• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An organic-inorganic hybrid thermochromic ferroelastic with multi-channel switches

    2023-10-14 03:03:16YipiaoZengJunchaoLiuLinZhouXinDengWenliYangXinYanYanlingLuoXuanZhuXiaoyunHuangXianjiangSongYuanyuanTang
    Chinese Chemical Letters 2023年9期

    Yipiao Zeng, Junchao Liu, Lin Zhou, Xin Deng, Wenli Yang, Xin Yan, Yanling Luo,Xuan Zhu, Xiaoyun Huang, Xianjiang Song, Yuanyuan Tang

    Ordered Matter Science Research Center and School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China

    Keywords:Organic-inorganic hybrid compounds Ferroelastic domains Thermochromism Multi-channel switches Bistability

    ABSTRACT Multifunctional switchable materials are attracting tremendous interest because of their great application potential in signal processing, information encryption, and smart devices.Here, we reported an organic-inorganic hybrid thermochromic ferroelastic crystal, [TMIm][CuCl4] (TMIm=1,1,3,3-tetramethylimidazolidinium), which undergoes two reversible phase transitions at 333 K and 419 K, respectively.Intriguingly, these three phases experience a remarkable ferroelastic-paraelastic-ferroelastic(2/m-mmm-2/m) transition, which remains relatively unexplored in ferroelastics.Moreover, the ferroelastic domains can be simultaneously switched under temperature and stress stimuli.Meanwhile,[TMIm][CuCl4] exhibits thermochromic phenomenon, endowing it with extra spectral encryption possibilities during information processing.Combined with dielectric switching behavior, [TMIm][CuCl4] are promising for practical applications in memory devices, next-generation sensors, and encryption technology.

    Multi-channel information processing and encryption capabilities play an important role among a variety of smart device materials for satisfying the development needs of the mega data era[1-3].Switching materials, which can be switched in two relatively stable states with different physical properties under external stimulation (such as electrical, magnetic, thermal, optical, and mechanical fields), are widely utilized in signal processing, intelligent devices, sensors, and so on [4-17].Bistability with switching on/off in switching materials is beneficial to data storage and encryption technology [18].Bistable materials with multiple physical channels can not only enhance the strength of information encryption but also expand its practical application range, which would provide more opportunities and freedom to design devices [19,20].

    Organic-inorganic hybrid compounds are considered prospective candidates for switching materials due to their inherent structural flexibility, easy processability, low acoustical, and lightweight,with great promise for next-generation ductile and wearable devices [21-30].The coexistence and/or coupling of dielectricferroelectric, luminescence-ferroelectric, and ferromagneticferroelectric have been reported in organic-inorganic hybrid systems, such as MPSnBr3(MP=methylphosphonium), tetramethylphosphonium tetrachloroferrate(III) ([(CH3)4P][FeCl4], [3,3-difluorocyclobutylammonium]2CrCl4[31-41].However, switching materials which exhibit bistability with three or more physical channels simultaneously are still scarce.In this context, combining multiple physical channels into a single material remains a big challenge.

    In recent years, the design of multifunctional switching materials was injected new vitality due to “Ferroelectrochemistry”proposed by Xionget al.[42,43].Inspired by “Ferroelectrochemistry”, we successfully obtained an organic-inorganic hybrid thermochromic ferroelastic crystal with multi-channel switches,[TMIm][CuCl4] (TMIm=1,1,3,3-tetramethylimidazolidinium), which undergoes two reversible phase transitions at 333 K (Tc1) and 419 K (Tc2), respectively.Noteworthily, it exhibits switchable bistability in three channels of dielectric, thermochromic, and ferroelastic properties simultaneously.[TMIm][CuCl4] can be rapidly switched between a low dielectric state and a high dielectric state, which makes it a promising candidate for dielectric switching material [44-46].More importantly, the distortion of the [CuCl4] tetrahedron under the thermal stimuli produces a fascinating thermochromic phenomenon, which has great potential applications in devices such as smart windows, visual thermometers, and temperature sensors [47-49].Intriguingly, [TMIm][CuCl4] undergoes a unique ferroelastic-paraelasticferroelastic phase transition, which is very rare among the previously reported types of ferroelastic transitions.Furthermore, ferroelastic domains can be rapidly switched by thermal stimulation and external stress in [TMIm][CuCl4].Due to multi-channel physical switches, [TMIm][CuCl4] would be of great significance for multiplex information processing and encryption in smart devices, information storage,etc., and has potential application prospects in the field of modern information.This work paves the way for the development of new multifunctional switching materials.

    Fig.1.(a) The DSC curve of [TMIm][CuCl4] measured in second heating-cooling cycle.Inset: the DSC curve of [TMIm][CuCl4] measured in first heating-cooling cycle.(b) The temperature-dependence ε’of [TMIm][CuCl4] at 1 MHz in the heating and cooling cycle.Inset: the ε’of [TMIm][CuCl4] at 5 kHz and 10 kHz in the heating.(c) Working concept diagram of smart device in [TMIm][CuCl4].(d) The switching cycles of the dielectric measurement for [TMIm][CuCl4].

