 2 × 3,0.05 eV ?A-1,0.05 GPa,1.0 × 10-6eV per atom,5.0 × 10-5eV per atom and 0.001 ?A,respectively.The optimised crystal was obtained based on the Broyden–Fletcher–Goldfarb–Shanno standard.A super cell (2 × 1 × 2) with 88 atoms was constructed to investigate the substitution property.The formation energy was calculated using the total energies of the doped (EDo) and the undoped (EUnDo) systems,the enthalpy for the replaced element (pi) and the unit modulus (ki)[10].

    The crystal information was confirmed using the X-ray diffraction (DX-2700,Haoyuan Co.) equipped with Cu Kαsource.The Rietveld profile refinement method was used to process all data.The densification level and the composition of sample were determined using scanning electron microscopy (JEOL,JSM-6490LV) and energy-dispersive spectroscopy.The dielectric performance at microwave frequency were obtained using the Agilent N5230A Network Analyzer(300 MHz-20 GHz) and the transmission cavity,and the algorithm is based on the Hakki–Coleman standard [11].The sintering properties were investigated by the thermomechanical (Mettler TMA/SDTA2+,5,10 and 15 K min-1) analyzer(shrinkage characteristic) and the simultaneous thermal (Mettler TGA/DSC3+,5 K min-1) analyzer (chemical characteristic).τfof all samples was calculated using Eq.(2) with the frequency at resonant point,80 °C (fT) and 20 °C (f0) [12].

    The bulk density was measured based on the Archimedes way[13].The following mixing rules Eqs.(3)–((5))were used to calculate the theoreticalτf,εrandQ×fvalues [14–16].

    va(b)represents the volume ratio of component a(b).τfa(b),εra(b)andQa(b)represent the dielectric performance of componenta(b).Beside,the activation energy (Ea) was calculated using the Arrhenius expression [17].

    where R set as 8.3145 J K-1mol-1(gas constant),kset as 5,10 and 15 K min-1(heating rate),Tandzcorrespond to the temperature and the Arrhenius constant.

    3.Results and discussion

    Fig.1(a–d) manifests the relative density and the dielectric properties of the materials synthesised at increasing sintering temperatures.The variation in density increases whenx=0.00–0.05 and like a parabola whenx=0.10–0.20 andx=0.25–0.40.The peak value is 97.0% when thex=0.15 sample is processed at 1100 °C.The variation trend in theQ×fand theεris close to that in densification level except whenx=0.30.Such phenomenon is because the density is one of the extrinsic dominant factors for the dielectric loss and theεr,and a lower relative density corresponds to a higher dielectric loss and lowerεr.The dielectric properties topped atx=0.15 and 1100 °C,Q×f=112,000 GHz at 16 GHz(Q=7000),εr=6.73.Beside,the measuredτfvalue shows a saddle trend with a turning point whenx=0.10,and theτfis-61.2 ppm °C-1when thex=0.15 specimen is processed at 1100 °C.Hence,the densification level,sintering and dielectric performance and thermal stability of the MBO ceramic can be improved with the moderate substitution of Zn2+to Mg2+.Fig.1(e) shows the summary of various ceramics with relatively lowεrand highQ×f,and the dielectric properties of the ceramics synthesised in this study are excellent[8,9,18–34].

    Fig.1.Relative density (a) and dielectric values (b-d) of the (1-x)MBO+xZBO (x=0.00–0.40) ceramics sintered at 1100–1200 °C (x=0.00–0.05),1050–1150 °C (x=0.10–0.20) and 1000–1100 °C (x=0.25–0.40).Comparison of the sintering and the dielectric performance of different ceramics (e).

