• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Lewis acid-catalyzed tandem reaction enabling 2-arylglycerol derivative as a versatile 1,3-biselectrophile for the synthesis of 4H-chromenes and 2-pyridinones

    2023-10-14 02:54:54ShominChenTinjinZhngZhenhuXuBoYouMinghoLiYnlongGu
    Chinese Chemical Letters 2023年9期

    Shomin Chen, Tinjin Zhng, Zhenhu Xu, Bo You, Mingho Li,?, Ynlong Gu,b,c,?

    a Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

    b School of Chemistry and Chemical Engineering, The Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University,Shihezi 832004, China

    c State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Lanzhou 730000, China

    Keywords:Lewis acid catalysis 2-Arylglycerol derivative 1,3-Biselectrophile Six-membered heterocycles[3+3] cyclization

    ABSTRACT Acid-catalyzed tandem reactions were established by employing a novel class of 2-arylglycerol derivative,5-aryl-1,3-dioxan-5-ol, as versatile 1,3-biselectrophile.In the reactions, 5-aryl-1,3-dioxan-5-ol works like atropaldehydes or 2-aryl malondialdehydes, and can react with 2-naphthols and β-keto amides, allowing the synthesis of 4H-chromenes and 5-aryl-2-pyridinones.High yields, good functional group tolerance,broad substrate scope and simple reaction operation make this protocol attractive.

    Six-membered heterocycles are highly significant in the synthetic and pharmaceutical chemistry fields since they are widely spread in natural products and medicinally important agents [1-5].The cycloadditions have been established as one of the most effi-cient tools to construct these skeletons.In particular, the organic small molecules [6], transition metals [7], or Lewis acids [8] catalyzed [3+3] cycloadditions offer advantages for the synthesis of a substantial variety of six-membered heterocyclic compounds, and they are receiving considerable attention.Different from the wellknown Diels-Alder reaction, the [3+3] cycloadditions are generally stepwise processes.The development of [3+3] cycloaddition transformations is greatly facilitated by the identification of novel 1,3-dipoles or 1,3-biselectrophiles, which also offers opportunities in the construction of functionalized heterocycles [9].

    In recent years, the conversion of glycerol into value-added chemicals has become attractive due to the large surplus of glycerol [10].Among these, 1,3-dihydroxyacetone, as a sort of oxidative product of glycerol, is of high value and it has been widely applied to cosmetic, pharmaceutical and food industries [11].Considering that 2-susbtituted glycerol analogues can be easily prepared from 1,3-dihydroxyacetone [12], it can be expected that exploiting novel reactivity of 2-susbtituted glycerol will further extend the utilization of 1,3-dihydroxyacetone.Mechanically, 2-susbtituted glycerol analogues can undergo the dehydration and tautomerization to generate aldehyde.We envision that the highly reactive aldehyde combined with residual hydroxyl group might enable the 2-susbtituted glycerol analogues as promising 1,3-biselectrophiles to deliver some valuable heterocyclic molecules if accompanied by other cascade process.

    Our research commenced from 5-aryl-2,2-dimethyl-1,3-dioxan-5-ol (1a in Table 1), which was prepared from Grignard reagent and hydroxyl protected dihydroxyacetone [13].Initially, 2-naphthol was used as a bis-nucleophile to react with 1a in 1,4-dioxane for the condition optimization.Several metal Lewis acids were examined (Table 1, entries 1-5), it was found that most of triflates showed poor catalytic efficiencies on this reaction, except for Al(OTf)3, which could generate a cyclization product, 4H-chromene 3a in a moderate yield of 67% (entry 2).In addition, other commonly used catalysts, BF3.Et2O and PTSA, were also tested, but they were not suitable for the transformation (entries 6 and 7).Subsequently, the evaluation of solvents disclosed that all of the investigated solvents were not as effective as 1,4-dioxane in the reaction, in which CH3CN and toluene could deliver the desirable product in 58% and 42%, respectively (entries 8 and 11), and DCEand CH3NO2led to inseparable mixture or trace product (entries 9 and 10).When the ratio of 1a and 2a was adjusted to 1:1.2, the yield of 3a increased to 76% (entry 12).Also, the reaction was sensitive to the amount of catalyst and temperature.Further investigation revealed that decreasing the dosage of catalyst or reaction temperature, the yields of the reactions diminished drastically, presumably due to the low conversion of starting materials (entries 13 and 14).Thus, the conditions in entry 12 of Table 1 were identified as the optimal choices.

