• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Super-Grignard reagents (R2Mg?LiCl) mediated covalent-anionic-radical polymerization capable of low ? and reactive hydrogen compatibility

    2023-10-14 03:03:40MinSuMengQinPuHngXioYuJioChenWenMingWn
    Chinese Chemical Letters 2023年9期

    Min Su, Meng-Qin Pu, Hng Xio, Yu-Jio Chen, Wen-Ming Wn,?

    a Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China

    b University of Chinese Academy of Sciences, Beijing 100049, China

    Keywords:R2Mg?LiCl Grignard reagent Living polymerization Covalent-anionic-radical polymerization Block copolymerization

    ABSTRACT The precise synthesis of polymer with narrow molecular weight distribution (?) and well-defined architectures is very essential to exploring the functions and properties of polymer materials.Here, a universal polymerization method capable of low ? and reactive hydrogen compatibility is reported by introducing super-Grignard reagents (R2Mg?LiCl) into polymer chemistry.Under mild conditions, various monomers,including nonpolar polystyrene and 4-methoxystyrene that cannot be initiated by Grignard reagents, and polar methacrylate, are successfully polymerized with full monomer conversion and low ?.This approach is amenable to wide varieties of initiators, polymerization temperature, and feed ratio, which makes it attractive for applications in polymer synthesis.By adding methanol and water during the polymerization process, the reactive hydrogen compatibility of this method is confirmed, which makes this method avoid the rigorous restriction on polymerization conditions of anionic polymerization.Moreover, chain extension polymerization and block copolymerization are achieved and demonstrate the livingness of chain propagation, enabling the facile synthesis of well-defined macromolecular architectures.This work therefore expands the methodology libraries of living polymerization, which may cause inspirations to polymer science.

    The 20thcentury witnessed the booming of synthetic polymeric materials which have become an indispensable part of human life due to their easy processing and diversified properties [1-4].The development of polymerization methods is an important foundation to match the growing demand for synthetic polymeric materials [5-9].In particular, the precise synthesis of polymer with narrow molecular weight distribution (?) and well-defined architectures has been extensively studied for decades and contributed to the synthesis of commercial polymer products [10-14].

    To achieve polymers with low?, polymer chemists have paid considerable research efforts and living polymerization methods have been developed in the past decades [15-20].In 1956, Szwarc used sodium naphthalenide as initiators at low temperature for the anionic polymerization of styrene (St), achieving the preparation of a “l(fā)iving polymer” which enables continued propagation when new monomer was added without chain termination and chain transfer reactions [21-24].The appearance of “l(fā)iving polymer” opens the door to the precise synthesis of well-defined polymer, and scientists realized the significance of this method to the development of polymer field.However, various living polymerization methods based on different polymerization species and mechanisms were reported until the end of the 20thcentury due to the existence of chain termination and chain transfer reaction [25-28].For examples, Webster group achieved silyl ketene acetals mediated group transfer polymerization ofα,β-unsaturated carbonyl compounds in 1983 [29,30].Higashimura group achieved HI/I2mediated living cationic polymerization of isobutyl vinyl ether in 1984 [31,32].Grubbs group achieved metallacyclobutanes mediated living ringopening metathesis polymerization of norbornene in 1986 [33,34].And various reversible deactivation radical polymerizations (RDRP)were reported in 1990s, such as alkyl halides and transition-metal complexes mediated atom transfer radical polymerization, nitroxides mediated nitroxide-mediated radical polymerization, and thiocarbonyl chain transfer agents mediated reversible additionfragmentation chain transfer polymerization [35-46].Although great progress has been witnessed in living polymerization field,there are still some difficulties to develop a method with multiple advantages, including widely available initiators and monomers,mild polymerization conditions, easy operation, low?and full monomer conversion,etc.For example, relatively rigorous experimental conditions (high purity monomer, reactive hydrogen forbidden, high vacuum system, low temperature,etc.) are required in living anionic polymerization, and bimolecular termination is unavoidable at high conversion in living radical polymerization.Consequently, developing new polymerization species different from solely anionic, cationic, or radical species is highly significant and desirable to promote polymer synthesis and polymeric materials.Recently, we reported a versatile Barbier covalent-anionicradical polymerization (Barbier CARP) method by introducing the Barbier covalent-anionic-radical species into living polymerization,enabling polymers with low?through polymerization of nonpolar monomer (e.g., St), where polymerization species exhibits all-in-one covalent-anionic-radical characteristics [47].

    Scheme 1.(a) Grignard reagents and (b) super-Grignard reagents mediated polymerization.