    The crystallinity of the samples is confirmed using XRD patterns (Fig.2 [a–c]).A composite material is formed with MBO (JCPDS#38–1475) and Mg2B2O5(JCPDS#15–0537)whenx=0.00–0.10,and a third phase,i.e.the ZnO phase(JCPDS#36–1451),has emerged whenx≥0.15.With increasingxvalue,the intensities of peak for Mg2B2O5and ZnO strengthen,and that of MBO weakens.As illustrated in Fig.2(b–c),the(121),(211) and(131) peaks of MBO and the(0–21) peak of Mg2B2O5move to a low angle,demonstrating that the crystal volumes of the MBO and the Mg2B2O5increase with the addition of Zn2+.Given that the radius of magnesium ion (0.72 ?A) is smaller than that of zinc ion(0.74 ?A),the increasing Zn2+concentration enhances the substitution of Zn2+to the Mg2+of MBO and Mg2B2O5,which can explain the movement of peaks [35].Beside,all raw data are refined with acceptable Fullprof parameter,and results are presented in Fig.2(e–j) and Table 1.Thea–cvalues of MBO and Mg2B2O5manifest an increasing trend,and all the angle parameters of MBO remain unchanged.Theαand theγvalues of Mg2B2O5present a vibration trend,and theβvalues decreases monotonously with increasingxvalue.The cell volumes of MBO and Mg2B2O5increase too,which is in accordance with the peak movement of the XRD patterns.In the component fraction of composite materials,the fraction value of MBO decreases with increasing Zn2+addition,and those of Mg2B2O5and ZnO increase.Notably,the measured component ratio of MBO is larger than the designed component ratio of MBO whenx=0.10–0.15,whereas the designed component ratio surpasses the component ratio whenx=0.00–0.05 andx=0.20–0.40.The substitution of Zn2+to Mg2+of MBO and the formation of Mg2B2O5are responsible for the discrepancy whenx≤0.10.Moreover,the emergence of ZnO should be accounted too for the discrepancy whenx≥0.15.Considering the refinement result,the increasing relative density of the samples sintered at temperature lower than 1350 °C can be ascribed to the decreased intrinsic sintering temperature due to the lattice distortion (substitution of Zn2+to Mg2+in the crystal of MBO and Mg2B2O5).The Mg2B2O5ceramic has the following dielectric performance:εr,6.2;Q×f,32 × 100 GHz;andτf,-18 ppm °C-1,and the densification temperature of it is 1250 °C (lower than 1350 °C) [20].Therefore,the formation of Mg2B2O5is also responsible for the density improvement whenx=0.00–0.15.The deterioration of density is attributed to the relatively low sintering temperature (x=0.25,0.30) and the oversintering phenomenon (x=0.40).Apart from the variation in relative density,the difference between the measured and the inferredεr/τfis ascribed to the formation of Mg2B2O5with relatively smallerεr(6.2) and largerτf(-18 ppm °C-1) contrasted with that of MBO.Hence,the synthesized ceramic has a relatively lowerεrand higherτfcompared with the calculated values.Beside,the divergence between the measured and the inferredQ×fvalues can be due to many factors,such as the lattice distortion due to Zn2+to Mg2+substitution (MBO and Mg2B2O5),the formation of Mg2B2O5phase and the improvement of the relative density.In addition,the appearance of ZnO is accounted for the variation in the sintering and the dielectric performance of the(1-x)MBO+xZBO composite materials.

    Fig.2.XRD data of the (1-x)MBO+xZBO (x=0.00–0.40) materials obtained at 1200 °C (x=0.00–0.05),1100 °C (x=0.10–0.20) and 1050 °C(x=0.25–0.40) (a-c).Refinement profiles of the 0.85MBO+0.15ZBO material obtained at 1100 °C (d).Lattice parameters of the MBO and the Mg2B2O5 ceramics (e-j).Raman spectra of the (1-x)MBO+xZBO (x=0.00–0.40) materials (k) (For interpretation of the references to color in this figure,the reader is referred to the web version of this article).

    The vibration property of all samples is confirmed using Raman spectroscopy,and the result is presented in Fig.2(k).The vibration modes are obtained using the Bilbao Crystallographic system and the DFT calculation.The vibration modes of MBO,Mg2B2O5and ZnO materials are as follows.

    R and IR represent the Raman and the Infrared modes,respectively.For the MBO and the Mg2B2O5ceramics,the dividing lines between the external and the internal modes are observed at 700 and 740 cm-1,respectively.The vibration status at the band lower than the dividing line are the rotational and the translational modes of MgO6.The bending and the stretching vibration modes of BO3are corresponding to the other half vibration status.With the enhanced substitution,the peak intensity of MBO weakens,and those of Mg2B2O5(blue circled) and ZnO (pink circled) strengthen.Hence,the Raman spectra can verify the result of phase formation.

    The microstructure of samples processed at 1050–1200 °C is analysed using SEM(Fig.3(a–h)).The image is distributed with small grains for thex=0.00 sample,and the addition of Zn2+results in the growth of grains (Fig.3 (b–d)).A compact microstructure is obtained whenx=0.15,and increasing thexvalue from 0.25 to 0.30 leads to decreased grain size.Beside,the melting grain boundary and trapped pores have appeared in thex=0.40 sample.The SEM images and the variation in relative density agree well.The EDS mapping images of thex=0.15–0.20 samples are shown in Fig.3(i–r),and the distribution of O,Zn and Mg are uneven in general (too light to be detected for B).The distribution of the O–and the Mg-rich areas are the same,and the Zn-rich area is also an O-deficient area.In addition,the proportion of different elements manifested in the mapping images is in accordance with the designed value.Notably,three phases are present in the backscatter images (Fig.3(i,n)),and the EDS point detection is performed to check the composition of these phases in thex=0.15 sample (Fig.3(s–v)).The atom ratios of Zn:Mg:O are 3.65:33.27:63.08,3.74:28.27:67.99 and 42.59:0.00:57.41 for spots 1,2 and 3,respectively.Considering that the atom ratios of Zn:Mg:O are 0.00:33.33:66.67,0.00:28.57:71.43 and 50:0.00:50 for MBO,Mg2B2O5and ZnO,respectively,the phases of spots 1,2 and 3 should be MBO,Mg2B2O5and ZnO,respectively.The existence of Zn for spots 1 and 2 should be attributed to the substitution of Zn2+to Mg2+.Therefore,the EDS result is consistent with the phase formation and the lattice distortion from the XRD results.