    Table 1 Optimization of the reaction conditions.a

    Scheme 1.The synthesis of 4H-chromenes.

    Afterwards, we explored the substrate scope of this cascade transformation.As demonstrated in Scheme 1, the reaction showed a wide substrate scope.Several tertiary alcohols with different functional groups on the phenyl ring were compatible with the reaction conditions, furnishing the corresponding products with moderate to good yields.Thereinto, tertiary alcohols containing methyl at thepara-position of phenyl gave a much higher yield than those with halogen groups (3b-3d), while a contrary electronic effect emerged with regard to the C3 position of this one(3e-3g).Furthermore, 6-bromo-2-naphthol also readily underwent the transformation, affording the desired products, 3h and 3i.Notably, this example represents an alternative strategy to access 2,3-dihydrophenalenone compared with direct cyclization from 1-naphthylpropionic acid [14].Unexpectedly, sesamol was also applicable to the tandem process with the production of compound 3j in a satisfying yield.However, no target product was obtained when the simple phenol was engaged as the substrate.

    Scheme 2.The proposed mechanism for the synthesis of 4H-chromene.

    To probe the reaction mechanism and verify the conversion pathway of 2-arylglycerol functionalized as 1,3-biselectrophile in the reaction, the crude HRMS analysis experiment was conducted.The peaks at 151.0753 and 133.0652 were detected (Fig.S1 in Supporting information), which were assigned to 2-phenylpropene-1,3-diol or 3-hydroxy-2-phenylpropanal and atropaldehyde, respectively (A or B and 4a in Scheme 2).Then, the atropaldehyde was directly reacted with 2a under standard conditions, in which 3a was successfully obtained in a good yield of 79%.Based on these observations, a plausible mechanism for the synthesis of 4H-chromene was proposed as depicted in Scheme 2.In the presence of acid catalyst, the deprotection of ketal from 1a occurred to afford 2-arylglycerol, which went through dehydration to give the intermediate A.After that, the tautomerization of A occurred to result in the intermediate B, followed by an elimination of H2O to generate the key intermediate, atropaldehyde 4a.Subsequently, a Michael addition of 4a with 2-naphthol occurred, followed by a successive Michael addition/intramolecular semi-acetalization/dehydration process to give the desired product 3a.It was worth noting that the atropaldehyde was a kind of important biselectrophile, which was widely used in synthesis of heterocycles [15-18].However, they are generally synthesized from styrenes [16] orα-hydroxyacetophenones [19] by multistep reactions (Scheme S1 in Supporting information), which restricts their wide uses in a large extent.Currently, our protocol offers a more expedient and efficient approach toin situgenerate atropaldehyde,to rapidly synthesize some important scaffolds.

    Encouraged by above result, we subsequently attempted to employβ-keto amide 5a as a nucleophile to couple with 1a(Scheme 3), sinceβ-keto amides are frequently used as potential precursors for the construction of heterocyclic systems because of the existence of multiple reactive sites [20,21].To our delight, a 5-aryl-2-pyridone 6a was obtained in 28% yield under the identical reaction conditions with the reaction of 1a and 2a (Table S1 in Supporting information).Considering the fact that an oxidation process may be involved in the new transformation, different oxidants were screened and we found that the combination of Al(OTf)3and NBS could lead to a huge improvement, providing 6a with an excellent yield, up to 92% (Table S1 in Supporting information).

    Scheme 3.Investigation of substrate scope for the synthesis of 5-aryl-2-pyridones.Reaction conditions: 1 (0.20 mmol), 5 (0.24 mmol), Al(OTf)3 (0.04 mmol), NBS(0.20 mmol), 1,4-dioxane (1.0 mL), 80°C, 4 h under air atmosphere, and isolated yields based on 1.a 100°C, 8 h.

    Scheme 4.The control experiments and proposed mechanism for the synthesis of 6a.