    Differential scanning calorimetry (DSC) is the primary way to test whether the phase transition behavior occurs.In the first cycle of heating and cooling, [TMIm][CuCl4] has an endothermic peak on the heating curve and a corresponding exothermic peak on the cooling curve (inset of Fig.1a).Notably, a new exothermic peak appeared at 325 K during cooling.In subsequent measurements, two pairs of thermal anomaly peaks appeared at 333/320 K (Tc1) and 419/410 K (Tc2) as shown in Fig.1a, accompanied by wide thermal hysteresis, 13 and 9 K, respectively, indicating that both phase transitions are first-order ones [50].For convenience, the phase with a temperature higher thanTc2is denoted as the high-temperature phase (HTP), that betweenTc1andTc2as the intermediate-temperature phase (ITP), and that belowTc1is recorded as the low-temperature phase (LTP).From the DSC data,entropy changesΔS1andΔS2were calculated to be 8.89 and 7.45 J mol-1K-1, respectively.In accordance with the Boltzmann equationΔS=Rln(N), theNvalues for two phase transitions are estimated to be about 3.14 and 2.23, respectively, proving that both phase transitions are order-disorder ones [51].

    To further verify the phase transition behavior, we measured the variable-temperature dielectric constant of [TMIm][CuCl4] in the temperature range of 300-450 K.As shown in Fig.1b, the real partε′exhibits a pair of distinct step-like dielectric anomalies between LTP and ITP at a frequency of 1 MHz, with a gradual increase inε′value aroundTc1.Then the second dielectric anomaly was observed at aboutTc2, and the corresponding more obvious dielectric peaks could be seen at 5 kHz and 10 kHz (inset of Fig.1b).Hence,the existence of phase transitions is proved by two pairs of obvious dielectric anomalies, which are in good agreement with the thermal analysis results.

    As shown in Fig.1d, in the vicinity ofTc1, the region with a relatively lowε’value was denoted as "OFF" (LTP), and the region with a relatively highε’value was denoted as “ON” (ITP).The rapid switching of the dielectric signal between temperature-controlled high and low dielectric states reveals that [TMIm][CuCl4] possesses good dielectric switching properties.Furthermore, good reversibility and sustainability are exhibited in long-term measurements, indicating that [TMIm][CuCl4] has great potential for smart device applications (Fig.1c) [52,53].

    To deeply study the mechanism of microstructural change,the single crystal of [TMIm][CuCl4] was measured with variabletemperature X-ray diffraction.In the initial heating stage,[TMIm][CuCl4] crystallizes in orthorhombic space groupPna21(point groupmm2) at 298 K and 373 K, respectively (Table S1 and Fig.S4 in Supporting information).When the temperature exceedsTc2, [TMIm][CuCl4] crystallizes in monoclinic space groupC2/c(point group 2/m) with unit cell parameters ofa=14.4227(18)?A,b=7.8394(10) ?A,c=12.5370(19) ?A,β=92.499°,V=1416.84(3)?A3,Z=4.When the temperature returns to 298 K again (RTP),[TMIm][CuCl4] crystallizes in the monoclinic space groupC2/c(point group 2/m) with unit cell parameters ofa=28.8796(14) ?A,b=15.5745(6) ?A,c=12.1945(6) ?A,β=91.236°,V=5483.6(4) ?A3,Z=8.The relationship with the HTP cell parameters is:aRTP≈2aHTP,bRTP≈2bHTP,cRTP≈cHTP.When heated to 373 K (ITP)for the second time, [TMIm][CuCl4] crystallizes in the orthorhombic space groupPnna(point group,mmm) with unit cell parameters ofa=12.2483(6) ?A,b=14.5106(6) ?A,c=7.8439(4) ?A,V=1394.10(11) ?A3,Z=4.Entering the high-temperature phase again, [TMIm][CuCl4] still crystallizes in theC2/cspace group, and the unit cell parameters are consistent with the previous HTP.This exactly matches with the results of the DSC test.

    In RTP, as shown in Figs.2a and d, the asymmetric unit of [TMIm][CuCl4] contains two independent [TMIm] cations, one complete [Cu1Cl4] anion, half [Cu2Cl4] anion and half [Cu3Cl4] anion.Both organic and inorganic components are in crystallographic order.Cu1, Cu2, and Cu3 atoms in special symmetry positions are penetrated by 2-fold axes parallel to theb-axis, respectively.The central copper ion and four chloride ions coordinate to form an irregular tetrahedral [CuCl4] anion.The unequal Cl-Cu bond distances in [Cu1Cl4] are distributed between 2.235(3) ?A and 2.254(3)?A.Six groups of independent Cl-Cu-Cl bond angles range from 96.64° to 137.64° (Table S1).The unequal Cl-Cu bond distances in[Cu2Cl4] are distributed between 2.226(3) ?A and 2.243(2) ?A.Six groups of independent Cl-Cu2-Cl bond angles range from 100.46°to 127.98°.The unequal Cl-Cu bond distances in [Cu3Cl4] are distributed between 2.245(3) ?A and 2.251(3) ?A.Six groups of independent Cl-Cu3-Cl bond angles range from 97.20° to 133.75° (Table S2 in Supporting information).The Cl-Cu-Cl angles in the three[CuCl4] tetrahedra deviate considerably from the normal 109°, implying the distortion of the [CuCl4] tetrahedra.