    The sintering property of the composite ceramic is confirmed through TG,DSC and TMA(Fig.4(a–c)).Three stages of weight loss,i.e.12% for 100–300 °C,3% for 300–600 °C and 1% for 600–1150 °C,are observed in the TG pattern.The decomposition of H3BO3from B2O3and H2O and the removal of hydration H2O are responsible for the weight loss of the first stage,which corresponds to the endothermic peak at around 200 °C observed in the DSC.The ratio of the weight loss and the intensity of the endothermic peak in the first stage decreases with increasingxvalue,manifesting that the decomposition amount of H3BO3has declined.Hence,the addition of ZnO can restrain the formation of H3BO3.The second stage is ascribed to the decomposition furtherly of H3BO3and the preliminary phase emergence of the composite ceramics,and no evident peak is observed in the DSC patterns at the same temperature range.The weight loss in the third stage is weak and attributed to the phase formation furtherly of the composite ceramics.Notably,the intensity of the exothermic peak in the blue dotted box shows an increasing trend,which is attributed to the emergence of Mg2B2O5.The intensity of the exothermic peak in the orange dotted box shows a decreasing trend,which is ascribed to the formation of MBO.The variation in such peak intensity can verify the variation in the phase fraction in the XRD patterns.The evaporation of B may be responsible for the endothermic peak near 980 °C.Beside,the exothermic peaks near 650 °C moves to a relatively low temperature.The temperature of the shrinkage onset moves to a low temperature with increasing Zn2+addition,which is similar to the peak movement of DSC.Therefore,increasing Zn2+addition can result in the formation of a heterophase,and the densification window can be lowered.In addition,the sintering property is further investigated using theEaat 3,6 and 9% shrinkage values,and the plots of lnkagainst1/Tare shown in Fig.4(d–i).As shown in Fig.4(j),theEapresents a declining trend,and theEavalue of thex=0.15 sample is 476 ± 66 kJ mol-1.Therefore,the addition of Zn2+can decrease theEavalue and the densification temperature of the composite ceramics.These conclusions are the same as the discussion regarding the relative density.

    The crystal variation is discussed with the help of DFT calculation,and the schematic of the ion substitution is presented in Fig.5.Two sites are available in the MBO and Mg2B2O5for Mg2+to occupy,and the lattice parameters arePnmn(No.58),a=5.4014 ?A,b=8.4233 ?A,c=4.5071 ?A andα=β=γ=90° for MBO andP1(_) (No.2),a=6.187 ?A,b=9.219 ?A,c=3.119 ?A,α=90.4°,β=92.13° andγ=104.32°for Mg2B2O5.In this study,each site with Mg2+is changed into Zn2+successively,and the microstructure properties,including electron distribution,bond length and population around the octahedron,are discussed(Figs.5(b,d)–7).The variation in ion position,bond length and population are observed in the MgO6octahedron for MBO and Mg2B2O5(Length/Population-B/A indicates the bond length/population before/after ion substitution,and Length-E indicates the bond length from the XRD data).The bond length and population of the MgO6octahedron for MBO and Mg2B2O5increase after the substitution,indicating that the covalency of the cation and the O-ion bond is strengthened.This variation is responsible for improved sintering properties.The increasing bond length and population is driven by the diversity of the ionic polarizability and the ionic radius between Zn2+(2.04 ?A3,0.74 ?A) and Mg2+(1.32 ?A3,0.72 ?A),and the different extranuclear electron pairing status of the Zn2+(3d10)and Mg2+(2p6) should be accounted [35,36].The variation tendency in the Length-E is consistent with that of calculation,manifesting that the substitution process involves every Mg2+site and verifying the XRD results.Beside,the bonding property of the MgO6octahedron can be further investigated using the electron density distribution of the (001) face around the Mg2+.The electron density near the cation of the octahedron is strengthened after substitution compared with the undoped plane,and the electron interplay between the cation and the O is enhanced.The larger polarizability of Zn2+compared with that of Mg2+may be responsible for such variation,and the symmetry of the electron distribution near the cation is preserved for MBO and Mg2B2O5.The variation in bond parameters is the quantification of the change for the electron density distribution.Considering the driven factor for the intrinsic loss,the modification of bond properties and electron distribution results from the Zn2+substitution may have an important influence on the improvement of theQ×fvalue[37].