    Following this, the substrate scope of the protocol was explored(Scheme 3).Acetoacetanilides bearing various functional groups at thepara-position of aromatic ring all proceeded smoothly, affording the desired 5-aryl-2-pyridone compounds 6c-6i in moderate to excellent yields.A significant electronic effect was observed on the reaction yields.The acetoacetanilides attached to electron-donating groups, such as methyl andtert-butyl, on the aromatic ring gave rise to higher efficiency than those with electron-withdrawing groups (including -F, -Cl, -Br, -CN).Most importantly, the acid-sensitive ester group could be also delivered uneventfully into the anticipated product, 6h, without causing any structural damage.Also, substituents at theorthoandmetaposition of benzene ring were also amenable to the transformation,delivering the desired products, 6j-6m, in good yields.Of note,ortho-substituted substrates 6l and 6m, exhibited a slight decrease in yields, perhaps due to the influence of steric hindrance.Moreover, the two- or three-substituted acetoacetanilides were proven to be compatible substrates for the transformation, providing the 2-pyridone-type products (6n-6r) with satisfying yields.Impressively,N-methylβ-keto amide could be favorably used in this sort of transformation, offering the anticipated product 6s, albeit with a relatively low yield, 46%.Subsequently, numerous decorated 5-aryl-1,3-dioxan-5-ols were also employed to examine the generality.Delightedly, they were well tolerated with the standard reaction conditions, producing the corresponding products 6t-6y with yields ranging from 51% to 81%.Intriguingly, the position of groups on the phenyl of tertiary alcohol, played a crucial role in the reaction.Tertiary alcohols with substituents at thepara-position performed higher reactivities in this catalytic system compared to those endowed with groups at themeta-position.In addition, the electron-rich 5-aryl-1,3-dioxan-5-ols converted more efficiently than their electron-deficient analogues, even enabling that the conversion of tertiary alcohols bearing 3-F and 3-Cl on the phenyl required a higher temperature and longer reaction time.It should be pointed out that 2-pyridones [22,23], especially for 5-aryl-2-pyridones, such as Tenellin, Sambutoxin and Pretenellin B, are important natural products that display a broad range of physiological activities, including antifungal, antitumoral, MEK-1 inhibitors [24,25].However, there are only a few methods to access 5-aryl-2-pyridones, and the common one is transition-metal catalyzed oxidative coupling between acrylamides and diary alkynes[26,27].Apparently, our method is simple and practical by employing tertiary alcohols as the materials through the acid-catalyzed tandem pinacol rearrangement reaction.

    In order to gain mechanistic insights into the reaction, some control experiments were carried out, and the results were shown in Scheme 4.Firstly, two different radical trappers, TEMPO or BHT,were added to the catalytic system (Scheme 4a), the expected product 6a was obtained in 87% and 84% yields, respectively, suggesting that a radical pathway might not be involved in this tandem reaction.Given that 1a could be converted into the corresponding atropaldehyde, the 4a was directly allowed to react with 5a.To our surprise, only 72% yield of 6a was obtained in under standard conditions, which was obviously less than that of 1a as the starting material (72%vs.92%, Scheme 4b).Further kinetic study showed that NBS could not obviously accelerate the reaction rate towards the desired product in any step (Table S2 in Supporting information), which excluded that NBS served an oxidant to promote the reaction when 4a was used as the material.However,in the absence of NBS, the reaction of 1a and 5a only furnished 28% yield of the desired product (Table S1).All these results indicated that other intermediates might be involved instead of 4a.Therefore, the LC-MS analysis experiment was conducted, in which somem/zpeaks were assigned to the substituted malondialdehyde(E in Scheme 4) as well as the intermediates B and 4a.Considering the difficulty in synthesis of 2-phenylmalondialdehyde (intermediate D) [28], we utilized a readily available analogue 7a instead to react with 5a.In this case, the bromo-substituted 2-pyridone product 8a formed albeit in a lower yield compared with 6a in the standard conditions (Scheme 4c) that might result from substitution effect.

    On the basis of these experimental results, a possible mechanism was proposed for the reaction (Scheme 4).Likewise,1awas transformed to intermediateBunder Al(OTf)3-catalyzed conditions, which underwent either intramolecular dehydration or NBS-mediated bromination to generate the atropaldehyde4aand intermediateC, respectively.The atropaldehyde4apassed through a successive Michael addition/intramolecular semi-azaacetalization/dehydration/oxidative aromatization process to give the desired product6a(Scheme 4, left hemicycle).On the other hand, the semi-pinacol rearrangement of the intermediateCmight occur to generate the key intermediateD, which reacted with5ato form the product through [3+3] cyclization (Scheme 4, right hemicycle).Taking it into account that the NBS was very important to facilitate the formation of6a(92%vs.28% yield), we speculated the 2-phenylmalondialdehydeDmight be the main intermediate.