    In the ITP, as shown in Figs.2b and e, the asymmetric unit of[TMIm][CuCl] contains half a [TMIm] cation and half a [CuCl4] anion.C1 atom of [TMIm] is in a special symmetry position, crossed by a 2-fold axis parallel to thea-axis.And Cu1 atom is also in a special symmetry position, penetrated by a 2-fold axis parallel to thec-axis.The relationship between the RTP and ITP cell parameters is: 2aITP≈bRTP, 2bITP≈cRTP,cITP≈aRTP.In contrast to RTP, [TMIm] forms a 2-fold disorder with respect to theC2 axis parallel to thea-axis.The two independent Cu-Cl distances of the[CuCl4] tetrahedron range from 2.213(3) ?A to 2.226(2) ?A.The four unequal Cl-Cu1-Cl angles range from 96.67° to 134.96° (Table S2).Obviously, the Cl-Cu-Cl angles of the [CuCl] tetrahedra in ITP significantly change compared to those in RTP, indicating a change in the geometric [CuCl4] tetrahedra.Therefore, the phase transition of [TMIm][CuCl4] between ITP and RTP should be attributed to a synergistic effect of [TMIm] cationic order-disorder transition and[CuCl4] tetrahedral anion deformation.

    Fig.2.The asymmetric unit of [TMIm][CuCl4] at (a) 298 K, (b) 373 K and (c) 443 K, respectively.Packing view of structures of [TMIm][CuCl4] at (d) 298 K, (e) 373 K and (f)323 K, respectively.Parts of hydrogen atoms were omitted for clarity.Symmetric code: (i) 2-X, +Y, 3/2-Z; (ii) 2-X, +Y, 1/2-Z; (iii) 1/2-X, 1-Y, +Z; (v) 1-X, +Y, 3/2-Z.

    In HTP, as shown in Figs.2c and f, the asymmetric unit of[TMIm][CuCl4] contains one independent [TMIm] cation and one half [CuCl4] anion.The [CuCl4] anion is located in a special symmetrical position.The Cu1 of [CuCl4] is crossed by a double axis parallel to theb-axis.The relationship between the HTP and ITP cell parameters is:aHTP≈cITP,bHTP≈aITP,cHTP≈bITP.The [TMIm]cation is more dissordered than that in ITP, and the skeleton of[TMIm] cation is reversed to occupy two positions, with an occupancy rate of 0.5.The two independent Cu-Cl distances of the[CuCl4] tetrahedron range from 2.197(8) ?A to 2.224(6) ?A.The four unequal Cl-Cu1-Cl angles range from 97.7° to 130.7° (Table S2).From ITP to HTP, there is only a small difference in the Cu-Cl distance and Cl-Cu-Cl angle.Therefore, the origin of the phase transition from ITP to HTP is mainly due to the more disordered transition of the [TMIm] cation.

    In order to further explore the structural changes when the phase transition occurs, we carried out variable-temperature powder X-ray diffraction (PXRD) measurements.During both measurements, the experimental patterns of LTP, ITP and HTP are in conformity with the corresponding simulation results, indicating the phase purity (Fig.S3 in Supporting information).As shown in Fig.S2 (Supporting information), the experimental PXRD pattern remained basically unchanged when the temperature was first heated from 298 K to 373 K.When the temperature was raised to 443 K, the experimental PXRD pattern showed a significant transition, that is, several diffraction peaks vanished, while some new peaks appeared.As the temperature increased again to 343 K, the PXRD pattern also showed obvious changes.Several diffraction peaks between 18.18° and 19.54° changed, accompanied by the peaks at 25.26° and 25.26° disappearing, and the new peaks at 22.12° and 25.42° emerged.When the temperature continued to increase to 443 K, the diffraction peaks at 13.38°, 14.48°, and 22.78° disappeared, and new peaks appeared at 14.14° and 18.24°.Therefore, the diffraction peaks, which vary significantly between 298-343 K and 373-434 K, indicate the existence of two structural phase transitions in [TMIm][CuCl4], which are consistent with DSC,dielectric, and crystallographic analyses.

    The crystal structure analysis shows that [TMIm][CuCl4] undergoes a continuous symmetric change during the heating process,namely from theC2/cspace group at RTP to thePnnaspace group at ITP, and finally to theC2/cspace group at HTP.The Aizu symbol is expressed asmmmF2/m, which belongs to one of the 94 species of ferroelastic phase transitions, and thus this is a unique ferroelastic (RTP)-paraelastic (ITP)-ferroelastic (HTP) phase transition [54].The evolution of ferroelastic domains is a distinctive feature of ferroelastic phase transitions.The ferroelastic domains of[TMIm][CuCl4] were obtained byin situobservation of thin film samples using polarized light microscopy.As shown in Figs.3a-e,stripe domains can be clearly observed by orthogonally polarized light at 298 K (RTP).With the rise in temperature, [TMIm][CuCl4]entered the paraelastic phase (353 K, ITP), and the corresponding stripe ferroelastic domains vanished.An interesting phenomenon happens, that is, the stripe ferroelastic domains reemerged as the temperature is further increased to reach HTP, which are slightly different from those observed at ITP.Subsequently, the ferroelastic domains disappeared again when [TMIm][CuCl4] returned to ITP during the continuous cooling process.After entering the RTP,the ferroelastic domains appeared again.The surface of the crystalline film did not change in heating and cooling cycle, which indicates that the evolution of ferroelastic domains depends on temperature, but not on morphology (Fig.S5 in Supporting information).The ferroelastic domains can appear and disappear repeatedly during the heating and cooling cycles, which is solid evidence that [TMIm][CuCl4] undergoes a reversible ferroelastic-paraelasticferroelastic phase transition.