    Fig.5.Cell structure of MBO (a).Schematic of the MgO6 octahedron before and after the Zn2+ substitution (b).Crystal structure of Mg2B2O5 (c).Schematic of the MgO6 octahedron before and after the Zn2+ substitution (d).

    The formation enthalpy of each substituted system is obtained to research the substitution property of the MBO and the Mg2B2O5ceramics.The chemical potentials of Mg,Zn,MBO and Mg2B2O5are-973.5126,-1710.5005,-5712.6593 and-4298.7629 eV,respectively(Fig.6(e)).Notably,all formation energies are positive,and the formation energies for the Mg1 and the Mg2 site substitutions of MBO and Mg2B2O5are the same in general.Hence,the occupied possibility of the Mg1 site and the Mg2 site is equal in the MBO and the Mg2B2O5ceramics.In addition,the designed and measured energies per mole of the composite ceramics(-7912.8141 eV for ZBO and-2147.1981 eV for ZnO) are shown in Fig.6(f).These values present a monotonous declining trend,and the designed value is smaller than the measured value whenx=0.05–0.40.Therefore,the increasing Zn2+concentration has a more important influence than the energy of the system on the component ratio discrepancy.All explanations on energy can verify the XRD refinement result.

    Fig.7.Electron distribution map of the face with two kinds of Mg2+ before and after the Zn2+ substitution for MBO (a-d) and Mg2B2O5 (e-h).

    4.Conclusion

    With the help of the first principle calculation,the solidstate reaction experiment was conducted to investigate the alteration in the sintering and the microwave dielectric properties of Mg3B2O6ceramic with many Zn2+substitutions.The coexistence of Mg2B2O5,MBO and ZnO ceramics can be observed with increasing Zn2+addition,and the lattice distortion occurs in the Mg2B2O5and the MBO ceramics due to the substitution of Zn2+to Mg2+.The electron density and the bond property of the MgO6octahedron have changed,and a quantitative method is used to discuss the variations in sintering,substitution and phase formation properties.The densification window is decreased to 1100 °C,and the dielectric properties are improved with the formation of a three-phase borate solid solution (εr=6.73,Q×f=112,000 GHz at 16 GHz (Q=7000),τf=-61.2 ppm °C-1,relative density=97.0%).The substitution of Zn2+to Mg2+is effective in improving the sintering and the dielectric performance of the MBO ceramic at microwave frequency.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant Nos.61771104 and 62071106),Jiangxi Innovative Talent Program,and Sichuan Science and Technology Program (Grant No.2021JDTD0026).