    Grignard reagents, a well-known class of nucleophiles reagents prepared by Victor Grignard in 1990, can act as initiators for anionic polymerization of polar monomers (e.g., methyl methacrylate(MMA)) rather than nonpolar monomers (e.g., St and derivates)(Scheme 1a) [22,48-50].Recently, Knochel has gained great progresses in the development of novel Grignard reagents,e.g.,R2Mg?LiCl.In comparison with traditional Grignard reagents,R2Mg?LiCl (referred as super-Grignard reagents) exhibit exceptional reactivity and allow challenging halogen-magnesium exchange reactions efficiently to prepare Grignard reagents, which even exhibit excellent compatibility with functional groups, such as carbonyl group and nitrile group [51].Different from the outstanding achievements of super-Grignard reagents in organic chemistry,super-Grignard reagents are rarely used in polymer synthesis,especially in the design of the living polymerization method.Based on the unique reactivity of super-Grignard reagents, we aim to introduce super-Grignard reagents into polymer chemistry with the development of a universal living polymerization capable of wide varieties of monomers and initiators, which will expand the methodology libraries of living polymerization and is therefore significant.

    Herein, we report a universal polymerization method capable of low?and reactive hydrogen compatibility by introducing super-Grignard reagents into polymer chemistry, achieving polymerization of polar monomers and nonpolar monomers under mild polymerization conditions (Scheme 1b).Different from anionic polymerization, this polymerization species exhibits all-inone covalent-anionic-radical characteristics with reactive hydrogen compatibility.Through this super-Grignard reagents mediated CARP, narrow distributed polymer with?as low as 1.15 can be obtained under mild conditions with full monomer conversion.Meanwhile, block copolymerization and chain extension polymerization are successfully carried out to verify the livingness of the polymer chain end, which therefore enable potential utilizations of this polymerization in the synthesis of polymer materials.

    To verify above hypothesis, polymerization of St was firstly carried out by usingi-Pr2Mg·LiCl as an initiator in THF under mild conditions, where relatively rigorous restrictions (e.g., low temperature, high purity and high vacuum system) are not required.As shown in Table 1, entries 1-6, narrowly distributed polystyrenes(PS) with?as low as 1.15 were successfully prepared with full monomer conversion (>99%).The successful preparation of PS is confirmed by1H NMR spectra, where broad polymer signals appear at 7.35~6.89, 6.86~6.21, and 2.38~1.08 ppm, accompanied with the disappearance of sharp signals of monomer at 7.40~7.21 and 6.73~5.21 ppm, respectively (Fig.S1 in Supporting information).According to MALDI-TOF-MS shown in Figs.1A and B, the end groups of obtained PS are demonstrated to be isopropyl and hydrogen, which derives from the initiator and quencher methanol,respectively, indicating that the polymerization is initiated byi-Pr2Mg·LiCl and terminated by proton hydrogen of methanol.As the temperature drops from 45 °C to 0 °C,Mnof PS increases gradually from 44.7 kg/mol to 93.9 and 179.7 kg/mol accompanied with low?smaller than 1.20, which indicates well-controlled?in this polymerization, even though the initiator efficiency is highly temperature dependent.Additionally, various super-Grignard reagents(alkyl, benzyl, allyl and phenyl) were carried out as initiators,where full monomer conversion can also be achieved, indicatinggood diversity of initiator for this polymerization (Table 1, entries 7-10, Tables S1-S3 in Supporting information).When considering the initiator structures, polymer with higherMnof 638.1 kg/mol and relatively large?of 1.38 was obtained when using Ph2Mg·LiCl as an initiator at 45 °C (Table 1, entry 10).All these results indicate low?can be achieved andMncan be manipulated by feed ratio,initiator structure and polymerization temperature, even though initiation efficiency is not high, which are similar to our previous study of Barbier CARP.By comparison, experimentalMnobtained by super-Grignard reagent mediated polymerization are far greater than the calculatedMnaccording to Eq.S1 (Supporting information), indicating only less than 8% of super-Grignard reagents participates in polymerization.In comparison, no polymer is observed for Grignard reagenti-PrMgCl, which is consistent with the anionic polymerization literature (Table 1, entry 11) [22].

    Table 1 Results of St polymerization by various super-Grignard reagents.a

    Fig.1.(A) MALDI-TOF mass spectrum of PS quenched by MeOH with i-Pr2Mg?LiCl as initiator.(B) Amplified MALDI-TOF mass spectrum of (A).(C) The relationship of ln([M0]/[M]) vs.polymerization time, and the relationship of monomer conversion vs.polymerization time for polymerization of St by i-Pr2Mg?LiCl at 45 °C.(D) The relationship of molecular weight vs.conversion for polymerization of St by i-Pr2Mg?LiCl at 45 °C.(E) GPC traces of PS prepared by i-Pr2Mg?LiCl at 45 °C for different polymerization times: 5 min, 10 min, 15 min, 20 min, and 30 min.(F) GPC traces of PS prepared by i-Pr2Mg?LiCl at 45 °C for different polymerization times: 12 h, 24 h and 36 h.(G) The relationship of ln([M0]/[M]) vs.polymerization time for polymerization of St by different super-Grignard reagents at 45 °C.(H) The relationship of molecular weight vs.conversion for polymerization of St by Bn2Mg?LiCl at 0 °C.(I) The relationship of molecular weight vs.conversion for polymerization of St by allyl2Mg?LiCl at 45 °C.(J) The relationship of molecular weight vs.conversion for polymerization of St by Et2Mg?LiCl at 45 °C.(K) GPC curves of polymer obtained at 20 min (blue) and polymers obtained at 15 h with addition of different amounts of MeOH or H2O (red).Polymerization conditions: 1) St (2 g, 1 equiv.), [St]/[i-Pr2Mg·LiCl]=20, THF (4 mL), 45 °C, 20 min.2) MeOH or H2O (0.01 equiv.), r.t., 15 h.(L) MALDI-TOF mass spectrum of PS quenched by TEMPO with i-Pr2Mg?LiCl as initiator.(M) Plausible mechanism of super-Grignard reagents mediated polymerization.