    Fig.3.(a-e) The evolution of ferroelastic domains for [TMIm][CuCl4] in heating and cooling cycle.

    Fig.4.(a) Schematic diagram of ferroelastic domain switching under stress.(b, d)Evolution of the ferroelastic domains in [TMIm][CuCl4] under external stress stimuli observed by orthogonally polarized light microscopy.(c, e) The topography images of [TMIm][CuCl4] for the corresponding region in (b) and (d), respectively.

    The inherent feature of ferroelastics is that there are at least two spontaneous strain orientation orders that can be switched by external stress.Therefore, we further confirm the switching of ferroelastic domains for [TMIm][CuCl4] under external stress.As shown in Fig.4a, the ferroelastic domain pattern of the as-grown crystalline thin films of [TMIm][CuCl4] can be observed under orthogonally polarized light in RTP.After a suitable stress was applied to the surface of the crystalline film, the stripe ferroelastic domains (Fig.4b) of [TMIm][CuCl4] gradually disappeared.Finally,the ferroelastic domains tend to be monodomain or large irregular domains (Fig.4d).From Figs.4c and e, it can be observed that the surface of the crystalline film was not damaged after applying stress, which proved that the switching of ferroelastic domains was only related to the applied external stress, confirming the existence of ferroelasticity in [TMIm][CuCl4].

    Thermochromic phenomena are common in organic-inorganic Cu(II) halide systems [48,49].The absorption band corresponding to the d-d electronic transition in the Cu2+ion with the 3d9electronic configuration is related to the coordination geometry of the central Cu2+ion, which induces the color change of the compound[55].The [CuCl4] coordination geometry in [TMIm][CuCl4] changes significantly during the phase transition from RTP to HTP, resulting in its color from yellow to reddish-brown,e.g., other thermochromic organic-inorganic Cu(II) halides also exhibit phase transitions [56-58].

    Due to the remarkable thermochromism of [TMIm][CuCl4],solid-state UV-vis absorption spectra at different temperatures were performed.As shown in Fig.5a, [TMIm][CuCl4] appearance changed from yellow at 298 K to reddish brown at 443 K.[TMIm][CuCl4] absorbs light with a wavelength less than 557 nm at room temperature, which corresponds to its yellow appearance.When the temperature was increased beyondTc2to 443 K,the absorption edge moved to 597 nm, which is consistent with its reddish-brown appearance.In the UV-vis spectra of 298 K,373 K and 443 K, the absorption edges were observed at 478,488 and 496 nm, respectively.Furthermore, the main absorption band of the UV-vis absorption spectrum exhibits an obvious red shift with increasing temperature, revealing the color transition of[TMIm][CuCl4].On the basis of the Tauc equation, the optical band gaps were estimated to change from 2.19 eV at 298 K to 1.987 eV at 373 K (Fig.5b).The red shift of the absorption peak and the narrowing of the band gap with the increase of temperature confirm the thermochromic phenomenon, and the change of the Cu(II) ions coordination environment during the phase transition also plays an important role in thermochromism.

    Fig.5.(a) Variable-temperature solid-state UV-vis absorption spectra are recorded at 298 K, 373 K and 433 K.(b) The extrapolated optical band gaps for 298 K and 373 K.

    In summary, [TMIm][CuCl4] is an organic-inorganic hybrid ferroelastic which exhibits bistability with multi-channel physical channels (dielectric, thermochromic, and ferroelastic).Thermochromism has great potential applications in devices such as visual thermometers, temperature sensors, and information encryption.Noteworthily, a rare evolution of ferroelastic-paraelasticferroelastic phase occurs accompanying by the phase transition process.The ferroelastic domains of [TMIm][CuCl4] can be reversibly switched not only under thermal stimulation but also under external stress.The origin of phase transition is ascribed to the synergy of order-disorder transition of [TMIm] cations and deformation of [CuCl4] tetrahedral anion.This work provides powerful inspiration for exploring new excellent multifunctional switching materials.

    Declaration of competing interest

    There are no conflicts to declare.

    Acknowledgment

    This work was supported by the National Natural Science Foundation of China (Nos.21975114, 11904151 and 22105094).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.108127.