    成人午夜高清在线视频| 黄色 视频免费看| 国产精品影院久久| 岛国视频午夜一区免费看| 午夜亚洲福利在线播放| 国产精品亚洲av一区麻豆| 成人欧美大片| 又粗又爽又猛毛片免费看| 国产高清激情床上av| 淫秽高清视频在线观看| 两人在一起打扑克的视频| 免费观看精品视频网站| 亚洲一区二区三区色噜噜| 精品国产美女av久久久久小说| 男女之事视频高清在线观看| 在线看三级毛片| 最近最新中文字幕大全电影3| 好看av亚洲va欧美ⅴa在| 一进一出抽搐gif免费好疼| 91麻豆精品激情在线观看国产| 免费人成视频x8x8入口观看| 欧美中文日本在线观看视频| 亚洲无线观看免费| 一级a爱片免费观看的视频| 最近视频中文字幕2019在线8| 成人性生交大片免费视频hd| 一级毛片女人18水好多| 国产99白浆流出| 国产91精品成人一区二区三区| 亚洲精华国产精华精| 校园春色视频在线观看| 一二三四在线观看免费中文在| 国产精品香港三级国产av潘金莲| 久久天躁狠狠躁夜夜2o2o| 成熟少妇高潮喷水视频| 国产精品国产高清国产av| 亚洲国产精品sss在线观看| 国产精品自产拍在线观看55亚洲| 久久久国产成人精品二区| 91在线观看av| 国产真人三级小视频在线观看| 免费看美女性在线毛片视频| 一卡2卡三卡四卡精品乱码亚洲| 老司机深夜福利视频在线观看| 国产男靠女视频免费网站| 露出奶头的视频| 99久久国产精品久久久| 无限看片的www在线观看| 2021天堂中文幕一二区在线观| 精品久久久久久久毛片微露脸| 国产麻豆成人av免费视频| 麻豆一二三区av精品| 午夜福利高清视频| x7x7x7水蜜桃| 国产午夜精品论理片| 女人高潮潮喷娇喘18禁视频| 我要搜黄色片| 99热这里只有精品一区 | 18禁观看日本| 亚洲精品国产精品久久久不卡| 久久久国产成人免费| 少妇的丰满在线观看| 熟女少妇亚洲综合色aaa.| 亚洲精品久久国产高清桃花| 日韩有码中文字幕| 国产精品久久电影中文字幕| 国产综合懂色| 国产精品一区二区三区四区免费观看 | 亚洲av免费在线观看| 久久久精品欧美日韩精品| 成人午夜高清在线视频| 国产欧美日韩一区二区精品| www国产在线视频色| 黑人欧美特级aaaaaa片| 成人永久免费在线观看视频| 99久久久亚洲精品蜜臀av| 色吧在线观看| cao死你这个sao货| 一进一出抽搐动态| 久久精品国产99精品国产亚洲性色| 亚洲av成人精品一区久久| 少妇熟女aⅴ在线视频| 日本黄大片高清| 黄色 视频免费看| 亚洲国产精品999在线| 99久久精品热视频| 露出奶头的视频| 一个人观看的视频www高清免费观看 | 又大又爽又粗| 国产精品美女特级片免费视频播放器 | 亚洲片人在线观看| 香蕉国产在线看| 日日夜夜操网爽| 嫩草影视91久久| 亚洲狠狠婷婷综合久久图片| 精品久久蜜臀av无| 亚洲专区国产一区二区| 女生性感内裤真人,穿戴方法视频| 熟女人妻精品中文字幕| 色综合婷婷激情| 日韩成人在线观看一区二区三区| 男女视频在线观看网站免费| 夜夜躁狠狠躁天天躁| 999久久久国产精品视频| 亚洲av日韩精品久久久久久密| 三级毛片av免费| 国产午夜精品论理片| 国产一区二区在线观看日韩 | 午夜精品在线福利| 99久久精品一区二区三区| 神马国产精品三级电影在线观看| 国产成人精品久久二区二区91| 久久伊人香网站| 又紧又爽又黄一区二区| 欧美一区二区国产精品久久精品| 久久精品国产99精品国产亚洲性色| 日韩精品中文字幕看吧| 日本精品一区二区三区蜜桃| av片东京热男人的天堂| 久久国产精品影院| 深夜精品福利| 免费在线观看成人毛片| 网址你懂的国产日韩在线| 一进一出好大好爽视频| 在线免费观看不下载黄p国产 | 青草久久国产| 国产伦在线观看视频一区| 国产真人三级小视频在线观看| 国产精品久久视频播放| 中文字幕久久专区| 搡老岳熟女国产| 亚洲五月天丁香| 91老司机精品| 亚洲成人中文字幕在线播放| 国产亚洲精品久久久com| 国产激情欧美一区二区| 美女免费视频网站| 亚洲国产欧美一区二区综合| 亚洲中文日韩欧美视频| 国产主播在线观看一区二区| 一进一出抽搐动态| 黄色成人免费大全| 国产av不卡久久| aaaaa片日本免费| 在线十欧美十亚洲十日本专区| 久久这里只有精品中国| 久99久视频精品免费| 欧美日本视频| 美女黄网站色视频| 国产亚洲欧美98| 亚洲午夜精品一区,二区,三区| 免费电影在线观看免费观看| 国产亚洲欧美98| 国产精品一区二区精品视频观看| 