    To reveal the polymerization kinetics, this super-Grignard reagent mediated polymerization was investigated by recording monomer conversion,Mnand?at different polymerization time.As shown in Figs.1C-F, polymerization of St with a [St]/[i-Pr2Mg·LiCl] feed ratio of 50/1 was carried out at 45 °C, where almost full monomer conversion was achieved at 35 min accompanied with low?and the increase ofMnlinearly from 9.6 kg/mol to 48.7 kg/mol.To prove that bimolecular termination is inexistent after full monomer conversion, the polymerization time was extended to 36 h, where no obvious bimolecular GPC trace was observed.Correspondingly, other super-Grignard reagents mediated polymerization kinetics were carried out under the same conditions.By analyzing the relationship of ln([M0]/[M])vs.polymerization time, polymerization rate order of these initiators is Bn2Mg·LiCl> Et2Mg·LiCl>i-Pr2Mg·LiCl> allyl2Mg·LiCl (Fig.1G),which is inconsistent with the amount of polymerization species calculated fromMn, indicating substituted group of initiators will affect polymerization rate and molecular weight of obtained polymers simultaneously.All these polymerization rate results also indicate the propagation process is slower at the beginning and accelerates during polymerization, and the reactivity of polymerization species (benzyl species) is much higher than that of virgin super-Grignard reagents, which explain why only a small amount of super-Grignard reagent acts as real initiator, as mentioned above.It is worth mentioning, the polymerization initiated by Bn2Mg·LiCl is so fast and can be completed in about 6 min.So,its polymerization kinetics was also carried out at 0 °C so that the relationship ofMnvs.monomer conversion can be plotted,where linear relationship is achieved (Fig.1H).The relationships ofMnwith monomer conversion are also linear for other initiators, as shown in Figs.1H-J and Figs.S2-S4 (Supporting information).So, all these results confirm the living characteristics of this super-Grignard reagents mediated polymerization with a wide variety of initiators, includingi-Pr2Mg?LiCl, Et2Mg?LiCl, Bn2Mg?LiCl,allyl2Mg?LiCl and Ph2Mg?LiCl.

    To further confirm the all-in-one CARP characteristics of this super-Grignard reagents mediated polymerization, rather than traditional anionic polymerization characteristics, reactive hydrogen compatibility experiments were carried out in different bathes by adding 0.2 equiv.of MeOH or H2O at 20 min of polymerization(Fig.1K).The sample taken out at 20 min was characterized by1H NMR and GPC, giving the monomer conversion of 18% andMnof 28.7 kg/mol (blue curve).After 15 h, full monomer conversions have been achieved in all these batches with similar GPC curves (the red trace), indicating that polymerization species exhibits high compatibility with reactive hydrogens (e.g., MeOH and H2O).Compared with the zero tolerance of reactive hydrogen of traditional anionic polymerization, the CARP characteristics of this super-Grignard reagent mediated polymerization exhibits better compatibility with polymerization conditions.Meanwhile, TEMPO capture experiments were used to demonstrate the radical characteristics of polymerization species.As shown in Fig.1L, three groups of peaks exist in MALDI-TOF mass spectrum, two of which are considered to TEMPO terminated PS deriving and proton terminated PS, while another seem to be degraded PS derived in MALDITOF test according to the literature on TEMPO-mediated living radical polymerization [52].However, when large amount of radical trapper (BHT) with reactive hydrogen containing is added during polymerization, the polymer chain is terminated by hydrogen, indicating the anionic characteristic exhibits stronger than radical characteristic (Fig.S5 in Supporting information).All these results suggest the reactive propagation species in super-Grignard reagents mediated polymerization method is not solely anionic species, but accompanied by radical characteristics.

    According to above mechanism experiment results, we speculated on the possible mechanism of super-Grignard reagents mediated polymerization, as shown in Fig.1M.In the initiation stage,the reactive species with all-in-one anionic and radical characteristics drive the addition of super-Grignard reagents on St, producing polymerization species (Pn)2Mg?LiCl with covalent-anionic-radical characteristics.During the chain propagation process, polymerization species continuously react with St to achieve chain growth due to the existence of reactive all-in-one anionic and radical characteristics, while the bimolecular termination and active hydrogen quenching reaction is inhibited by the covalent characteristic, realizing the synthesis of narrow distribution polymer with low?.

    Fig.2.(A) GPC trace of PMOS.Polymerization conditions: MOS (1 g, 1 equiv.),[St]/[i-Pr2Mg·LiCl]=20, THF (2 mL), 45 °C, 24 h.(B) GPC trace of PMMA.Polymerization conditions: MMA (1 g, 1 equiv.), [St]/[ t-Bu2Mg?LiCl]=20, THF (4 mL), -78 °C,3 h.(C) The scheme of chain extension polymerization and block polymerization.(D) GPC traces of PS-1 and PS-2.(E) GPC traces of PS and PS-b-PMOS.