    女人被狂操c到高潮| 秋霞在线观看毛片| 九九热线精品视视频播放| 美女脱内裤让男人舔精品视频 | 日韩在线高清观看一区二区三区| 欧美另类亚洲清纯唯美| 少妇熟女欧美另类| 久99久视频精品免费| 国模一区二区三区四区视频| 一级毛片电影观看 | 久久鲁丝午夜福利片| 99久久精品一区二区三区| 99热这里只有精品一区| 国产视频内射| 国产麻豆成人av免费视频| 97热精品久久久久久| 狠狠狠狠99中文字幕| 18禁在线播放成人免费| 变态另类丝袜制服| 黑人高潮一二区| 国产伦精品一区二区三区视频9| 成年女人看的毛片在线观看| 网址你懂的国产日韩在线| 不卡视频在线观看欧美| 日韩在线高清观看一区二区三区| 联通29元200g的流量卡| 亚洲人成网站高清观看| 国产av一区在线观看免费| 中文字幕免费在线视频6| 成人二区视频| 最近的中文字幕免费完整| 99久国产av精品国产电影| 国产精品久久视频播放| 免费人成视频x8x8入口观看| av在线播放精品| 国产黄片视频在线免费观看| 黄色视频,在线免费观看| 欧美一区二区国产精品久久精品| 亚州av有码| 五月玫瑰六月丁香| 国产精品,欧美在线| 久久亚洲精品不卡| 国产精品,欧美在线| 五月玫瑰六月丁香| 又粗又硬又长又爽又黄的视频 | 六月丁香七月| 国产精品久久视频播放| 一区二区三区免费毛片| 色播亚洲综合网| 校园人妻丝袜中文字幕| 国产视频首页在线观看| a级毛片a级免费在线| 91久久精品国产一区二区三区| 又粗又硬又长又爽又黄的视频 | 欧美在线一区亚洲| 欧美日韩乱码在线| 嫩草影院精品99| 亚洲无线在线观看| 欧美一区二区国产精品久久精品| 日韩强制内射视频| 国产一区二区亚洲精品在线观看| 最近的中文字幕免费完整| 国产视频内射| 99久国产av精品| 国产单亲对白刺激| 免费看日本二区| 日本三级黄在线观看| 校园春色视频在线观看| 中文字幕免费在线视频6| 日本在线视频免费播放| 国内久久婷婷六月综合欲色啪| 亚洲人成网站在线播| 蜜桃亚洲精品一区二区三区| 国产v大片淫在线免费观看| 特大巨黑吊av在线直播| 久久精品国产99精品国产亚洲性色| 久久久国产成人精品二区| 夜夜夜夜夜久久久久| 又爽又黄无遮挡网站| 国产精品久久电影中文字幕| 亚洲天堂国产精品一区在线| 日韩欧美国产在线观看| 中文在线观看免费www的网站| 99久久人妻综合| 天堂影院成人在线观看| 男女那种视频在线观看| 欧美一级a爱片免费观看看| 黄色欧美视频在线观看| 看黄色毛片网站| 欧美人与善性xxx| 大香蕉久久网| 1000部很黄的大片| 日本免费一区二区三区高清不卡| 91午夜精品亚洲一区二区三区| 午夜福利高清视频| 亚洲精品日韩在线中文字幕 | 国产av不卡久久| 免费av毛片视频| 爱豆传媒免费全集在线观看| 中文精品一卡2卡3卡4更新| 天堂√8在线中文| 国产精品爽爽va在线观看网站| 青春草亚洲视频在线观看| 99九九线精品视频在线观看视频| 黄色欧美视频在线观看| 国产色婷婷99| 午夜视频国产福利| 搞女人的毛片| 大香蕉久久网| 在线天堂最新版资源| 亚洲电影在线观看av| 1000部很黄的大片| 国产极品天堂在线| av国产免费在线观看| 草草在线视频免费看| 97超视频在线观看视频| 欧美一区二区国产精品久久精品| 欧美一区二区亚洲| 国产精品久久久久久av不卡| 午夜免费激情av| 亚洲人与动物交配视频| 欧美丝袜亚洲另类| 夜夜夜夜夜久久久久| 婷婷色av中文字幕| 高清毛片免费看| 高清在线视频一区二区三区 | 久久久久网色| 99热全是精品| 久久草成人影院| 国内久久婷婷六月综合欲色啪| 国产伦精品一区二区三区四那| 欧美日韩国产亚洲二区| 亚洲经典国产精华液单| 高清午夜精品一区二区三区 | 欧美性感艳星| 一区二区三区免费毛片| 日韩 亚洲 欧美在线| 女的被弄到高潮叫床怎么办| 乱码一卡2卡4卡精品| 午夜精品一区二区三区免费看| 一级毛片aaaaaa免费看小| 亚洲欧美成人精品一区二区| 午夜免费男女啪啪视频观看| 九草在线视频观看| 女同久久另类99精品国产91| 最好的美女福利视频网| 精品人妻视频免费看| 菩萨蛮人人尽说江南好唐韦庄 | 小说图片视频综合网站| av.