日本精品一区二区三区蜜桃| 国内精品久久久久久久电影| 小说图片视频综合网站| 天天添夜夜摸| 国产 一区 欧美 日韩| 老熟妇仑乱视频hdxx| 在线观看美女被高潮喷水网站 | 欧美成人一区二区免费高清观看 | 性色av乱码一区二区三区2| 国产精品 欧美亚洲| 人妻夜夜爽99麻豆av| av在线天堂中文字幕| 亚洲男人的天堂狠狠| 欧美日韩黄片免| 一个人免费在线观看的高清视频| 精品久久蜜臀av无| 色哟哟哟哟哟哟| 国内毛片毛片毛片毛片毛片| 国产精品一区二区免费欧美| 美女大奶头视频| 这个男人来自地球电影免费观看| 又黄又粗又硬又大视频| 亚洲av成人av| 国产成人啪精品午夜网站| 国产极品精品免费视频能看的| 久久久久久久午夜电影| 成年女人看的毛片在线观看| 国产欧美日韩精品亚洲av| 成年免费大片在线观看| 精品一区二区三区视频在线观看免费| 国产精品爽爽va在线观看网站| 亚洲国产中文字幕在线视频| 好男人电影高清在线观看| 日韩欧美免费精品| 精品久久久久久久久久免费视频| 日韩 欧美 亚洲 中文字幕| 免费观看的影片在线观看| 欧美乱码精品一区二区三区| 国产欧美日韩精品亚洲av| 亚洲精品456在线播放app | 亚洲人成伊人成综合网2020| 变态另类成人亚洲欧美熟女| 国产黄色小视频在线观看| 久久人妻av系列| 国产av在哪里看| 一边摸一边抽搐一进一小说| 日本熟妇午夜| 露出奶头的视频| 亚洲第一电影网av| 美女大奶头视频| 国模一区二区三区四区视频 | 亚洲黑人精品在线| 美女被艹到高潮喷水动态| 少妇丰满av| 欧美日韩一级在线毛片| 熟女电影av网| 亚洲av熟女| 99精品在免费线老司机午夜| 国产欧美日韩一区二区三| 欧美日韩福利视频一区二区| 成人精品一区二区免费| 国产三级在线视频| 性色av乱码一区二区三区2| www.精华液| 精品国产超薄肉色丝袜足j| 欧美性猛交黑人性爽| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| 亚洲精品美女久久久久99蜜臀| 国产麻豆成人av免费视频| 在线十欧美十亚洲十日本专区| 日韩 欧美 亚洲 中文字幕| 午夜福利视频1000在线观看| 精品久久久久久久人妻蜜臀av| 嫩草影视91久久| 亚洲欧美日韩卡通动漫| 午夜精品一区二区三区免费看| 99久久久亚洲精品蜜臀av| 香蕉丝袜av| e午夜精品久久久久久久| 亚洲无线观看免费| www日本黄色视频网| 久久久久久久精品吃奶| 91麻豆av在线| 亚洲va日本ⅴa欧美va伊人久久| 国产男靠女视频免费网站| 国产欧美日韩精品亚洲av| 亚洲欧美日韩高清专用| 啦啦啦观看免费观看视频高清| 在线观看免费视频日本深夜| 国产一区在线观看成人免费| 亚洲七黄色美女视频| 99久久精品国产亚洲精品| 成人永久免费在线观看视频| 久久精品国产清高在天天线| 色综合欧美亚洲国产小说| 日韩人妻高清精品专区| 亚洲成av人片免费观看| 日本成人三级电影网站| 国产成人精品无人区| 亚洲av中文字字幕乱码综合| 深夜精品福利| 最新美女视频免费是黄的| 亚洲欧美日韩无卡精品| 国产成人av教育| 99视频精品全部免费 在线 | 99久久久亚洲精品蜜臀av| 老鸭窝网址在线观看| 亚洲国产欧美网| 精品乱码久久久久久99久播| svipshipincom国产片| 99国产极品粉嫩在线观看| 午夜精品在线福利| 成人特级黄色片久久久久久久| 午夜亚洲福利在线播放| 91九色精品人成在线观看| 长腿黑丝高跟| 天堂网av新在线| 最新中文字幕久久久久 | 国内精品美女久久久久久| 啪啪无遮挡十八禁网站| 又黄又爽又免费观看的视频| 舔av片在线| 啦啦啦观看免费观看视频高清| 草草在线视频免费看| xxxwww97欧美| 国产精品久久久久久亚洲av鲁大| 一级作爱视频免费观看| 人妻夜夜爽99麻豆av| 久久天躁狠狠躁夜夜2o2o| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区三区在线臀色熟女| 波多野结衣巨乳人妻| 日本精品一区二区三区蜜桃| 亚洲人成网站高清观看| 美女黄网站色视频| 国产又黄又爽又无遮挡在线| 久久99热这里只有精品18| 国产v大片淫在线免费观看| 欧美+亚洲+日韩+国产| 真人一进一出gif抽搐免费| 婷婷精品国产亚洲av| 91av网站免费观看| 国产熟女xx| 欧美一区二区国产精品久久精品| 免费一级毛片在线播放高清视频| 亚洲熟妇熟女久久| 亚洲 