    Generally, anionic polymerization of styrenic monomers will be suppressed when introducing an electron-donating group, such as 4-methoxystyrene (MOS), whose double bond exhibits more electron-rich due to the existence of alkoxy group.To explore the monomer universality of this super-Grignard reagents mediated polymerization, MOS was polymerized by usingi-Pr2Mg?LiCl as an initiator.As shown in Fig.2A and Figs.S6 and S7 (Supporting information), poly(4-methoxystyrene) (PMOS) is successfully prepared with full monomer conversion and?of 1.17 under mild conditions.This result indicates that this super-Grignard reagent mediated CARP is applicable to monomers with low reactivity,e.g., MOS, where the livingness can be well maintained.Moreover, super-Grignard reagents mediated polymerization of the polar monomer methyl methacrylate (MMA) can also be achieved at -78 °C byt-Bu2Mg?LiCl, a sterically hindered super-Grignard reagent, and PMMA withMnof 40.2 kg/mol and?of 1.28 can be prepared with full monomer conversion (Fig.2B and Fig.S8 in Supporting information).So, all these results indicate the wide monomer compatibility of this super-Grignard reagents mediated polymerization.

    To explore the potential application of this CARP in the synthesis of well-defined macromolecular architectures, the chain extension and block copolymerization were performed under standard conditions (Fig.2C).Using a feed ratio of 50:1, St was firstly polymerized at 45 °C for 30 min, and PS withMnof 46.3 kg/mol and?of 1.19 was obtained.With the addition of additional amount of St rather than quencher, the chain extension polymerization proceeded for 12 h, yielding PS-2 with higher molecular weight(Mn=80 kg/mol,?=1.17), whose unimodal GPC curves further verify the livingness of chain propagation (Fig.2D).Alternatively,when the second monomer MOS was added at 30 min, block copolymer PS-b-PMOS was prepared with over 99% monomer conversion (Fig.2E and Fig.S9 in Supporting information).In comparison with the GPC trace of PS, the chromatogram of the obtained PS-b-PMOS shows a pronounced increase in molecular weight to 71.4 kg/mol and maintained narrow?of 1.20.The successful chain extension and block copolymerization indicate there is still no obvious chain termination in this CARP even if the monomer conversion reaches 99%, which attributes to the anionic characteristics of the polymerization species.Through TGA and DSC, the thermal properties of the obtained PS-b-PMOS were investigated,exhibitingTdof 414 °C andTgof 102 °C (Fig.S12 in Supporting information).

    In summary, a universal polymerization method capable of reactive hydrogen compatibility was achieved with full conversion by using super-Grignard reagents as initiators for the preparation of the polymers with low?.Under mild conditions, PS with?as low as 1.15 is successfully prepared with full monomer conversion, where wide varieties of super-Grignard reagents, includingi-Pr2Mg?LiCl, Et2Mg?LiCl, Bn2Mg?LiCl, allyl2Mg?LiCl and Ph2Mg?LiCl,are used as initiators in different polymerization temperature and feed ratio.Kinetic experiments indicate that the chain ends remain reactive during polymerization.By adding methanol and water into the polymerization medium, the reactive hydrogen compatibility of this polymerization method was confirmed, exhibiting the difference from traditional anionic polymerization which needs rigorous polymerization conditions.Meanwhile, this polymerization method is compatible with other monomer, such as styrenic monomers MOS and polar monomer MMA.Moreover, chain extension polymerization and block copolymerization are carried out,and PS with higher molecular weight and PS-b-PMOS are prepared with over 99% monomer conversion, demonstrating the feasibility of this polymerization method in the synthesis of well-defined macromolecular architectures.All these results indicate that super-Grignard reagents mediated polymerization is a universal method for the precise synthesis of polymer with narrow?and welldefined architectures, realizing both minimized chain termination(even when monomer conversion is over 99%) and mild reaction conditions.This work therefore expands the methodology libraries of living polymerization, which may cause inspirations to polymer science.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge funding support from National Natural Science Foundation of China (NSFC, Nos.22271286 and 21971236) and the Haixi Institute of CAS (No.CXZX-2017-P01).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108167.