在线天堂| 只有这里有精品99| 免费电影在线观看免费观看| 国国产精品蜜臀av免费| 美女xxoo啪啪120秒动态图| 免费搜索国产男女视频| 久久久久九九精品影院| 成人一区二区视频在线观看| 看片在线看免费视频| 国产成人一区二区在线| 变态另类成人亚洲欧美熟女| 亚洲成人久久性| 欧美日韩在线观看h| 菩萨蛮人人尽说江南好唐韦庄 | 欧美三级亚洲精品| 国产精品久久久久久亚洲av鲁大| 日韩欧美精品v在线| www.色视频.com| 久久精品综合一区二区三区| 一个人免费在线观看电影| 一边摸一边抽搐一进一小说| 麻豆精品久久久久久蜜桃| 尤物成人国产欧美一区二区三区| 亚洲人成网站在线观看播放| 一级黄色大片毛片| 12—13女人毛片做爰片一| 久久国产乱子免费精品| 久久中文看片网| 舔av片在线| 禁无遮挡网站| 非洲黑人性xxxx精品又粗又长| 高清在线视频一区二区三区 | 午夜精品在线福利| 性欧美人与动物交配| 天堂影院成人在线观看| 少妇的逼水好多| 欧美区成人在线视频| 波多野结衣高清无吗| 草草在线视频免费看| 亚洲最大成人av| 99riav亚洲国产免费| 干丝袜人妻中文字幕| 精品久久久久久久久久久久久| 国产午夜精品论理片| 夜夜看夜夜爽夜夜摸| 国产极品精品免费视频能看的| 午夜福利在线在线| 一本久久中文字幕| 午夜激情福利司机影院| 成熟少妇高潮喷水视频| 可以在线观看毛片的网站| 国产精品1区2区在线观看.| 亚洲精品自拍成人| 亚洲一级一片aⅴ在线观看| 观看美女的网站| 男人和女人高潮做爰伦理| 久久精品国产亚洲av天美| 日韩一区二区视频免费看| 少妇熟女aⅴ在线视频| 国产精品一区二区性色av| 亚洲欧洲国产日韩| 成年女人永久免费观看视频| 美女内射精品一级片tv| 人妻少妇偷人精品九色| 亚洲国产精品国产精品| 日韩欧美在线乱码| 欧美日韩综合久久久久久| 亚洲自拍偷在线| 欧美一区二区国产精品久久精品| 毛片一级片免费看久久久久| 又爽又黄无遮挡网站| 成人美女网站在线观看视频| 国产午夜精品一二区理论片| 不卡一级毛片| 色吧在线观看| videossex国产| 国产一级毛片在线| 赤兔流量卡办理| 你懂的网址亚洲精品在线观看 | 国产女主播在线喷水免费视频网站 | 99国产极品粉嫩在线观看| 国产一区亚洲一区在线观看| 69人妻影院| 欧美xxxx性猛交bbbb| av在线老鸭窝| 大香蕉久久网| 久久人人精品亚洲av| 亚洲无线在线观看| 日韩亚洲欧美综合| 精品久久久久久成人av| 人人妻人人看人人澡| 99久久久亚洲精品蜜臀av| 亚洲av.av天堂| 校园人妻丝袜中文字幕| 午夜激情福利司机影院| 天堂网av新在线| 免费av不卡在线播放| 国产一区二区在线观看日韩| 最近视频中文字幕2019在线8| 亚洲欧美清纯卡通| 中文字幕免费在线视频6| 免费看光身美女| 只有这里有精品99| 99在线人妻在线中文字幕| 久久久久九九精品影院| 亚洲第一电影网av| 久久久久免费精品人妻一区二区| 男女啪啪激烈高潮av片| 五月玫瑰六月丁香| 成人无遮挡网站| 国产69精品久久久久777片| 中文字幕av在线有码专区| 身体一侧抽搐| 日韩三级伦理在线观看| 成人无遮挡网站| 午夜福利成人在线免费观看| 国产一区二区三区在线臀色熟女| 久久韩国三级中文字幕| 成人二区视频| 少妇的逼水好多| 国产女主播在线喷水免费视频网站 | 欧美一区二区国产精品久久精品| 国产亚洲精品久久久com| 麻豆乱淫一区二区| 18+在线观看网站| 日本免费一区二区三区高清不卡| 久久久久久久久大av| 中国美女看黄片| 在现免费观看毛片| 国产成人a区在线观看| 国产精品国产高清国产av| 黄片无遮挡物在线观看| 男女边吃奶边做爰视频| 精品人妻熟女av久视频| 99精品在免费线老司机午夜| 变态另类成人亚洲欧美熟女| 久久这里只有精品中国| 亚洲av熟女| 免费看av在线观看网站| 欧美高清成人免费视频www| 三级国产精品欧美在线观看| 久久久久久久久久黄片| 免费观看的影片在线观看| 男女那种视频在线观看| 日本-黄色视频高清免费观看| 美女国产视频在线观看| 夜夜爽天天搞| 久久久国产成人精品二区| 国产伦一二天堂av在线观看| 日本五十路高清| 18禁在线播放成人免费| 欧美色欧美亚洲另类二区| 看黄色毛片网站| av在线观看视频网站免费| 久久精品综合一区二区三区| av女优亚洲男人天堂| 免费观看精品视频网站| 成人毛片60女人毛片免费| 又粗又硬又长又爽又黄的视频 | 在现免费观看毛片| 精品少妇黑人巨大在线播放 | 精华霜和精华液先用哪个| 嫩草影院新地址| 一卡2卡三卡四卡精品乱码亚洲| 