欧美一区二区三区| 国产精品免费一区二区三区在线| 丰满人妻熟妇乱又伦精品不卡| 欧美av亚洲av综合av国产av| 国产单亲对白刺激| 国产成人系列免费观看| 久久草成人影院| av中文乱码字幕在线| 欧美日韩一级在线毛片| 国产爱豆传媒在线观看| 99精品久久久久人妻精品| 黄色日韩在线| 18美女黄网站色大片免费观看| 91在线观看av| 宅男免费午夜| 午夜福利成人在线免费观看| 亚洲国产看品久久| 亚洲五月婷婷丁香| 特级一级黄色大片| 精品国产乱码久久久久久男人| 色综合婷婷激情| 国产午夜精品久久久久久| 淫妇啪啪啪对白视频| 18禁国产床啪视频网站| 国产综合懂色| 国产成年人精品一区二区| 中文字幕最新亚洲高清| 1024香蕉在线观看| 两个人看的免费小视频| 久久久久久久久久黄片| 午夜精品一区二区三区免费看| 国产私拍福利视频在线观看| 国产aⅴ精品一区二区三区波| 久久这里只有精品中国| 99久久成人亚洲精品观看| 少妇丰满av| 欧美成人免费av一区二区三区| 2021天堂中文幕一二区在线观| 中文字幕精品亚洲无线码一区| 亚洲成人久久性| 好男人在线观看高清免费视频| 夜夜看夜夜爽夜夜摸| 麻豆av在线久日| 在线十欧美十亚洲十日本专区| or卡值多少钱| netflix在线观看网站| 欧美性猛交黑人性爽| 国产1区2区3区精品| 老汉色av国产亚洲站长工具| 国产av麻豆久久久久久久| 久久久水蜜桃国产精品网| 日本一本二区三区精品| 88av欧美| 国产激情欧美一区二区| 亚洲无线在线观看| 国产熟女xx| 极品教师在线免费播放| 特级一级黄色大片| av视频在线观看入口| 少妇熟女aⅴ在线视频| 亚洲精品中文字幕一二三四区| 老司机深夜福利视频在线观看| 少妇裸体淫交视频免费看高清| 亚洲成av人片在线播放无| or卡值多少钱| 久久久久免费精品人妻一区二区| 国产免费av片在线观看野外av| 在线观看免费午夜福利视频| 亚洲av五月六月丁香网| 亚洲精品国产精品久久久不卡| 国产精品永久免费网站| 亚洲精品在线美女| 51午夜福利影视在线观看| 99热这里只有是精品50| 男女午夜视频在线观看| 男人的好看免费观看在线视频| 99久久99久久久精品蜜桃| 1024香蕉在线观看| 首页视频小说图片口味搜索| 色哟哟哟哟哟哟| 国产精品久久久久久人妻精品电影| 国产欧美日韩精品一区二区| 日本 av在线| 久久久久性生活片| 日韩中文字幕欧美一区二区| 日本a在线网址| 看免费av毛片| 久久精品aⅴ一区二区三区四区| 久久这里只有精品19| 在线观看66精品国产| 91在线精品国自产拍蜜月 | 亚洲真实伦在线观看| 欧美色欧美亚洲另类二区| 男女午夜视频在线观看| 一卡2卡三卡四卡精品乱码亚洲| 精品国产三级普通话版| 久久国产精品人妻蜜桃| 国产一区二区在线av高清观看| 波多野结衣巨乳人妻| 久久久精品欧美日韩精品| 国产伦在线观看视频一区| 一夜夜www| 欧美精品啪啪一区二区三区| 男女视频在线观看网站免费| 亚洲 欧美 日韩 在线 免费| 女警被强在线播放| 午夜影院日韩av| 婷婷丁香在线五月| 一进一出好大好爽视频| 欧美最黄视频在线播放免费| 一个人免费在线观看的高清视频| 国产精品亚洲美女久久久| 亚洲七黄色美女视频| 成年版毛片免费区| 青草久久国产| 男人舔奶头视频| 久久久国产成人精品二区| 国产不卡一卡二| 国产高清videossex| 国产成年人精品一区二区| 可以在线观看毛片的网站| a级毛片a级免费在线| 国产精品99久久久久久久久| 久久亚洲真实| 国产极品精品免费视频能看的| 欧美日韩一级在线毛片| 亚洲美女黄片视频| 成人18禁在线播放| 久久精品影院6| 日韩欧美在线乱码| 最近最新中文字幕大全免费视频| 九九在线视频观看精品| 亚洲国产色片| 男女午夜视频在线观看| 午夜成年电影在线免费观看| 99精品欧美一区二区三区四区| 日日摸夜夜添夜夜添小说| 国产精品精品国产色婷婷| 日本熟妇午夜| 色播亚洲综合网| 曰老女人黄片| 欧美日韩乱码在线| 真人做人爱边吃奶动态| 日本 av在线| 成人性生交大片免费视频hd| 国产乱人伦免费视频| 搡老妇女老女人老熟妇| 男女那种视频在线观看| 大型黄色视频在线免费观看| 国产亚洲av嫩草精品影院| 三级国产精品欧美在线观看 | 亚洲成人中文字幕在线播放| 欧美另类亚洲清纯唯美| 亚洲18禁久久av| 色综合婷婷激情| 国产高清有码在线观看视频| 九九在线视频观看精品| 热99re8久久精品国产| 91av网一区二区| 国产高清videossex| 国产av不卡久久| 欧美日韩国产亚洲二区| 在线观看午夜福利视频| 久久久久久人人人人人| 欧美一级毛片孕妇| 欧美黄色片欧美黄色片| 亚洲国产日韩欧美精品在线观看 | 成人18禁在线播放| 国产成人福利小说| 亚洲自偷自拍图片 自拍| 欧美成人一区二区免费高清观看 | 久9热在线精品视频| 免费看a级黄色片| 日韩欧美在线二视频| 一进一出好大好爽视频| 亚洲 欧美一区二区三区| 香蕉丝袜av| 麻豆成人av在线观看| 成人av在线播放网站| 国产野战对白在线观看| www.