    av片东京热男人的天堂| 国产91精品成人一区二区三区| 国产亚洲欧美在线一区二区| 毛片女人毛片| 成年女人毛片免费观看观看9| 久久久精品大字幕| 成年版毛片免费区| 久久久久亚洲av毛片大全| 男女床上黄色一级片免费看| 嫩草影院入口| 蜜桃亚洲精品一区二区三区| 人人妻人人看人人澡| 人妻夜夜爽99麻豆av| 久久精品国产清高在天天线| 亚洲国产精品成人综合色| 美女高潮的动态| 成人精品一区二区免费| 精品国产亚洲在线| 国产免费av片在线观看野外av| 日日干狠狠操夜夜爽| 久99久视频精品免费| 欧美在线一区亚洲| 欧美色欧美亚洲另类二区| 日日夜夜操网爽| 欧美日韩黄片免| 久久中文看片网| 精品久久久久久久末码| 精品久久久久久成人av| 内射极品少妇av片p| 国产精品久久久久久亚洲av鲁大| 久久香蕉国产精品| 亚洲成av人片免费观看| 天堂影院成人在线观看| 老司机在亚洲福利影院| www日本黄色视频网| 免费观看人在逋| 桃色一区二区三区在线观看| 国产亚洲精品综合一区在线观看| 91字幕亚洲| 国产欧美日韩精品亚洲av| 美女cb高潮喷水在线观看| 色尼玛亚洲综合影院| 白带黄色成豆腐渣| 国产三级中文精品| 午夜福利高清视频| 一卡2卡三卡四卡精品乱码亚洲| 欧洲精品卡2卡3卡4卡5卡区| 啦啦啦韩国在线观看视频| 亚洲国产欧美网| 久久精品国产综合久久久| 亚洲无线观看免费| 国内精品一区二区在线观看| 日韩精品中文字幕看吧| 欧美日韩综合久久久久久 | 午夜福利18| 亚洲成人精品中文字幕电影| 亚洲精品成人久久久久久| 少妇丰满av| 成年女人永久免费观看视频| 男插女下体视频免费在线播放| 欧美丝袜亚洲另类 | 人妻久久中文字幕网| 国产探花极品一区二区| 村上凉子中文字幕在线| 听说在线观看完整版免费高清| 51国产日韩欧美| a级一级毛片免费在线观看| 成人av一区二区三区在线看| 国产欧美日韩精品亚洲av| 成人av在线播放网站| 美女被艹到高潮喷水动态| 亚洲中文字幕一区二区三区有码在线看| 久久中文看片网| 成人特级av手机在线观看| 精品欧美国产一区二区三| 久久久精品大字幕| 老熟妇仑乱视频hdxx| 国产亚洲欧美在线一区二区| 亚洲人成伊人成综合网2020| 好看av亚洲va欧美ⅴa在| 无遮挡黄片免费观看| 男女之事视频高清在线观看| 色综合欧美亚洲国产小说| 欧美激情久久久久久爽电影| 久久精品夜夜夜夜夜久久蜜豆| 男女视频在线观看网站免费| 国产精品 欧美亚洲| 熟女电影av网| 中文字幕人妻丝袜一区二区| 亚洲欧美日韩高清专用| 脱女人内裤的视频| 伊人久久大香线蕉亚洲五| 一个人免费在线观看的高清视频| 欧美色欧美亚洲另类二区| 两性午夜刺激爽爽歪歪视频在线观看| 3wmmmm亚洲av在线观看| 天天躁日日操中文字幕| 国产高清videossex| 午夜两性在线视频| 亚洲国产欧洲综合997久久,| 精品熟女少妇八av免费久了| 99久久精品一区二区三区| 男人舔奶头视频| 深爱激情五月婷婷| 国产v大片淫在线免费观看| 国产精品国产高清国产av| 亚洲成人中文字幕在线播放| 淫秽高清视频在线观看| 国产精华一区二区三区| 欧美3d第一页| 99久久成人亚洲精品观看| 岛国在线观看网站| 欧美区成人在线视频| 亚洲av电影不卡..在线观看| 欧美最黄视频在线播放免费| 婷婷亚洲欧美| 国内精品美女久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 欧美性感艳星| 九九热线精品视视频播放| 90打野战视频偷拍视频| 精品久久久久久久末码| 色视频www国产| 免费观看精品视频网站| 成人永久免费在线观看视频| 国产老妇女一区| 一进一出抽搐gif免费好疼| 亚洲乱码一区二区免费版| 草草在线视频免费看| 亚洲熟妇熟女久久| 搡老妇女老女人老熟妇| 99久久无色码亚洲精品果冻| 免费在线观看成人毛片| 亚洲av不卡在线观看| 精品久久久久久久久久免费视频| 久久精品国产综合久久久| 国产视频一区二区在线看| 色在线成人网| 亚洲av美国av| 亚洲av日韩精品久久久久久密| eeuss影院久久| 搡女人真爽免费视频火全软件 | 国产精品一及| 亚洲av免费高清在线观看| 波多野结衣巨乳人妻| 亚洲成人精品中文字幕电影| 欧美成人a在线观看| 黄色丝袜av网址大全| 精品一区二区三区人妻视频| 久久久精品欧美日韩精品| 国产v大片淫在线免费观看| 在线a可以看的网站| 