    In summary, a novel class of 2-arylglycerols derivative, 5-aryl-1,3-dioxan-5-ols, have been successfully developed as versatile 1,3-biselectrophiles, functionalized as atropaldehydes or 2-aryl malondialdehydes, which could be combined with 2-naphthols orβ-keto amides for the chemoselective synthesis of diverse heterocycles,4H-chromenes and 2-pyridinones.Good functional group tolerance,broad substrate scope and simple reaction operation are also the attractive features, which render the present protocol more practical.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    The National Key Research and Development Project (No.2022YFE0124100), Ordos Key Research and Development Project(No.2022EEDSKJZDZX003), National Natural Science Foundation of China (Nos.21872060, 21902054, 21761132014, and 22072049)and the Open Research Fund (No.2022JYBKF01) of Key Laboratory of Material Chemistry for Energy Conversion and Storage(HUST), Ministry of Education, are acknowledged for the financial support.Program for HUST Academic Frontier Youth Team (No.2019QYTD06) is also acknowledged.This work was also supported by The Innovation and Talent Recruitment Base of New Energy Chemistry and Device.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108130.

    色哟哟哟哟哟哟| 女人被躁到高潮嗷嗷叫费观| 无遮挡黄片免费观看| 深夜精品福利| 这个男人来自地球电影免费观看| 亚洲第一电影网av| 亚洲色图av天堂| 国产精品久久久av美女十八| 久久人妻福利社区极品人妻图片| 国产单亲对白刺激| 少妇熟女aⅴ在线视频| 精品电影一区二区在线| videosex国产| 给我免费播放毛片高清在线观看| 午夜老司机福利片| 少妇的丰满在线观看| 欧美中文综合在线视频| aaaaa片日本免费| 熟女少妇亚洲综合色aaa.| 欧美乱色亚洲激情| 伊人久久大香线蕉亚洲五| 久久欧美精品欧美久久欧美| 久久人人97超碰香蕉20202| www.自偷自拍.com| 亚洲精品粉嫩美女一区| 无人区码免费观看不卡| 一区二区三区国产精品乱码| 日本五十路高清| videosex国产| 在线av久久热| 亚洲欧美日韩高清在线视频| 亚洲情色 制服丝袜| 熟女少妇亚洲综合色aaa.