91狼人影院| 最新中文字幕久久久久| 国产精品久久久久久av不卡| 别揉我奶头 嗯啊视频| 成年版毛片免费区| 国产伦精品一区二区三区视频9| 好男人视频免费观看在线| 亚洲图色成人| 国产白丝娇喘喷水9色精品| 18禁黄网站禁片免费观看直播| 搡老妇女老女人老熟妇| 美女高潮的动态| 少妇熟女aⅴ在线视频| 色噜噜av男人的天堂激情| 免费人成视频x8x8入口观看| 亚洲av不卡在线观看| 久久鲁丝午夜福利片| 26uuu在线亚洲综合色| 性插视频无遮挡在线免费观看| 国产在视频线在精品| 中文亚洲av片在线观看爽| 国产一区亚洲一区在线观看| 久久午夜亚洲精品久久| 青春草视频在线免费观看| 大型黄色视频在线免费观看| 国产私拍福利视频在线观看| 亚洲四区av| 欧美潮喷喷水| 日韩精品青青久久久久久| 九九热线精品视视频播放| 国产日本99.免费观看| 熟妇人妻久久中文字幕3abv| 国产一区二区在线观看日韩| 国产精品久久视频播放| 国产高清三级在线| 国产精品久久久久久久电影| 国产一区亚洲一区在线观看| 能在线免费观看的黄片| 色5月婷婷丁香| 婷婷色综合大香蕉| 日日干狠狠操夜夜爽| 国产av一区在线观看免费| 永久网站在线| 少妇的逼好多水| 日本黄色片子视频| 国产精品一区二区三区四区免费观看| 黄片wwwwww| 天天躁日日操中文字幕| 久久人妻av系列| 一区二区三区高清视频在线| 国产一区二区亚洲精品在线观看| 日本撒尿小便嘘嘘汇集6| 岛国毛片在线播放| 亚洲一级一片aⅴ在线观看| 亚洲国产色片| 中文资源天堂在线| 看非洲黑人一级黄片| videossex国产| 成人欧美大片| 国产极品天堂在线| 欧美激情在线99| 十八禁国产超污无遮挡网站| 男的添女的下面高潮视频| 国产一区二区三区在线臀色熟女| 精品99又大又爽又粗少妇毛片| 一级黄色大片毛片| 精品久久国产蜜桃| 啦啦啦啦在线视频资源| 伦理电影大哥的女人| 亚洲一级一片aⅴ在线观看| 可以在线观看的亚洲视频| 亚洲无线观看免费| 久久婷婷人人爽人人干人人爱| 国产亚洲av嫩草精品影院| 精品久久久久久久人妻蜜臀av| 免费观看a级毛片全部| 性色avwww在线观看| 免费人成在线观看视频色| 亚洲真实伦在线观看| 欧美成人a在线观看| 免费观看精品视频网站| 丰满人妻一区二区三区视频av| 久久九九热精品免费| 欧美日本视频| 国产高清激情床上av| 毛片女人毛片| 国产精品人妻久久久久久| 久久人人精品亚洲av| 嫩草影院入口| 一级毛片aaaaaa免费看小| av国产免费在线观看| 最近手机中文字幕大全| 精品久久久久久久人妻蜜臀av| 亚洲成人中文字幕在线播放| 美女内射精品一级片tv| 国产探花在线观看一区二区| 深夜a级毛片| 禁无遮挡网站| 国产精品人妻久久久久久| 成人国产麻豆网| 国产黄色视频一区二区在线观看 | 欧美高清成人免费视频www| 久久精品久久久久久噜噜老黄 | videossex国产| 成人欧美大片| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 欧美高清成人免费视频www| 日韩制服骚丝袜av| 国产淫片久久久久久久久| 久久久久久久久中文| 国产高清激情床上av| 精品人妻熟女av久视频| 伦理电影大哥的女人| 亚洲精品粉嫩美女一区| 联通29元200g的流量卡| 亚洲欧美精品专区久久| 18禁在线无遮挡免费观看视频| 国产精品野战在线观看| 国产不卡一卡二| 久久午夜亚洲精品久久| 欧美日韩国产亚洲二区| 爱豆传媒免费全集在线观看| 免费在线观看成人毛片| 国产精品国产高清国产av| 久久人人爽人人爽人人片va| 国产美女午夜福利| 欧美最新免费一区二区三区| 国产精品日韩av在线免费观看| 亚洲欧美精品综合久久99| 91久久精品电影网| 日日摸夜夜添夜夜爱| 插阴视频在线观看视频| 亚洲成av人片在线播放无| 亚洲综合色惰| 日本黄色片子视频| 日本黄色视频三级网站网址| 亚洲av一区综合| 丝袜喷水一区| 只有这里有精品99| 亚洲精品国产av成人精品| 欧美潮喷喷水| 欧美一区二区精品小视频在线| 丰满乱子伦码专区| 国产av一区在线观看免费| 欧美最新免费一区二区三区| 亚洲自偷自拍三级| 日本撒尿小便嘘嘘汇集6| 欧美日韩一区二区视频在线观看视频在线 | 免费观看精品视频网站| 成人毛片60女人毛片免费| 91在线精品国自产拍蜜月| 久久久a久久爽久久v久久| 