19禁男女啪啪无遮挡网站| 欧美3d第一页| av福利片在线观看| 国产黄a三级三级三级人| 久久久久性生活片| 国产精品国产高清国产av| 久久久久久久久久黄片| 午夜激情福利司机影院| 欧美日韩瑟瑟在线播放| 欧美黄色片欧美黄色片| 午夜激情欧美在线| 手机成人av网站| 欧美黑人欧美精品刺激| 亚洲人成伊人成综合网2020| 国产乱人伦免费视频| 日本精品一区二区三区蜜桃| 非洲黑人性xxxx精品又粗又长| 搞女人的毛片| 黄片小视频在线播放| 国产麻豆成人av免费视频| www日本在线高清视频| 91麻豆精品激情在线观看国产| 99在线视频只有这里精品首页| 一本综合久久免费| 免费av毛片视频| 国产精品美女特级片免费视频播放器| 一个人看视频在线观看www免费 | 日韩欧美在线乱码| 久久精品国产自在天天线| 青草久久国产| 欧美日韩国产亚洲二区| 精品国产美女av久久久久小说| 久久久国产成人免费| 国产免费男女视频| 高清日韩中文字幕在线| 午夜激情福利司机影院| 亚洲精品一卡2卡三卡4卡5卡| 一二三四社区在线视频社区8| 成人鲁丝片一二三区免费| 麻豆成人av在线观看| 国产一区二区在线av高清观看| 中出人妻视频一区二区| 国产精品久久久久久久电影 | 网址你懂的国产日韩在线| 天堂动漫精品| 首页视频小说图片口味搜索| 亚洲人成网站在线播放欧美日韩| 久久久久久大精品| 亚洲不卡免费看| 国内少妇人妻偷人精品xxx网站| 一个人免费在线观看电影| 日本一本二区三区精品| 男女午夜视频在线观看| 亚洲五月天丁香| 成人欧美大片| 亚洲自拍偷在线| 一本久久中文字幕| 亚洲一区二区三区不卡视频| 国产精品,欧美在线| xxxwww97欧美| 国产视频一区二区在线看| 舔av片在线| 丰满人妻熟妇乱又伦精品不卡| 国产精品综合久久久久久久免费| 亚洲欧美日韩卡通动漫| 国产av麻豆久久久久久久| 中文字幕人成人乱码亚洲影| 中国美女看黄片| 成年免费大片在线观看| 波多野结衣巨乳人妻| 搡老岳熟女国产| 欧美色视频一区免费| 国产精品乱码一区二三区的特点| 在线观看一区二区三区| 丰满乱子伦码专区| 日韩成人在线观看一区二区三区| 香蕉丝袜av| 免费在线观看亚洲国产| 一本综合久久免费| www.999成人在线观看| 女人被狂操c到高潮| 精品一区二区三区视频在线观看免费| 亚洲欧美一区二区三区黑人| 国产精品电影一区二区三区| av欧美777| 黄片大片在线免费观看| 两个人看的免费小视频| 白带黄色成豆腐渣| 欧美bdsm另类| 精品免费久久久久久久清纯| 午夜精品久久久久久毛片777| 国产v大片淫在线免费观看| 真人做人爱边吃奶动态| 在线天堂最新版资源| 国产真实伦视频高清在线观看 | 国产精品电影一区二区三区| 在线观看免费视频日本深夜| 搡女人真爽免费视频火全软件 | 久久久久久久久大av| 黄色视频,在线免费观看| 国产精品永久免费网站| 人人妻人人澡欧美一区二区| 好男人在线观看高清免费视频| 婷婷亚洲欧美| 亚洲性夜色夜夜综合| 久久国产精品人妻蜜桃| 一a级毛片在线观看| 午夜激情福利司机影院| 成年女人看的毛片在线观看| 久久6这里有精品| 一级毛片高清免费大全| 亚洲av免费在线观看| 亚洲国产色片| netflix在线观看网站| av天堂在线播放| 欧美黑人巨大hd| 亚洲国产欧美网| 亚洲18禁久久av| 蜜桃久久精品国产亚洲av| 精品人妻1区二区| 1024手机看黄色片| 网址你懂的国产日韩在线| 俄罗斯特黄特色一大片| 看免费av毛片| 国产欧美日韩一区二区三| 欧美黄色淫秽网站| 大型黄色视频在线免费观看| 日韩中文字幕欧美一区二区| 有码 亚洲区| 蜜桃久久精品国产亚洲av| 亚洲美女黄片视频| 美女cb高潮喷水在线观看| 老熟妇乱子伦视频在线观看| 国产精品精品国产色婷婷| 午夜精品一区二区三区免费看| 精品国产三级普通话版| 国产亚洲欧美98| 精品人妻偷拍中文字幕| 久久久久国内视频| 国产毛片a区久久久久| 亚洲狠狠婷婷综合久久图片| 精品人妻一区二区三区麻豆 | 成人精品一区二区免费| 91字幕亚洲| 国产黄色小视频在线观看| 亚洲av电影不卡..