| 久久人妻av系列| 国产精品乱码一区二三区的特点 | 天堂动漫精品| 叶爱在线成人免费视频播放| 可以免费在线观看a视频的电影网站| 成人精品一区二区免费| 精品电影一区二区在线| 国产精品av久久久久免费| 国产麻豆69| 日韩大尺度精品在线看网址 | 高清黄色对白视频在线免费看| 亚洲aⅴ乱码一区二区在线播放 | 亚洲精品一区av在线观看| 天堂动漫精品| 欧美色视频一区免费| aaaaa片日本免费| aaaaa片日本免费| 国产亚洲欧美精品永久| 女同久久另类99精品国产91| 国产欧美日韩精品亚洲av| 禁无遮挡网站| 亚洲国产中文字幕在线视频| 两人在一起打扑克的视频| 色尼玛亚洲综合影院| 亚洲午夜精品一区,二区,三区| 亚洲少妇的诱惑av| 国产精品九九99| 日韩视频一区二区在线观看| 18美女黄网站色大片免费观看| 精品一区二区三区四区五区乱码| 成熟少妇高潮喷水视频| 国产激情欧美一区二区| 日韩免费av在线播放| av有码第一页| 丝袜人妻中文字幕| 麻豆国产av国片精品| 日韩一卡2卡3卡4卡2021年| 亚洲av片天天在线观看| 美女免费视频网站| 麻豆av在线久日| 国产av一区在线观看免费| av免费在线观看网站| 国产精品香港三级国产av潘金莲| 一边摸一边抽搐一进一小说| 最近最新中文字幕大全电影3 | 精品国产一区二区久久| 黑人操中国人逼视频| 好男人电影高清在线观看| 亚洲激情在线av| videosex国产| 中国美女看黄片| 欧美中文日本在线观看视频| 国产精品99久久99久久久不卡| 色综合亚洲欧美另类图片| 一区二区三区精品91| 高潮久久久久久久久久久不卡| 亚洲一区二区三区色噜噜| 中文字幕人妻丝袜一区二区| 亚洲成a人片在线一区二区| 搞女人的毛片| 日本五十路高清| 亚洲中文av在线| 国产高清有码在线观看视频 | 美女高潮到喷水免费观看| 亚洲一码二码三码区别大吗| 精品欧美国产一区二区三| 大码成人一级视频| 曰老女人黄片| 欧美日本中文国产一区发布| 国产成人一区二区三区免费视频网站| 欧美激情久久久久久爽电影 | 亚洲在线自拍视频| av免费在线观看网站| 欧美+亚洲+日韩+国产| 午夜福利一区二区在线看| 久久久国产精品麻豆| 国产麻豆成人av免费视频| 亚洲国产日韩欧美精品在线观看 | 在线十欧美十亚洲十日本专区| 成人三级黄色视频| 欧美成人一区二区免费高清观看 | 精品久久久久久久毛片微露脸| 久久久久国内视频| 国产熟女午夜一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 麻豆成人av在线观看| av欧美777| 这个男人来自地球电影免费观看| 精品国内亚洲2022精品成人| 少妇 在线观看| 日韩中文字幕欧美一区二区| www.自偷自拍.com| av超薄肉色丝袜交足视频| 国产精品一区二区在线不卡| 大型黄色视频在线免费观看| 午夜亚洲福利在线播放| 色尼玛亚洲综合影院| 国产一级毛片七仙女欲春2 | 中文字幕色久视频| 激情视频va一区二区三区| 19禁男女啪啪无遮挡网站| 很黄的视频免费| 日韩国内少妇激情av| 两个人免费观看高清视频| 国产色视频综合| 波多野结衣巨乳人妻| 亚洲美女黄片视频| 国产精品 国内视频| 人人澡人人妻人| 免费在线观看影片大全网站| 午夜福利欧美成人| 国产av精品麻豆| 国产精品久久电影中文字幕| 精品电影一区二区在线| 最近最新免费中文字幕在线| 一区二区三区国产精品乱码| 成人三级黄色视频| 国产精品爽爽va在线观看网站 | 日韩欧美三级三区| 最新在线观看一区二区三区| 久久久久久免费高清国产稀缺| 变态另类丝袜制服| 精品久久久久久成人av| 男人舔女人的私密视频| 91av网站免费观看| 国产成人一区二区三区免费视频网站| 日本在线视频免费播放| 久久婷婷成人综合色麻豆| 99国产综合亚洲精品| 欧美日韩亚洲国产一区二区在线观看| 18禁观看日本| 午夜福利在线观看吧| 一级毛片女人18水好多| 亚洲精品在线美女| 国产精品久久久av美女十八| 国产午夜精品久久久久久| 18禁黄网站禁片午夜丰满| 一本大道久久a久久精品| 欧美午夜高清在线| 国产亚洲欧美98| 精品福利观看| 露出奶头的视频| 欧美日韩亚洲国产一区二区在线观看| 好男人电影高清在线观看| 女生性感内裤真人,穿戴方法视频| 很黄的视频免费| 午夜激情av网站| 国产欧美日韩精品亚洲av| 女人被狂操c到高潮| 一边摸一边做爽爽视频免费| 18禁美女被吸乳视频| xxx96com| 日韩精品免费视频一区二区三区| 