中文欧美无线码| 国产亚洲av嫩草精品影院| 国产探花极品一区二区| 深夜精品福利| 国产91av在线免费观看| 日产精品乱码卡一卡2卡三| 午夜免费激情av| 成人高潮视频无遮挡免费网站| 国产一区二区在线av高清观看| 蜜桃久久精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 亚洲精品久久国产高清桃花| 午夜视频国产福利| 色吧在线观看| 老司机福利观看| 日韩一本色道免费dvd| 日本欧美国产在线视频| 特级一级黄色大片| 五月玫瑰六月丁香| 中出人妻视频一区二区| 久久欧美精品欧美久久欧美| 男插女下体视频免费在线播放| 国产毛片a区久久久久| 国产黄a三级三级三级人| 人妻久久中文字幕网| av天堂在线播放| 99久国产av精品国产电影| 看十八女毛片水多多多| 青春草亚洲视频在线观看| 成人综合一区亚洲| www.色视频.com| 嘟嘟电影网在线观看| 久久精品人妻少妇| 亚洲四区av| 一级黄色大片毛片| 日韩成人av中文字幕在线观看| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 婷婷色av中文字幕| 久久欧美精品欧美久久欧美| 男人和女人高潮做爰伦理| 插逼视频在线观看| 亚洲国产精品成人综合色| 天堂av国产一区二区熟女人妻| 久久久久久久久大av| 中出人妻视频一区二区| 日产精品乱码卡一卡2卡三| 亚洲欧美中文字幕日韩二区| 中文亚洲av片在线观看爽| 亚洲av熟女| 欧美人与善性xxx| 嫩草影院精品99| 亚洲av中文字字幕乱码综合| 亚州av有码| 国产综合懂色| 国产伦精品一区二区三区视频9| 一级黄片播放器| 不卡一级毛片| 国产亚洲精品久久久com| 国语自产精品视频在线第100页| 少妇裸体淫交视频免费看高清| 免费一级毛片在线播放高清视频| 亚洲av免费在线观看| 直男gayav资源| 综合色av麻豆| 亚洲丝袜综合中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 中文字幕久久专区| 色吧在线观看| 99久久人妻综合| 亚洲欧美成人综合另类久久久 | 麻豆精品久久久久久蜜桃| 日本免费一区二区三区高清不卡| 麻豆国产av国片精品| 中文亚洲av片在线观看爽| 少妇猛男粗大的猛烈进出视频 | av在线亚洲专区| 嫩草影院精品99| 午夜视频国产福利| 九色成人免费人妻av| 天堂网av新在线| 日韩三级伦理在线观看| 精品人妻一区二区三区麻豆| 国产高清激情床上av| 午夜精品国产一区二区电影 | 国产亚洲精品久久久久久毛片| 国产成人a∨麻豆精品| 少妇高潮的动态图| 国产黄色小视频在线观看| kizo精华| 日韩强制内射视频| 在线国产一区二区在线| 国产精品日韩av在线免费观看| 国产精品电影一区二区三区| 日韩制服骚丝袜av| 亚洲久久久久久中文字幕| 国产不卡一卡二| 欧洲精品卡2卡3卡4卡5卡区| 久久99热这里只有精品18| 亚洲精品乱码久久久v下载方式| 午夜a级毛片| 亚洲美女搞黄在线观看| 久久久久久久久大av| 老师上课跳d突然被开到最大视频| 91麻豆精品激情在线观看国产| 观看免费一级毛片| 国产精品免费一区二区三区在线| 观看免费一级毛片| 亚洲自偷自拍三级| 中文字幕久久专区| 有码 亚洲区| 波多野结衣巨乳人妻| 久久久精品94久久精品| 久久久欧美国产精品| 成人漫画全彩无遮挡| 特级一级黄色大片| 天美传媒精品一区二区| 国产探花极品一区二区| 少妇裸体淫交视频免费看高清| 精品少妇黑人巨大在线播放 | 久久久久久久午夜电影| 久久久久久伊人网av| 欧洲精品卡2卡3卡4卡5卡区| 久久这里只有精品中国| 国内久久婷婷六月综合欲色啪| 美女国产视频在线观看| 丝袜喷水一区| 亚洲av成人av| 99久久精品一区二区三区| 亚洲无线在线观看| 中国美白少妇内射xxxbb| 日韩成人av中文字幕在线观看| 久久鲁丝午夜福利片| 男女视频在线观看网站免费| 三级经典国产精品| 国产成人影院久久av| 午夜福利在线观看免费完整高清在 | 久99久视频精品免费| 亚洲精品自拍成人| 久久99热6这里只有精品| 国产 一区精品| 一卡2卡三卡四卡精品乱码亚洲| 搡女人真爽免费视频火全软件| av黄色大香蕉| 亚洲精品色激情综合| 免费人成在线观看视频色| 一级毛片电影观看 | 国产日本99.免费观看| 欧美日韩在线观看h|