在线观看| 亚洲精品一卡2卡三卡4卡5卡| 黄片小视频在线播放| 久久性视频一级片| 夜夜躁狠狠躁天天躁| 91字幕亚洲| 午夜福利免费观看在线| 成人亚洲精品av一区二区| 精品不卡国产一区二区三区| 一二三四社区在线视频社区8| 99精品久久久久人妻精品| 免费人成在线观看视频色| 国产爱豆传媒在线观看| 国产精品自产拍在线观看55亚洲| 欧美成人免费av一区二区三区| 亚洲 欧美 日韩 在线 免费| 日韩av在线大香蕉| 国产伦在线观看视频一区| 欧美一区二区国产精品久久精品| 亚洲在线观看片| 亚洲人成电影免费在线| 国产精品电影一区二区三区| 午夜免费激情av| 蜜桃亚洲精品一区二区三区| 色老头精品视频在线观看| 亚洲国产精品999在线| 久久久久久久精品吃奶| 国产精品永久免费网站| 成人av一区二区三区在线看| 俄罗斯特黄特色一大片| 亚洲av电影不卡..在线观看| 日本黄大片高清| 偷拍熟女少妇极品色| 欧美3d第一页| 两个人看的免费小视频| 国产爱豆传媒在线观看| or卡值多少钱| 操出白浆在线播放| 高潮久久久久久久久久久不卡| 在线观看免费视频日本深夜| 国产成人系列免费观看| 国产私拍福利视频在线观看| 极品教师在线免费播放| 久久精品国产99精品国产亚洲性色| 一级毛片女人18水好多| 日本免费一区二区三区高清不卡| 波多野结衣高清作品| 午夜福利视频1000在线观看| 很黄的视频免费| 成人一区二区视频在线观看| 亚洲成人中文字幕在线播放| 俺也久久电影网| 亚洲午夜理论影院| 久久婷婷人人爽人人干人人爱| 亚洲最大成人手机在线| 免费在线观看日本一区| 精品久久久久久,| 欧美乱妇无乱码| 又黄又爽又免费观看的视频| 亚洲国产欧洲综合997久久,| 欧美3d第一页| 亚洲人成网站在线播放欧美日韩| 床上黄色一级片| 狂野欧美激情性xxxx| 国内精品美女久久久久久| 12—13女人毛片做爰片一| 日韩精品青青久久久久久| 国产91精品成人一区二区三区| 在线观看午夜福利视频| 中文字幕高清在线视频| 看免费av毛片| 免费在线观看影片大全网站| 欧美性猛交黑人性爽| 高清在线国产一区| 久久久久亚洲av毛片大全| 18禁美女被吸乳视频| 免费一级毛片在线播放高清视频| 久久99热这里只有精品18| 麻豆国产av国片精品| 又黄又爽又免费观看的视频| 欧美黑人巨大hd| 美女 人体艺术 gogo| 国内精品一区二区在线观看| 国产黄a三级三级三级人| 欧美极品一区二区三区四区| 亚洲成人久久性| 日本a在线网址| 99热精品在线国产| 五月伊人婷婷丁香| 午夜福利视频1000在线观看| 成人欧美大片| 日韩成人在线观看一区二区三区| 欧美黑人巨大hd| 啦啦啦观看免费观看视频高清| 亚洲真实伦在线观看| 听说在线观看完整版免费高清| 一夜夜www| 亚洲国产精品久久男人天堂| 欧美一区二区精品小视频在线| 欧美日韩乱码在线| 欧美国产日韩亚洲一区| 日韩免费av在线播放| 两个人视频免费观看高清| 午夜精品一区二区三区免费看| 色在线成人网| 夜夜爽天天搞| 淫妇啪啪啪对白视频| 村上凉子中文字幕在线| 男插女下体视频免费在线播放| 亚洲国产日韩欧美精品在线观看 | 极品教师在线免费播放| 久久国产精品人妻蜜桃| 91av网一区二区| 成人性生交大片免费视频hd| 亚洲av二区三区四区| 国内毛片毛片毛片毛片毛片| av黄色大香蕉| 丁香欧美五月| 高清毛片免费观看视频网站| 在线十欧美十亚洲十日本专区| 女生性感内裤真人,穿戴方法视频| 在线看三级毛片| 免费看光身美女| 99在线人妻在线中文字幕| 国产精品永久免费网站| 一级a爱片免费观看的视频| 少妇人妻精品综合一区二区 | 亚洲,欧美精品.| 黄色片一级片一级黄色片| 可以在线观看毛片的网站| 亚洲精品一区av在线观看| 欧美黑人欧美精品刺激| 嫁个100分男人电影在线观看| 国产精品 欧美亚洲| 在线观看av片永久免费下载| 国产精品三级大全| 在线免费观看不下载黄p国产 | 亚洲欧美一区二区三区黑人| 99热精品在线国产| 一a级毛片在线观看| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 丁香欧美五月| 久久午夜亚洲精品久久| 亚洲中文日韩欧美视频| av中文乱码字幕在线| 午夜福利在线观看吧| 成人永久免费在线观看视频| 一进一出好大好爽视频| 在线免费观看不下载黄p国产 | 亚洲中文字幕一区二区三区有码在线看| 国产淫片久久久久久久久 | 国内揄拍国产精品人妻在线| 亚洲五月婷婷丁香| av在线蜜桃| 亚洲欧美激情综合另类| av欧美777| xxx96com| 成人特级av手机在线观看| 一本综合久久免费| 精品久久久久久久末码| 亚洲一区二区三区色噜噜| 黄色片一级片一级黄色片| 欧美av亚洲av综合av国产av| 色尼玛亚洲综合影院| 99精品欧美一区二区三区四区| av专区在线播放| 乱人视频在线观看| h日本视频在线播放| 禁无遮挡网站| 日韩欧美国产一区二区入口| 亚洲avbb在线观看| 亚洲av成人av| 欧美乱码精品一区二区三区| 免费搜索国产男女视频| 国产极品精品免费视频能看的| 国产美女午夜福利| 啦啦啦免费观看视频1| 国产在视频线在精品| 长腿黑丝高跟| 欧美乱色亚洲激情| 免费看十八禁软件| 在线观看av片永久免费下载| 欧美成人免费av一区二区三区| www.