黄色片一级片一级黄色片| 精品高清国产在线一区| 国产视频一区二区在线看| 无遮挡黄片免费观看| 啦啦啦 在线观看视频| 男女下面插进去视频免费观看| 老司机午夜福利在线观看视频| 成年版毛片免费区| 国产野战对白在线观看| 99国产精品免费福利视频| 欧美乱妇无乱码| netflix在线观看网站| 在线观看一区二区三区| 精品无人区乱码1区二区| 色婷婷久久久亚洲欧美| 在线天堂中文资源库| 精品日产1卡2卡| 九色亚洲精品在线播放| 无遮挡黄片免费观看| 免费看美女性在线毛片视频| 久久青草综合色| 免费少妇av软件| 后天国语完整版免费观看| 超碰成人久久| 91成年电影在线观看| 法律面前人人平等表现在哪些方面| 欧美一区二区精品小视频在线| 18禁美女被吸乳视频| 日韩大尺度精品在线看网址 | 黄色丝袜av网址大全| 亚洲国产欧美日韩在线播放| 91成年电影在线观看| 国产精品美女特级片免费视频播放器 | 亚洲成国产人片在线观看| 男男h啪啪无遮挡| 男女午夜视频在线观看| 国产成人精品久久二区二区91| 国产精品亚洲av一区麻豆| 黑人操中国人逼视频| 好男人电影高清在线观看| 一级,二级,三级黄色视频| 亚洲av片天天在线观看| 亚洲熟妇熟女久久| 亚洲国产中文字幕在线视频| 中文亚洲av片在线观看爽| 国产一卡二卡三卡精品| 大香蕉久久成人网| 一边摸一边抽搐一进一出视频| 国产三级黄色录像| 国产精品 欧美亚洲| 女人被躁到高潮嗷嗷叫费观| 国内毛片毛片毛片毛片毛片| 久久久久久亚洲精品国产蜜桃av| 欧美日本视频| 精品国产一区二区三区四区第35| 亚洲欧美激情综合另类| 身体一侧抽搐| 一本久久中文字幕| 亚洲色图av天堂| 国产一区二区三区在线臀色熟女| 久久青草综合色| 国产野战对白在线观看| 国产成人精品无人区| 欧美另类亚洲清纯唯美| 国产精品99久久99久久久不卡| 亚洲av成人av| 校园春色视频在线观看| 日韩欧美国产一区二区入口| av福利片在线| 身体一侧抽搐| 欧美成人一区二区免费高清观看 | 色哟哟哟哟哟哟| 国产三级黄色录像| 人妻丰满熟妇av一区二区三区| 欧美在线黄色| 免费不卡黄色视频| 天天躁夜夜躁狠狠躁躁| 真人一进一出gif抽搐免费| 一边摸一边抽搐一进一出视频| 午夜福利免费观看在线| 国产99久久九九免费精品| 午夜a级毛片| 精品国产一区二区久久| 亚洲国产欧美日韩在线播放| 国产色视频综合| 老熟妇乱子伦视频在线观看| 日本免费a在线| 啦啦啦韩国在线观看视频| 午夜a级毛片| 两人在一起打扑克的视频| 侵犯人妻中文字幕一二三四区| 午夜福利,免费看| 操出白浆在线播放| 久久精品亚洲精品国产色婷小说| 日本 av在线| 麻豆av在线久日| 91九色精品人成在线观看| 久久精品国产亚洲av香蕉五月| 久久精品成人免费网站| 欧美乱色亚洲激情| 色综合站精品国产| 色av中文字幕| 999久久久精品免费观看国产| 啪啪无遮挡十八禁网站| 一边摸一边抽搐一进一出视频| 极品教师在线免费播放| 亚洲av片天天在线观看| 久久久久久大精品| 亚洲精品av麻豆狂野| 在线免费观看的www视频| 欧美日韩亚洲国产一区二区在线观看| 美女免费视频网站| 久久草成人影院| 久久人人97超碰香蕉20202| 久久午夜亚洲精品久久| 欧美日韩黄片免| 视频在线观看一区二区三区| 欧美精品亚洲一区二区| 亚洲国产欧美一区二区综合| 欧美不卡视频在线免费观看 | av有码第一页| 黑人欧美特级aaaaaa片| 91成人精品电影| 母亲3免费完整高清在线观看| 国内久久婷婷六月综合欲色啪| 国语自产精品视频在线第100页| 精品国产美女av久久久久小说| 国产精品美女特级片免费视频播放器 | 国产伦人伦偷精品视频| 午夜日韩欧美国产| 淫秽高清视频在线观看| 波多野结衣巨乳人妻| 国产精品,欧美在线| 久久精品91蜜桃| 国产精品综合久久久久久久免费 | 国产免费男女视频| 欧美日韩乱码在线| 国产免费男女视频| а√天堂www在线а√下载| 在线国产一区二区在线| 久久久国产精品麻豆| 啦啦啦韩国在线观看视频| 岛国视频午夜一区免费看| 级片在线观看| 免费在线观看完整版高清| 午夜成年电影在线免费观看| avwww免费| 欧美中文日本在线观看视频| 