精华液| АⅤ资源中文在线天堂| 不卡av一区二区三区| 高清毛片免费观看视频网站| 此物有八面人人有两片| 亚洲精品乱码久久久v下载方式 | 亚洲av熟女| 国产午夜福利久久久久久| 欧美色欧美亚洲另类二区| av欧美777| 人妻丰满熟妇av一区二区三区| 极品教师在线免费播放| 黑人巨大精品欧美一区二区mp4| 精品熟女少妇八av免费久了| 日韩 欧美 亚洲 中文字幕| 亚洲人成网站高清观看| 国产精品女同一区二区软件 | x7x7x7水蜜桃| 国产伦精品一区二区三区视频9 | 色老头精品视频在线观看| 欧美成狂野欧美在线观看| 2021天堂中文幕一二区在线观| 久久伊人香网站| 国产精品九九99| 又黄又爽又免费观看的视频| 亚洲国产色片| 中文字幕人成人乱码亚洲影| 看免费av毛片| 两个人视频免费观看高清| 亚洲精品在线美女| 久久久国产成人精品二区| 国产精品免费一区二区三区在线| 91九色精品人成在线观看| 在线观看午夜福利视频| 婷婷精品国产亚洲av在线| 国产精品久久电影中文字幕| 国产亚洲欧美在线一区二区| 老熟妇乱子伦视频在线观看| 久99久视频精品免费| 色噜噜av男人的天堂激情| 免费在线观看日本一区| 搡老妇女老女人老熟妇| 三级国产精品欧美在线观看 | 男女床上黄色一级片免费看| 中出人妻视频一区二区| 99精品欧美一区二区三区四区| 一本综合久久免费| 久久九九热精品免费| 日韩成人在线观看一区二区三区| 亚洲av成人精品一区久久| 观看美女的网站| 午夜福利在线观看免费完整高清在 | 九九热线精品视视频播放| 免费无遮挡裸体视频| 女警被强在线播放| 久久精品国产亚洲av香蕉五月| 波多野结衣巨乳人妻| 男女之事视频高清在线观看| 婷婷亚洲欧美| 麻豆av在线久日| 国产极品精品免费视频能看的| 欧美成狂野欧美在线观看| 亚洲中文字幕一区二区三区有码在线看 | 精品久久久久久成人av| www日本黄色视频网| 精品久久久久久成人av| 精品国产美女av久久久久小说| 久久热在线av| 老汉色av国产亚洲站长工具| 真人做人爱边吃奶动态| 听说在线观看完整版免费高清| 亚洲自偷自拍图片 自拍| 久久久久久久精品吃奶| 免费av不卡在线播放| 桃红色精品国产亚洲av| 每晚都被弄得嗷嗷叫到高潮| 成人性生交大片免费视频hd| 久久久久亚洲av毛片大全| 国产69精品久久久久777片 | 夜夜夜夜夜久久久久| 村上凉子中文字幕在线| 精品久久蜜臀av无| 国产伦精品一区二区三区视频9 | 欧美色视频一区免费| 久久精品人妻少妇| 亚洲国产精品久久男人天堂| 国产精品九九99| 又黄又粗又硬又大视频| av女优亚洲男人天堂 | 亚洲天堂国产精品一区在线| 国产精品av久久久久免费| 在线a可以看的网站| aaaaa片日本免费| 亚洲av免费在线观看| 在线十欧美十亚洲十日本专区| 欧美日韩福利视频一区二区| 色综合亚洲欧美另类图片| 日日夜夜操网爽| 国产精品av久久久久免费| 精品福利观看| 99riav亚洲国产免费| 我的老师免费观看完整版| 别揉我奶头~嗯~啊~动态视频| 又紧又爽又黄一区二区| 男人和女人高潮做爰伦理| 伊人久久大香线蕉亚洲五| xxxwww97欧美| 国产主播在线观看一区二区| 国产综合懂色| 99在线人妻在线中文字幕| 国产激情偷乱视频一区二区| 听说在线观看完整版免费高清| 曰老女人黄片| 久久性视频一级片| 嫩草影视91久久| 欧美一级毛片孕妇| 一进一出好大好爽视频| 免费在线观看日本一区| 久久久久久大精品| 久久精品亚洲精品国产色婷小说| 欧美黑人巨大hd| 黄色 视频免费看| 色视频www国产| 久久久成人免费电影| 国产激情欧美一区二区| 在线观看美女被高潮喷水网站 | 听说在线观看完整版免费高清| 久久久久国产精品人妻aⅴ院| 午夜福利在线观看吧| 久久久久亚洲av毛片大全| 国产成人av激情在线播放| 欧美在线一区亚洲| 人人妻人人澡欧美一区二区| 日韩大尺度精品在线看网址|