色视频.com| 怎么达到女性高潮| 日韩欧美免费精品| 在线a可以看的网站| 麻豆国产av国片精品| 午夜影院日韩av| 成人18禁在线播放| 亚洲精品国产精品久久久不卡| 老司机深夜福利视频在线观看| 日本 欧美在线| 国内精品美女久久久久久| 亚洲成a人片在线一区二区| av欧美777| 免费在线观看日本一区| 精品免费久久久久久久清纯| 日本黄色视频三级网站网址| 两人在一起打扑克的视频| 国产主播在线观看一区二区| 成人欧美大片| 69av精品久久久久久| 亚洲 欧美 日韩 在线 免费| 老司机午夜十八禁免费视频| 国产精品香港三级国产av潘金莲| 天堂网av新在线| av在线天堂中文字幕| 婷婷精品国产亚洲av| 国产真实乱freesex| 欧美av亚洲av综合av国产av| 国产高清三级在线| 九九热线精品视视频播放| 色老头精品视频在线观看| 国产精品嫩草影院av在线观看 | 美女免费视频网站| 久久国产精品人妻蜜桃| 叶爱在线成人免费视频播放| 久久香蕉精品热| 老司机午夜十八禁免费视频| 他把我摸到了高潮在线观看| 麻豆一二三区av精品| 欧美zozozo另类| 国产99白浆流出| 亚洲成a人片在线一区二区| 一进一出好大好爽视频| 在线播放无遮挡| 久久天躁狠狠躁夜夜2o2o| 日韩免费av在线播放| 精品久久久久久成人av| 国产亚洲欧美在线一区二区| 老熟妇乱子伦视频在线观看| 欧美成狂野欧美在线观看| 国产三级在线视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 少妇的逼水好多| 久久精品综合一区二区三区| 99久久九九国产精品国产免费| 99在线视频只有这里精品首页| 丁香欧美五月| 99热精品在线国产| 亚洲黑人精品在线| 午夜福利高清视频| 亚洲avbb在线观看| 久久久国产精品麻豆| 一个人看的www免费观看视频| 操出白浆在线播放| 九九久久精品国产亚洲av麻豆| 国产精品野战在线观看| 天天躁日日操中文字幕| 精品人妻偷拍中文字幕| 99热这里只有精品一区| 亚洲av美国av| 99国产精品一区二区三区| 一本一本综合久久| 美女免费视频网站| 美女被艹到高潮喷水动态| 夜夜爽天天搞| 午夜福利在线在线| 最近最新中文字幕大全电影3| 国产精品自产拍在线观看55亚洲| 女同久久另类99精品国产91| 欧美丝袜亚洲另类 | 午夜福利欧美成人| 国产激情偷乱视频一区二区| 色播亚洲综合网| ponron亚洲| 国产成人啪精品午夜网站| 色综合站精品国产| 一级黄色大片毛片| xxxwww97欧美| 国产精品免费一区二区三区在线| 国产精品99久久久久久久久| 亚洲最大成人手机在线| 3wmmmm亚洲av在线观看| av专区在线播放| 国模一区二区三区四区视频| 免费看a级黄色片| 久久久精品大字幕| 国产精品久久久久久人妻精品电影| 久久久久久人人人人人| 成人18禁在线播放| 深爱激情五月婷婷| 国产极品精品免费视频能看的| 亚洲av不卡在线观看| 成人特级av手机在线观看| 九九在线视频观看精品| 蜜桃亚洲精品一区二区三区| 成年女人永久免费观看视频| 麻豆成人av在线观看| 性欧美人与动物交配| 天堂√8在线中文| 老熟妇乱子伦视频在线观看| 久久久久性生活片| 波多野结衣高清作品| 网址你懂的国产日韩在线| 久久久久性生活片| 国产精品一区二区三区四区久久| 亚洲国产精品合色在线| 18禁黄网站禁片午夜丰满| 宅男免费午夜| 天天一区二区日本电影三级| 操出白浆在线播放| 久久中文看片网| 在线十欧美十亚洲十日本专区| 国产麻豆成人av免费视频| 丰满人妻一区二区三区视频av | 中文字幕熟女人妻在线| 国产一级毛片七仙女欲春2| 亚洲久久久久久中文字幕| 淫秽高清视频在线观看| 欧美三级亚洲精品| 内地一区二区视频在线| 哪里可以看免费的av片| 国产成+人综合+亚洲专区| 免费搜索国产男女视频| 亚洲中文字幕日韩|