亚洲国产精品999在线| 日本撒尿小便嘘嘘汇集6| 伊人久久大香线蕉亚洲五| 在线观看日韩欧美| 国产高清视频在线播放一区| 国产欧美日韩综合在线一区二区| 欧美+亚洲+日韩+国产| 久99久视频精品免费| 久久精品91蜜桃| 狠狠狠狠99中文字幕| 桃红色精品国产亚洲av| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片高清免费大全| 成人国产一区最新在线观看| 一个人观看的视频www高清免费观看 | 99精品欧美一区二区三区四区| 女警被强在线播放| 色婷婷久久久亚洲欧美| 一a级毛片在线观看| 国产成人精品久久二区二区91| 久久久国产精品麻豆| 国产激情久久老熟女| 少妇粗大呻吟视频| 国产成人精品在线电影| 国产区一区二久久| 亚洲色图av天堂| 国产欧美日韩精品亚洲av| 国产熟女午夜一区二区三区| 亚洲人成电影观看| 亚洲中文日韩欧美视频| 精品久久久久久,| 久久久久九九精品影院| 激情在线观看视频在线高清| 色播亚洲综合网| 一边摸一边抽搐一进一出视频| 国产成人精品久久二区二区91| 久久精品亚洲熟妇少妇任你| 国产成人精品无人区| 色老头精品视频在线观看| cao死你这个sao货| 97人妻天天添夜夜摸| 大型av网站在线播放| 国产精品国产高清国产av| 大型av网站在线播放| 曰老女人黄片| 99riav亚洲国产免费| 日韩中文字幕欧美一区二区| 欧美色视频一区免费| 成人特级黄色片久久久久久久| 大型av网站在线播放| 国产成人精品久久二区二区免费| 国产精品久久久久久精品电影 | 久久午夜亚洲精品久久| 精品电影一区二区在线| 两人在一起打扑克的视频| 亚洲美女黄片视频| 熟女少妇亚洲综合色aaa.| 久久亚洲精品不卡| 欧美大码av| 美女高潮喷水抽搐中文字幕| 日日摸夜夜添夜夜添小说| 女性生殖器流出的白浆| 欧美日本视频| 高清黄色对白视频在线免费看| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美一区二区综合| 亚洲 欧美 日韩 在线 免费| 国产亚洲av嫩草精品影院| 侵犯人妻中文字幕一二三四区| 男女之事视频高清在线观看| 精品国内亚洲2022精品成人| 美女大奶头视频| 一级作爱视频免费观看| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品成人综合色| 欧美一级a爱片免费观看看 | 一级毛片女人18水好多| 国产又色又爽无遮挡免费看| 欧美另类亚洲清纯唯美| 宅男免费午夜| 久久 成人 亚洲| 国产精品爽爽va在线观看网站 | 亚洲欧美激情在线| 麻豆国产av国片精品| 丝袜在线中文字幕| 一本久久中文字幕| 91在线观看av| 国产一区二区三区综合在线观看| 日本在线视频免费播放| av天堂在线播放| 国产色视频综合| 午夜视频精品福利| 最新在线观看一区二区三区| 国产xxxxx性猛交| 国内久久婷婷六月综合欲色啪| 精品乱码久久久久久99久播| 久久热在线av| 久久精品aⅴ一区二区三区四区| 精品熟女少妇八av免费久了| 侵犯人妻中文字幕一二三四区| av在线天堂中文字幕| 国产精品一区二区在线不卡| 欧美黑人欧美精品刺激| 一区二区三区国产精品乱码| а√天堂www在线а√下载| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲真实| 国产精品国产高清国产av| 叶爱在线成人免费视频播放| 午夜免费鲁丝| 黄色女人牲交| 啦啦啦韩国在线观看视频| 久热爱精品视频在线9| 一个人观看的视频www高清免费观看 | 精品久久蜜臀av无| 男人舔女人的私密视频| 国产精华一区二区三区| 亚洲av五月六月丁香网| 极品教师在线免费播放| 热re99久久国产66热| 99国产精品免费福利视频| 黄色丝袜av网址大全| 日本五十路高清| 精品熟女少妇八av免费久了| 女同久久另类99精品国产91| 亚洲七黄色美女视频| 91九色精品人成在线观看| av在线天堂中文字幕| 曰老女人黄片| 后天国语完整版免费观看| 神马国产精品三级电影在线观看 | 日本一区二区免费在线视频| 美女免费视频网站| 久久热在线av| 成在线人永久免费视频| 黄色成人免费大全| 国产精品 国内视频| 欧美激情久久久久久爽电影 | 欧美 亚洲 国产 日韩一| 亚洲av日韩精品久久久久久密| 亚洲 欧美一区二区三区| videosex国产| 亚洲av五月六月丁香网| 狠狠狠狠99中文字幕| 一区二区日韩欧美中文字幕| 午夜福利成人在线免费观看| 88av欧美| 一本综合久久免费| 十八禁人妻一区二区| 好男人电影高清在线观看| 精品欧美一区二区三区在线| 欧美黑人欧美精品刺激| av电影中文网址| 中国美女看黄片| 纯流量卡能插随身wifi吗| 狂野欧美激情性xxxx| 宅男免费午夜| 在线观看舔阴道视频| a级毛片在线看网站| 成人av一区二区三区在线看| 国产成人欧美在线观看| 欧美午夜高清在线| 丝袜美足系列| a级毛片在线看网站| 老熟妇仑乱视频hdxx| 精品午夜福利视频在线观看一区| 中文字幕人妻丝袜一区二区| 国产免费男女视频| 青草久久国产| 久久久国产欧美日韩av| 九色国产91popny在线| 国产精品自产拍在线观看55亚洲| 国产精品一区二区精品视频观看| 操出白浆在线播放| avwww免费| 可以在线观看毛片的网站| 性色av乱码一区二区三区2| 又紧又爽又黄一区二区| 给我免费播放毛片高清在线观看| 欧美亚洲日本最大视频资源| tocl精华| 黄色 视频免费看| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 国产成人影院久久av| 一区二区三区高清视频在线| 精品日产1卡2卡| 免费高清视频大片| 欧美 亚洲 国产 日韩一| cao死你这个sao货| 欧美精品亚洲一区二区| 色精品久久人妻99蜜桃| 侵犯人妻中文字幕一二三四区| 最近最新免费中文字幕在线| 亚洲专区国产一区二区| 波多野结衣一区麻豆| 国产成人系列免费观看| 我的亚洲天堂| 两个人视频免费观看高清| 亚洲三区欧美一区| 在线观看日韩欧美| 精品人妻1区二区| 少妇裸体淫交视频免费看高清 | 搞女人的毛片| 久久中文字幕人妻熟女| 香蕉久久夜色| 亚洲九九香蕉| 亚洲自偷自拍图片 自拍| 一级片免费观看大全| 亚洲熟女毛片儿| 亚洲成av人片免费观看| 精品电影一区二区在线| 国产成人欧美在线观看| 国产免费av片在线观看野外av| 久久国产精品人妻蜜桃| av有码第一页| 又黄又粗又硬又大视频| 久久久久久久精品吃奶| 9热在线视频观看99| 午夜福利视频1000在线观看 | 老司机午夜十八禁免费视频| 亚洲第一av免费看| 欧美中文综合在线视频| 免费在线观看完整版高清| 久久久久久久久中文| 制服丝袜大香蕉在线| 又紧又爽又黄一区二区| tocl精华| 自线自在国产av| 首页视频小说图片口味搜索| 97人妻精品一区二区三区麻豆 | 国产亚洲精品久久久久5区| 91九色精品人成在线观看| 国产91精品成人一区二区三区| av视频在线观看入口| 曰老女人黄片| 丝袜人妻中文字幕| 国产午夜福利久久久久久| 欧美一级毛片孕妇| 国产黄a三级三级三级人| 国产精品99久久99久久久不卡| 国产成人一区二区三区免费视频网站| 中文字幕人成人乱码亚洲影| 日本在线视频免费播放| 午夜福利,免费看| 高潮久久久久久久久久久不卡| 亚洲中文av在线| 老司机深夜福利视频在线观看| 久久亚洲真实| 午夜免费成人在线视频| 黄色a级毛片大全视频| 人成视频在线观看免费观看| 亚洲伊人色综图| 我的亚洲天堂| av超薄肉色丝袜交足视频| 男女午夜视频在线观看| 免费观看精品视频网站| 一级,二级,三级黄色视频| 午夜影院日韩av| 中文字幕久久专区| 一级,二级,三级黄色视频| 亚洲自拍偷在线| 人妻丰满熟妇av一区二区三区| 日本 欧美在线| 亚洲成人精品中文字幕电影| 窝窝影院91人妻| 日韩大码丰满熟妇| 巨乳人妻的诱惑在线观看| 看黄色毛片网站| 久久性视频一级片| 午夜a级毛片| 美国免费a级毛片| 午夜福利视频1000在线观看 | 欧美中文日本在线观看视频| 19禁男女啪啪无遮挡网站| 国产亚洲av高清不卡| 自拍欧美九色日韩亚洲蝌蚪91| 一个人免费在线观看的高清视频| 国产精品免费视频内射| 在线观看免费午夜福利视频| 亚洲精品一区av在线观看|